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Macroautophagy is a cellular catabolic process that involves the sequestration of cyto-
plasmic constituents into double-membrane vesicles known as autophagosomes, which
subsequently fuse with lysosomes, where they deliver their cargo for degradation. The
main physiological role of autophagy is to recycle intracellular components, under condi-
tions of nutrient deprivation, so as to supply cells with vital materials and energy. Selective
autophagy also takes place in nutrient-rich conditions to rid the cell of damaged organelles or
protein aggregates that would otherwise compromise cell viability. Mitophagy is a selec-
tive type of autophagy, whereby damaged or superfluous mitochondria are eliminated
to maintain proper mitochondrial numbers and quality control. While mitophagy shares
key regulatory factors with the general macroautophagy pathway, it also involves distinct
steps, specific for mitochondrial elimination. Recent findings indicate that parkin and the
phosphatase and tensin homolog-induced putative kinase protein 1 (PINK1), which have
been implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's
disease, also regulate mitophagy and function to maintain mitochondrial homeostasis.
Here, we survey the molecular mechanisms that govern the process of mitophagy and dis-
cuss its involvement in the onset and progression of neurodegenerative diseases during

aging.
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INTRODUCTION

Macroautophagy (henceforth referred to as autophagy) is a high-
regulated catabolic process responsible for the lysosomal degra-
dation of cytoplasmic constituents. The main characteristic of
the autophagic pathway is the formation of a double-membrane
structure known as autophagosome, which engulfs cytoplasmic
cargo and delivers it to lysosomes for degradation (Klionsky,
2007). In direct correlation with the large variety of autophagy
substrates, including cytoplasmic proteins, ribosomes, organelles,
bacteria and viruses, autophagy defects have been associated
with a wide range of human disorders, such as cancer, autoim-
mune and neurodegenerative diseases (Mizushima etal., 2008).
The main physiological role of autophagy is to supply the cell
with essential materials and energy by recycling intracellular
components, under conditions of nutrient deprivation when
nutrients cannot be obtained from the extracellular environment.
Selective types of autophagy, including pexophagy (Sakai etal.,
2006), ribophagy (Kraft etal., 2008), ER-phagy (Bernales etal.,
2007), protein selective chaperone-mediated autophagy (Cuervo
etal,, 2004), nucleophagy (Mijaljica etal.,, 2010), mitochon-
drial autophagy (mitophagy; Lemasters, 2005) take place under
nutrient-rich conditions to rid the cell of damaged organelles
or protein aggregates that would otherwise compromise cell
viability.

Mitochondria are double-membrane-bound organelles, essen-
tial for energy production and cellular homeostasis in eukaryotic
cells. In addition, mitochondria have vital roles in calcium sig-
naling and storage, metabolite synthesis, and apoptosis (Kroemer
etal., 2007). Thus, mitochondrial biogenesis, as well as, elim-
ination of damaged and superfluous mitochondria are highly

regulated processes. Mitophagy is a selective type of autophagy
that mediates the removal of mitochondria. Through mitophagy
cells regulate mitochondrial number in response to their metabolic
state and also implement a quality control system for proper elim-
ination of damaged mitochondria. The process of mitophagy is
highly regulated and conserved from yeast to mammals (Table 1).
While mitophagy shares key regulatory factors with the general
autophagy pathway, it also involves distinct steps, specific for
mitochondrial elimination. Studies in yeast identified specific
genes that are required for mitophagy, but not for other types
of autophagy (Kanki etal., 2009a; Kanki and Klionsky, 2010),
demonstrating the selective regulation of this process. Despite the
fact that the actual selection of mitochondria for degradation is a
still obscure part of the process, recent studies shed light on the
mechanisms that govern mitophagy and regulate removal of mito-
chondria during developmental processes or upon mitochondrial
damage. In this review, we survey the molecular mechanisms that
mediate mitophagy and also highlight how defects in this process
may contribute to the onset and progression of neurodegenerative
diseases during aging.

