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Meta-analysis of genome-wide association studies (GWAS) has become a useful tool to
identify genetic variants that are associated with complex human diseases.To control spu-
rious associations between genetic variants and disease that are caused by population
stratification, double genomic control (GC) correction for population stratification in meta-
analysis for GWAS has been implemented in the software METAL and GWAMA and is
widely used by investigators. In this research, we conducted extensive simulation studies
to evaluate the double GC correction method in meta-analysis and compared the perfor-
mance of the double GC correction with that of a principal components analysis (PCA)
correction method in meta-analysis. Results show that when the data consist of popula-
tion stratification, using double GC correction method can have inflated type I error rates
at a marker with significant allele frequency differentiation in the subpopulations (such as
caused by recent strong selection). On the other hand, the PCA correction method can
control type I error rates well and has much higher power in meta-analysis compared to the
double GC correction method, even though in the situation that the casual marker does not
have significant allele frequency difference between the subpopulations. We applied the
double GC correction and PCA correction to meta-analysis of GWAS for two real datasets
from the Atherosclerosis Risk in Communities (ARIC) project and the Multi-Ethnic Study
of Atherosclerosis (MESA) project. The results also suggest that PCA correction is more
effective than the double GC correction in meta-analysis.

Keywords: genome-wide association studies, meta-analysis, double genomic control correction, principal compo-

nents analysis, population stratification

INTRODUCTION
Genome-wide association studies (GWAS) are an important
approach for identifying genetic variants associated with com-
plex human diseases. Recently, meta-analysis of GWAS has been
used to obtain collective evidence from the multiple GWAS studies
(Lohmueller et al., 2003; Houlston et al., 2008; Zeggini et al., 2008;
Lindgren et al., 2009; Lin and Zeng, 2010; Stahl et al., 2010; Willer
et al., 2010; Nalls et al., 2011; Qayyum et al., 2012). Unfortunately
population stratification in the studied samples can lead to spu-
rious associations in disease studies (Cardon and Palmer, 2003;
Freedman et al., 2004; Marchini et al., 2004; Price et al., 2006). To
control the spurious associations caused by population stratifica-
tion in meta-analysis of GWAS, genomic control (GC) correction
within each study (which is referred to as single GC correction) has
been used (Devlin and Roeder, 1999; Devlin et al., 2001; Reich and
Goldstein, 2001; Devlin et al., 2004; Lindgren et al., 2009). How-
ever, the GC correction method cannot effectively control false
positive rates and may lead to a loss in power (Price et al., 2006;
Mägi and Morris, 2010; Willer et al., 2010). Therefore, a double
GC correction method has been proposed and implemented in the

widely used meta-analysis software METAL and GWAMA (Mägi
and Morris, 2010; Willer et al., 2010). The double GC correction
method adjusts the set of test statistics across all markers within
each study by a GC inflation factor, calculates a combined statis-
tic across studies at each marker, and then adjusts all combined
statistics across the genome by the corresponding GC inflation
factor. The double GC correction method has been used by many
investigators in their meta-analyses (e.g., Lindgren et al., 2009;
Mägi and Morris, 2010; Willer et al., 2010; Lettre et al., 2011). To
adjust for stratification in meta-analysis of GWAS, another popu-
lar approach is the principal component analysis (PCA) correction
method that adjusts for stratification by top principal components
(PCs) of genotype data within each study (Price et al., 2006; Wang
et al., 2009; Qayyum et al., 2012).

In this research, we compared the single GC correction, the
double GC correction and PCA correction in meta-analysis by
simulation studies and applied these methods to a meta-analysis
of two real data sets from the Atherosclerosis Risk in Communi-
ties (ARIC) project and the Multi-Ethnic Study of Atherosclerosis
(MESA) project. Results from simulations and real data analysis
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suggest that when population stratification exists, using double GC
correction can have inflated false positive error rates at markers
with significant allele frequency differentiation in the subpop-
ulations (such as caused by recent strong selection), and can
have lower power than using the PCA method for stratification
correction in meta-analysis.

MATERIALS AND METHODS
We consider K case–control studies with nk individuals in the
kth study (k = 1,2, . . . ,K) and N single nucleotide polymorphisms
(SNPs) in each study. In the kth study, let Yik denote the disease sta-
tus (1 = disease, 0 = no disease) of the ith individual, let gijk denote
the additive genotype coding value (the count of reference alleles)
at the jth SNP of ith individual (j = 1,2, . . . ,N,i = 1,2, . . . ,nk),
and let Xik = (x1k ,x2k , . . . ,xsk)T denote a vector of s cova-
riates.

In this research, we focus on fixed-effect meta-analysis, i.e., we
assume that the allelic effects at a test marker are the same across
all studies. In the kth study, we use the following logistic regression
model

logit Pr(Yik = 1) = α0k + α
T
k

Xik + βkjgijk , (1)

where α0k is the study-specific intercept, αk is the coefficient vector

corresponding to covariate vector Xik, and βkj denote the genetic

effect (log odds ratio) of the reference allele at the jth SNP in the
kth study. We can estimate βkj and var(βkj) at the jth SNP based on
the logistic model (Eq. 1). Thus, the combined allelic effect Bj at

the jth SNP across K studies, can be calculated as

Bj =
∑K

k=1 β̂kjwkj∑K
k=1 wkj

, (2)

where wkj is a weight for the genetic effect β̂kj and wkj =[
v̂ar

(
β̂kj

)]−1
is the inverse of the variance of the estimated all-

elic effect in the kth study. The variance of Bj is estimated by Vj =
(ΣK

k=1wkj)
−1 and its estimated standard error SEj is the square root

of variance Vj , i.e., SEj = √
Vj . Therefore, the combined statistic

χ2
j = B2

j /Vj has an approximate χ2 distribution with one degree

of freedom (Mägi and Morris, 2010; Willer et al., 2010).

GC CORRECTION IN META-ANALYSIS
To adjust for population stratification, in the kth study, we can cal-

culate the statistic χ2
kj = (

β̂kj/SEkj
)2

at the jth SNP (j = 1,2, . . . ,N),

and then calculate a GC inflation factor λk that is the median of
these statistics χ2

kj (j = 1,2, . . . ,N) divided by its expectation under

the null hypothesis of no association, which is 0.455 (Devlin and
Roeder, 1999). To adjust for stratification within each study in the
meta-analysis, we can calculate a corrected weight at the jth SNP
in the kth study as w′

kj = wkj/λk (see also Section “Materials and

Methods” for the calculation of wkj) and calculate the combined
allelic effect Bj by using w′

kj to replace wkj in Eq. 2 correspondingly,

the variance of Bj can be calculated as Vj = (ΣK
k=1w′

kj)
−1. The

combined statistic χ2
j = B2

j /Vj can be calculated for meta-analysis

(j = 1,2, . . . ,N).

DOUBLE GC CORRECTION IN META-ANALYSIS
After GC correction in each individual study as described above,
the combined statistics χ2

j (j = 1,2, . . . ,N) may still have over-

dispersion which is caused by population stratification. Therefore,
investigators proposed to further adjust the combined statistics χ2

j
by the corresponding GC inflation factor λ, which is the median
of the combined statistics χ2

j divided by 0.455 (Mägi and Morris,

2010; Willer et al., 2010). This process corrects for stratification
twice and is called double GC correction.

PCA CORRECTION IN META-ANALYSIS
Price et al. (2006) proposed to correct for stratification by PCA in
GWAS analysis. For meta-analysis of GWAS with K (>1) case–
control studies of population stratification, PCA has been used
to correct for stratification within each of the K studies (Qayyum
et al., 2012): for each of the K studies, we can calculate the PCs
(Jackson, 2003) of genome-wide genotype values for each indi-
vidual and use the top 10 PCs as covariates, as suggested in
the literature (Price et al., 2006; Liu et al., 2011; Qayyum et al.,
2012), to correct for population stratification by incorporating
these covariates (top 10 PCs) into the logistic regression model
(Eq. 1). Meta-analysis for the K studies can be conducted based
on this modified model.