MOLECULAR MECHANISMS OF MITOPHAGY

The molecular mechanisms of mitophagy were studied in the
yeast Saccharomyces cerevisiae. The yeast uthl gene encodes a
Sad1p/UNC-84 (SUN)-domain protein that is located in the
outer mitochondrial membrane and is essential for the specific
autophagic elimination of mitochondria upon nitrogen starvation
or rapamycin treatment, without influencing general autophagy
(Kissova etal., 2004). The protein Aupl, a member of pro-
tein phosphatase 2C (PP2C) superfamily that is located in the
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Table 1 | Mitophagy-specific factors are highly conserved form yeast to mammals.

Organism Function Role

Saccharomyces Caenorhabditis Drosophila Mus

cerevisiae elegans melanogaster musculus

Atg32 - - - Mitophagy receptor Interaction with Atg8 recruits the
autophagic machinery

- DCT1 - NIX/BNIP3  Mitophagy receptor Interaction with LC3/GABARAP
recruits the autophagic machinery

- PINK-1 Pink1 PINK1 Ser/Thr protein kinase Phosphorylates and recruits Parkin
to mitochondria

- PDR-1 Parkin PARKIN E3 ubiquitin ligase Ubiquitinates outer membrane
mitochondrial proteins such as
Mfn1/2, VDAC, MIRO1/2

- SQST1 (T12G3.1) Ref(2)P SQST Adaptor protein Interacts with ubiquitinated proteins

1/p62 to recruit the autophagic machinery

Fzo1 FZO-1 Fzo, Dmfn MFN-1/2 Outer membrane fusion Ubiquitinated by Parkin; their
degradation precedes mitophagy
induction

Vdac1 VDAC-1 (R05G6.7) DmVDAC VDAC1 Voltage-dependent anion channel; Upon ubiquitination by Parkin

outer mitochondrial membrane induces the recruitment of the

autophagic machinery

mitochondrial intermembrane space, is essential for efficient
mitophagy at the stationary phase (Tal etal., 2007). Aupl may
regulate mitophagy by also controlling the retrograde response
pathway (Journo etal., 2009).

Another factor required for mitophagy is Atg32, a 59 kDa
protein, located in the outer mitochondrial membrane (Kanki
etal,, 2009b; Okamoto etal., 2009a). The amino- and carboxy-
terminal domains of Atg32 are oriented toward the cytoplasm and
intermembrane space, respectively. Atg32 is thought to act as a
mitochondrial receptor that binds the adaptor protein Atgll, to
sequester mitochondria to the phagophore assembly site (PAS),
during mitophagy (Okamoto etal., 2009b). The cytosolic domain
of Atg32 contains an evolutionary conserved WXXL-like motif,
which is critical for the interaction with Atg8 (the yeast homolog
of the mammalian autophagosome protein LC3; Okamoto etal.,
2009b). Thus, Atg32 can interact with Atg8 directly through
the WXXL-like motif or indirectly through Atgll. This asso-
ciation is thought to recruit autophagosomes to mitochondria
(Figure 1A). Atg32 is the first protein shown to interact with
the core autophagic machinery, and be required specifically for
mitophagy. Interestingly, loss of Atg32 does not alter cellular reac-
tive oxygen species (ROS) levels or growth on non-fermentable
carbon sources (Kanki et al., 2009b). This suggests the existence of
additional Atg32-independent mitophagy pathways. Recent stud-
iesidentified two mitogen-activated protein kinases (MAPKs), Stl2
and Hogl, also required for the specific elimination of mitochon-
dria via autophagy in S. cerevisiae (Mao etal., 2011). These two
positive regulators establish an additional regulatory step in the

process of mitophagy, underlining the complexity of this organelle
quality control system.