SIMULATION STUDIES
DATA SIMULATION
To evaluate the performance of the single GC correction, dou-
ble GC correction, and PCA correction in meta-analysis of data
with population stratification, we simulated datasets on K case–
control studies in a similar way to those described in Pritchard and
Donnelly (2001) and Price et al. (2006). Individuals in each of the
K case–control studies were sampled from two populations. For
each dataset we simulated 100,000 independent random SNPs. To
generate each of these SNPs, we used the Balding–Nichols model
with FST = 0.01 (Balding and Nichols, 1995) to generate allele
frequencies fs for populations s(s = 1, 2) which was drawn from
a beta distribution with parameters fs(1 − Fst)/Fst and (1 − fs)
(1 − Fst)/Fst. FST = 0.01 usually leads to allele frequency differ-
ences under 0.10 for typical common SNPs (Price et al., 2006). At
each of the random SNPs, we assumed Hardy–Weinberg equilib-
rium in each population, and individuals from populations were
assigned genotypic values of 0, 1, or 2 with probabilities (1 − fs)2,
2fs(1 − fs), or f 2

s , respectively. For the PCA correction, we used
these 100,000 random SNPs to calculate the first 10 PCs, which
were used as covariates in the analysis.

Meta-analysis with two case–control studies (K = 2)
We first simulated two case–control studies. In each study, 60% of
the cases and 40% of the controls were sampled from population
1 and the remaining cases and controls from population 2.

Meta-analysis with K = 5 case–control studies
To evaluate the performance of the three correction methods in
meta-analysis with K (>2) studies, we simulated datasets on five
case–control studies. Each of the five studies had 1000 cases and
1000 controls. For each case–control study, a proportion of cases
and a proportion of controls were sampled from population 1, and
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the remaining cases and controls were sampled from the popula-
tion 2: in the first study, 55% of the cases and 45% of the controls
were sampled from population 1; in the second study, 70% of the
cases and 30% of the controls; in the third study, 60% of the cases
and 40% of the controls; in the fourth study, 70% of the cases and
30% of controls; in the fifth study, 60% of the cases and 40% of
the controls.

TYPE I ERROR RATE EVALUATION
To verify the effectiveness of the three stratification correction
methods in meta-analysis, we simulated replicated data sets.
Each data set contained 100,000 independent random SNPs (as
described above) and an additional test SNP (which is not associ-
ated with the disease). We simulated the test SNP by the following
four scenarios: in the first scenario, the test SNP was simulated
in each individual by the same way as that for the random SNPs
described above using the Balding–Nichols model with FST = 0.01;
for the second, third, and fourth scenarios, we assumed that the
test SNP had significant different allele frequencies in populations
1 and 2, which could be caused by recent strong selection (see also
Price et al., 2006). In scenario 2, the frequencies in populations 1
and 2 were 0.4 and 0.2, respectively; in scenario 3, frequencies were
0.6 and 0.2; in scenario 4, frequencies were 0.8 and 0.2. For each
scenario, we computed type I error rates of meta-analysis using the
three correction methods (PCA, single GC correction, and double
GC correction) separately, under a set of combination of parame-
ters (numbers of cases and controls in the two studies). For each
combination of these parameters, we simulated 108 replicated data
sets to estimate the type I error rates at significance levels of 10−5

and 10−6. We did not use the significance level of 10−7 because
estimating accurate type I error rates at this level requires at least
109 replicated data sets. This is computationally intensive.

Type I error rates for meta-analysis with two case–control studies
(K = 2)
Detailed results are listed in Table 1, which shows that using PCA
correction can control the type I error rates well. However, using
the single GC correction or double GC correction, the type I error
rates could be controlled only in the first scenario in which the test
SNP was randomly generated with no association with disease. For
other three scenarios in which populations 1 and 2 had significant
different allele frequencies at the test SNPs, both single GC cor-
rection and double GC correction had inflated type I error rates;
the type I error rates could increase to almost 1 when the allele
frequency differences between populations 1 and 2 increased. For
example, when both studies had 1000 cases and 1000 controls, the
populations 1 and 2 had allele frequencies of 0.6 and 0.2 at the
test SNP, respectively, and the nominal significance level was 10−6,
the type I error rates of meta-analysis using the PCA correction,
single GC correction, and double GC correction were 7.70 × 10−7,
0.585, and 0.591, respectively.

Type I error rates for meta-analysis with five case–control studies
(K = 5)
We estimated the type I error rates for meta-analysis with K = 5
case–control studies. The detailed results are shown in Table 2.
We can see the type I error rates had similar pattern to that for
meta-analysis with two case–control studies described above.

POWER EVALUATION
To evaluate power of meta-analysis using the three stratification
correction methods, we simulated 10,000 replicated datasets. Each
data set contained 100,000 independent random SNPs (described
above) and a causal SNP. We simulated the causal SNP by a sim-
ilar method of Price et al. (2006). We used the Balding–Nichols

Table 1 |Type I error rates of meta-analysis with two case–control studies for different allele frequencies in the two subpopulations.

Frequency1 Study 12 Study 2 10−5 10−6

Population 1 (2) Case Control Case Control PCA 1 GC 2 GC PCA 1 GC 2 GC

Ran(ran)3 1000 1000 1000 1000 9.51e−64 5.05e−6 5.34e−6 1.07e−6 3.90e−7 3.80e−7

1500 1500 500 500 9.88e−6 5.00e−6 5.29e−6 9.19e−7 3.90e−7 4.60e−7

750 1500 1500 750 1.04e−5 5.08e−6 5.50e−6 8.50e−7 5.20e−7 5.70e−7

0.4 (0.2) 1000 1000 1000 1000 9.89e−6 1.25e−2 1.31e−2 9.20e−7 1.75e−3 1.86e−3

1500 1500 500 500 1.01e−5 8.04e−3 8.49e−3 1.01e−6 9.77e−4 1.05e−3

750 1500 1500 750 1.02e−5 1.26e−2 1.30e−2 1.03e−6 1.76e−3 1.85e−3

0.6 (0.2) 1000 1000 1000 1000 9.67e−6 0.836 0.839 7.70e−7 0.585 0.591

1500 1500 500 500 9.43e−6 0.763 0.769 8.60e−7 0.478 0.486

750 1500 1500 750 9.86e−6 0.837 0.841 9.30e−7 0.588 0.594

0.8 (0.2) 1000 1000 1000 1000 9.98e−6 1.00 1.00 1.11e−6 1.00 1.00

1500 1500 500 500 9.61e−6 1.00 1.00 9.50e−7 1.00 1.00

750 1500 1500 750 9.69e−6 1.00 1.00 9.20e−7 1.00 1.00

1Allele frequencies in the two subpopulations from which cases and controls were sampled for each study.
2Sample size.
3Allele frequencies in the two populations of each study were randomly generated.
49.51e−6 = 9.51 × 10−6
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Table 2 |Type I error rates of meta-analysis with five studies for

different allele frequencies in the two subpopulations.