THE PINK1/PARKIN PATHWAY IN MITOPHAGY REGULATION

Mutations in the genes encoding the cytosolic E3 ubiquitin ligase
Parkin and the mitochondrial phosphatase and tensin homolog
(PTEN)-induced kinase 1 (PINK1) have been shown to cause
a recessive form of parkinsonism (Kitada etal., 1998; Valente
etal.,, 2004). However, the involvement of these proteins in the
pathogenesis of Parkinson’s disease remained obscure. Studies
in Drosophila melanogaster indicate that PINK1 and Parkin act
in the same genetic pathway to regulate mitochondrial network
integrity (Greene etal., 2003; Park etal., 2006). In healthy mito-
chondria, PINKI1 is probably imported through the translocase
complexes of the outer and inner mitochondrial membrane (TOM
and TIM, respectively). PINK1 is subsequently cleaved by several
proteases such as the mitochondrial-processing protease (MPP),
the inner membrane presenilin-associated rhomboid-like pro-
tease (PARL; Meissner etal., 2011; Greene etal., 2012). Upon
mitochondrial depolarization, import of PINK1 to the inner mito-
chondrial membrane is blocked and PINK1 is stabilized on outer
mitochondrial membrane (Lazarou etal., 2012). Accumulation
of PINKI on the mitochondrial surface induces mitophagy by
recruiting Parkin to damaged mitochondria through a mecha-
nism that is not well-understood. Thus, PINK1 likely functions
as a sensor for damaged mitochondria. Recent studies have
demonstrated that translocation of Parkin to impaired mitochon-
dria requires PINKI1 activity (Narendra etal., 2008; Geisler etal.,
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FIGURE 1 | Mechanisms and roles of mitophagy. (A) In yeast Atg32 (blue), (blue; oocyte-derived mitochondria are shown in pink). (D) Upon mitochondrial
a mitochondrial outer membrane protein, interacts with Atg8 (red) directly or depolarization, PINK1 (green) is stabilized on the outer mitochondrial
indirectly through the adaptor protein Atg11 (green), and links mitochondria membrane. Subsequently, Parkin (blue) is recruited and ubiquitylates outer
to autophagic machinery. (B) During red blood cell development the mitochondrial membrane proteins such as MFN1/2 and VDAC1. (1)
mitochondrial population is eliminated by mitophagy. Nix (blue), an outer Ubiquitinated MFN1/2 is degraded by the proteasome system. Damaged
mitochondrial membrane protein, serves as a receptor for targeting mitochondria are isolated and cannot fuse with the healthy mitochondrial
mitochondria to autophagosomes through its interaction with the population. (2) Next, ubiquitin-binding adaptor molecules, such as p62 (black),
autophagosomal protein LC3 (red). (C) In the fertilized C. elegans embryo, are recruited to mitochondria to initiate mitophagy through their interaction
the autophagic pathway selectively degrades sperm-derived mitochondria with LC3 (red).

2010; Matsuda etal., 2010; Narendra etal., 2010; Vives-B

etal., 2010). Following translocation, Parkin ubiquitylates outer
mitochondrial membrane proteins. Subsequently other adaptor
molecules, such as p62, are recruited to mitochondria to initi-

ate mitophagy (Figure 1D). The mitochondrial fusion pro

mitofusin 1 and 2 have been identified as substrates of Parkin
(Gegg etal., 2010; Poole etal., 2010; Tanaka etal., 2010; Rakovic
etal., 2011). Parkin prevents mitochondrial fusion through
degradation of mitofusins, thereby isolating impaired mitochon-
dria from the healthy mitochondrial population. Apart from
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mitofusins, overexpression of Parkin also mediates the ubiqui-
tination of other outer mitochondrial membrane proteins, such as
the voltage-dependent anion channel (VDAC), the mitochondrial
Rho GTPases (MIRO) 1 and 2, as well as components of mitochon-
drial translocase complex (TOM70, TOM40, and TOM20; Chan
etal., 2011; Yoshii etal., 2011). However, the relevance of these
substrates to the induction of mitophagy in vivo remains to be
investigated.