Frequency 10−5 10−6

Population

1 (2)

PCA 1 GC 2 GC PCA 1 GC 2 GC

Ran(ran) 9.89e−6 7.48e−6 8.13e−6 1.04e−6 6.30e−7 7.20e−7

0.4 (0.2) 1.00e−5 0.418 0.426 9.90e−7 0.195 0.203

0.6 (0.2) 1.01e−5 1.00 1.00 1.03e−6 0.999 1.00

0.8 (0.2) 1.01e−5 1.00 1.00 9.78e−7 1.00 1.00

model with FST = 0.01 again to generate allele frequencies for
populations 1 and 2. We generated genotypes at the causal SNP
by using a multiplicative disease risk model with a relative risk
(R) for the causal allele as follows: genotypic values of control
individuals were generated as those for random SNPs described
above. Case individuals were assigned genotypic values 0,1, or 2
with relative probabilities (1 + fs)2/S, 2Rfs(1 − fs)/S, or R2f 2

s /S,
respectively, where S = (1 − fs)2 + 2Rfs(1 − fs) + R2f 2

s . The power
of meta-analysis was estimated based on 10,000 replicated datasets
at significance levels of 10−5, 10−6, and 10−7, respectively.

Power evaluation for meta-analysis with two case–control studies
(K = 2)
We considered various numbers of cases and controls and a set
of relative risk values (R = 1.2, 1.3, 1.4, 1.5) at the causal SNP
in the two studies. The results are summarized in Table 3. The
power of meta-analysis using PCA correction is much higher than
both that using single GC correction and that using double GC
correction. For example, when Rs in the two studies were 1.3 and
1.4 and both studies had 1000 cases and 1000 controls, the power
of meta-analyses using PCA correction, single GC correction, and
double GC correction were 0.6386, 0.1709, and 0.18, respectively,
at the significance level of 10−7.

Power evaluation meta-analysis with five case–control studies
(K = 5)
For the meta-analysis with five case–control studies, we only con-
sidered eight combined relative risk values (see Table 4). Each
of the five studies has 1000 cases and 1000 controls. The results
from five case–control studies also demonstrated the power of
meta-analysis using PCA correction is the highest among the
meta-analysis using the three correction methods.

ANALYSES OF TWO REAL DATA SETS
We performed meta-analysis of GWAS for two real data sets on
European Americans drew from the ARIC and the MESA projects.
We chose hypertension as phenotype and gender, age, body mass
index, waist circumference, and smoking status as covariates in the
logistic regression model (Eq. 1). There were 9,526 subjects with
839,173 SNPs in ARIC project and 2,397 subjects with 577,627
SNPs in MESA project. We first extracted 414,363 SNPs with
minor allele frequency ≥0.05 and shared by the two data sets, and
focused our analyses on these SNPs. Among these 414,363 SNPs,

3,295 SNPs were not concordant in terms of positive or negative
strand in the two data sets. So we flipped the strands for these
SNPs in MESA. In our research, an individual was defined with
hypertension if systolic blood pressure ≥140 mm Hg, diastolic
blood pressure ≥90 mm Hg, a self-reported history of hyperten-
sion or current use of antihypertensive medications (Schroeder
et al., 2003; Kramer et al., 2004; Mujahid et al., 2011). We removed
the subjects with missing phenotypes and multiple copies of the
same subject from ARIC and MESA datasets and excluded 212 sub-
jects as outliers from ARIC and 19 subjects as outliers from MESA
if at least one of the first 10 PCs of the subject is out of the inter-
val [μ − 6σ ,μ + 6σ ], where μ and σ are the mean and standard
deviation of a PC, respectively. Finally, there were 2,780 cases and
5,881 controls left in ARIC with GC inflation factor λ = 1.04967
and 920 cases and 1458 controls left in MESA with λ = 1.07127.
As an ancillary illustration of population stratification in the two
data sets, we plotted the first two PCs of all subjects in each data
set (as shown in Figure 1). The figure indicates that there is strat-
ification in these two data sets. In the data analysis, genotype
coding value at each SNP was defined as the count of the reference
allele.

In meta-analyses of GWAS for the two real data sets, we used
PCA correction, single GC correction, and double GC correction
for the stratification, separately. The top eight SNPs with p-values
<10−5 in at least one of the three meta-analysis methods are dis-
played in Table 5. At each of the eight SNPs, meta-analysis with
PCA correction had much smaller p-value than that with dou-
ble GC. This may indicate that meta-analysis with double GC
correction for stratification is not as effective as that with PCA.