THE ROLE OF MITOPHAGY IN DEVELOPMENT

Certain developmental processes entail removal of non-damaged
mitochondria, a process that is essential for successful organ
and tissue development. During erythrocyte differentiation,
mitophagy eliminates healthy mitochondria in programmed fash-
ion. Erythrocytes transfer oxygen form the lungs to peripheral
tissues and are characterized by lack of internal organelles, includ-
ing mitochondria, an adaptation that perhaps serves to increase
their oxygen carrying capacity. Recently, Nix was identified as a
protein that mediates elimination of mitochondria in reticulocytes
(immature red blood cells; Schweers etal., 2007; Sandoval etal.,
2008). Nix is a Bcl2-related protein with an atypical BH3 domain
that is localized to outer mitochondrial membrane and is required
for the elimination of reticulocyte mitochondria. Nix~/~ mice
retain mitochondria in erythrocytes and develop anemia because
of decreased survival of these cells (Schweers et al., 2007; Sandoval
etal., 2008). Studies of erythrocyte differentiation suggest that
Nix is not required for induction of mitophagy per se, but for the
engulfment of mitochondria by autophagosomes. Nix contains
a cytoplasmic WXXL-like motif, which interacts with LC3 (the
mammalian homolog of the yeast Atg8) and the GABA receptor-
associated protein (GABARAP) in vivo and in vitro (Schwarten
etal., 2009; Novak etal., 2010). Therefore, Nix appears to act as a
receptor for targeting autophagosomes to mitochondria in a man-
ner similar to the yeast Atg32 (Figure 1B). Nevertheless, despite
the requirement of Nix in erythrocyte differentiation, treatment
of reticulocytes with uncoupling agents induces mitophagy upon
mitochondrial depolarization in a Nix-independent manner (San-
doval etal., 2008). The mechanisms mediating Nix-independent
mitophagy in reticulocytes remain unclear.

An additional important developmental role for mitophagy is
the removal of paternal mitochondria in fertilized oocytes (Al
Rawi etal., 2011; Sato and Sato, 2011). Although, sperm contains
mitochondria, which are transferred to the oocyte upon fertiliza-
tion, only maternal mitochondrial DNA (mtDNA) is ultimately
inherited. Two studies in Caenorhabditis elegans revealed that
the autophagic pathway selectively degrades sperm mitochondria
during the early stages of embryogenesis (Figure 1C). How-
ever, the signal that activates mitophagy, to selectively eliminate
sperm-derived mitochondria remains unknown.

MITOPHAGY IN NEURODEGENERATION

Neuronal cells typically require increased numbers of mitochon-
dria, since most neuronal ATP is generated through oxidative
phosphorylation. This high-energy demand is dictated by numer-
ous neuronal processes, such as axonal transport of macro-
molecules and organelles, maintenance of membrane potential,
loading and releasing neurotransmitters, and buffering cytosolic

calcium. Therefore, neuronal survival and activity are critically
dependent on mitochondrial integrity and functionality (Rugarli
and Langer, 2012). Mitochondria are highly dynamic organelles
that constantly move and undergo frequent fission and fusion
events. Several components of the fission/fusion machinery have
been linked to various neurological diseases, underlying the sig-
nificance of mitochondrial dynamics in neuronal homeostasis
(Alexander etal., 2000; Zuchner etal., 2004; Waterham etal.,
2007). Recent studies have shown that fission/fusion dynamics not
only sort out damaged mitochondrial components by distributing
them throughout the mitochondrial network, but also fragment
and isolate defective mitochondria prior to mitophagy (Twigetal.,
2008a,b). The interplay between mitochondrial dynamics and
mitophagy is further underscored by the fact that excessive fusion
prevents autophagic mitochondrial degradation (Twig and Shiri-
hai, 2011). Indeed, increased fusion protects mitochondria from
massive degradation by starvation-induced autophagy (Rambold
etal,, 2011). Therefore, modulation of mitochondrial dynam-
ics, to increase fission or decrease fusion, facilitates isolation
of damaged mitochondria and their subsequent elimination by
mitophagy. Hence, mitochondrial damage and deregulation of
mitophagy has been implicated in the onset and progression of sev-
eral age-associated neurodegenerative diseases, such as Parkinson’s
(Schapira, 2011), Alzheimer’s, and Huntington disease (Batlevi
and La Spada, 2011).

PARKINSON'S DISEASE

Parkinson’s disease is caused by loss of dopaminergic neurons
in the substantia nigra, a region important for motor control
and coordination. Loss-of-function mutations in PINK1 and/or
PARK2 genes have been linked with the early onset of hered-
itary forms of Parkinson’s disease. The PINK1/Parkin pathway
has been shown to regulate the elimination of damaged mito-
chondria through mitophagy (Narendra etal., 2008, 2010). In
addition, mtDNA mutations and/or deletions are more frequent
in patients with Parkinson’s disease compared to age-matched
individuals in the population (Bender etal., 2006). Such muta-
tions and/or deletions commonly appear and accumulate during
aging in mitochondria of the substantia nigra neurons (Kraytsberg
etal,, 2006). Consistently, loss of dopaminergic neurons in the
substantia nigra that leads to the development of Parkinson’s dis-
ease correlates with mitochondrial damage accumulation in these
neurons. Thus, excessive mitochondrial stress upon exposure to
environmental toxins or defects in mtDNA, and the inability of
the cell to eliminate damaged mitochondria through mitophagy,
may contribute to Parkinson’s disease pathogenesis (Ethell and
Fei, 2009). However, mitophagy pathways have been character-
ized in non-neuronal cells, with neuronal mitophagy remaining
a relatively obscure process. Some reports suggest that mito-
chondrial depolarization and respiratory deficiency do not induce
Parkin recruitment in neurons (Sterky etal., 2011; Van Laar etal.,
2011). Other studies in neuronal cells indicate that Parkin is
recruited to depolarized mitochondria and mediates mitochon-
drial elimination by mitophagy in a Parkin-dependent manner
(Wang etal., 2011; Cai etal., 2012). Thus, although mutations in
PINK1 and Parkin have been associated with neurodegeneration
in Parkinson’s disease, further work is needed to clarify if the
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PINK1/Parkin pathway regulates damage-induced mitophagy in
neurons.

ALZHEIMER'S DISEASE

Alzheimer’s disease is the most common age-associated neurode-
generative disorder, characterized by cognitive dysfunction and
loss of memory, caused by neuronal cell death in cerebral cor-
tex. Tissue sections from Alzheimer’s disease patient brains show
distinctive intracellular neurofibrillary tangles and extracellular
amyloid plaques composed of beta-amyloid derived from amy-
loid precursor protein (APP). While, the predominant hypothesis
is that excess beta-amyloid leads to neuronal death, the mecha-
nism that underlies pathogenesis is still unclear. Mitochondrial
damage has been implicated in the development and progres-
sion of Alzheimer’s disease, since abnormalities in mitochondrial
structure have been observed in afflicted individuals (Baloyan-
nis, 2006). Moreover, beta-amyloid fragments have been found to
localize and accumulate within mitochondria (Casley et al., 2002;
Lustbader etal., 2004). In addition, the presence of autophagic
vacuoles in neurons of Alzheimer’s disease patients further impli-
cates cytoplasmic and organelle-specific degradation in disease
progression (Boland etal., 2008). In this context, mitophagy may
have pivotal role in ameliorating, or defending against the devel-
opment of Alzheimer’s disease through elimination of defective
mitochondria, carrying cytotoxic beta-amyloid fragments.

HUNTINGTON'S DISEASE

Huntington’s disease is an autosomal dominant neurodegenerative
disease caused by the abnormal expansion of the cytosine, adenine,
and guanine (CAG) repeats within huntingtin (Htt) gene. The
severity of pathology correlates with the number of CAG repeats,
the length of expansion (Costa and Scorrano, 2012). Hunting-
ton’s disease is characterized by progressive motor dysfunction,
as well as psychiatric and cognitive abnormalities caused by loss
of cortical and striatal neurons (Purdon etal., 1994). Expres-
sion of mutant Htt is associated with mitochondrial dysfunction
both in patients and mouse models of Huntington’s disease.
Decreased mitochondrial membrane potential, defects in mito-
chondrial calcium uptake, decreased respiratory function, reduced
mitochondrial mobility and changes in mitochondrial structure
are some of the observed mitochondrial defects in Hunting-
ton’s disease patients (Bossy-Wetzel et al., 2008). Additionally, the
peroxisome proliferator-activated receptor gamma coactivator-1a
(PGC-1a), the master regulator of mitochondrial biogenesis, has
been linked to metabolic and transcriptional defects in Hunting-
ton’s disease (Weydt et al., 2006). Mitophagy may serve a protective
function against neuronal loss in Huntington’s disease by elimi-
nating damaged mitochondria. Consistent with this notion, recent
findings indicate that Huntington’s disease pathology is associated
with autophagic cargo recognition defects that lead to accumu-
lation of damaged mitochondria in cytoplasm (Martinez-Vicente
etal., 2010).
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CONCLUDING REMARKS
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