DISCUSSION
In this research, we evaluated the performance of three methods
for correcting for population stratification (PCA correction, sin-
gle GC correction, and double GC correction) in meta-analysis of
GWAS by simulation studies. Our results demonstrate that both
the single GC correction and the widely used double correction
cannot control type I error rates in meta-analysis, when the test
SNP has significant allele frequency differentiation in the subpop-
ulations in the case–control data. On the other hand, the PCA
correction can control type I error rates well. In addition, when
population stratification exists in the case–control data, using dou-
ble GC method usually results in much lower power than using the
PCA correction in meta-analysis, even though the casual SNP does
not have significant allele frequency differentiation in the subpop-
ulations. We note that Price et al. (2006) reported similar results
in single GWAS analysis. Therefore, the double GC method is not
effective to correct for stratification in meta-analysis.

Although the PCA correction method works well for correc-
tion for stratification in meta-analysis, it may need more than
5,000 SNPs to calculate PCs for each individual (Price et al., 2006).
This may be challenging in replication studies with meta-analysis
in which usually only a small set of significant SNPs identified
from previous meta-analysis are collected and tested. If popula-
tion stratification exists in the data for replication meta-analysis,
we would suggest collecting additional 5,000 or 10,000 indepen-
dent SNPs to calculated PCs for each individual, and use these PCs
to correct for population stratification when testing the small set
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Table 3 | Power of meta-analysis of GWAS for two studies using PCA correction, single GC correction (1 GC), and double GC correction (2 GC) at

significance levels of 10−5, 10−6, and 10−7.

Study 1 Study 2 10−5 10−6 10−7

R Case Control R Case Control PCA 1 GC 2 GC PCA 1 GC 2 GC PCA 1 GC 2 GC

1.2 1000 1000 1.2 1000 1000 0.1901 0.0402 0.0425 0.0908 0.0113 0.0124 0.0384 0.0041 0.0045

1000 1000 1.3 1000 1000 0.4449 0.1207 0.1194 0.2797 0.0511 0.0502 0.1637 0.0199 0.0196

1500 1500 1.4 500 500 0.4232 0.1368 0.1450 0.2631 0.0604 0.0645 0.1437 0.0238 0.0253

1500 750 1.5 750 1500 0.8332 0.4306 0.4368 0.7221 0.2724 0.2787 0.5959 0.1549 0.1602

1.3 1500 1500 1.3 500 500 0.7029 0.2412 0.2375 0.5487 0.1228 0.1205 0.3934 0.0552 0.0535

1000 1000 1.4 1000 1000 0.8768 0.4703 0.4806 0.7738 0.3003 0.3085 0.6386 0.1709 0.1800

1000 1000 1.5 1000 1000 0.9425 0.6377 0.6403 0.8835 0.4683 0.4702 0.8060 0.3128 0.3152

1.4 750 1500 1.4 1500 750 0.9551 0.6532 0.6570 0.9046 0.4740 0.4782 0.8251 0.3190 0.3215

1500 1500 1.5 500 500 0.9700 0.7008 0.6986 0.9302 0.5442 0.5400 0.8733 0.3819 0.3773

1.5 1500 750 1.5 750 1500 0.9952 0.8942 0.8930 0.9842 0.8044 0.8028 0.9686 0.6844 0.6824

Boldface values denote the highest power among meta-analyses using the three methods (PCA, 1 GC, and 2 GC).

Table 4 | Power of meta-analysis of GWAS for five studies using PCA correction, single GC correction (1 GC), and double GC correction (2 GC) at

significance levels of 10−5, 10−6, and 10−7.

R 10−5 10−6 10−7

Study 1 Study 2 Study 3 Study 4 Study 5 PCA 1 GC 2 GC PCA 1 GC 2 GC PCA 1 GC 2 GC

1.2 1.2 1.2 1.2 1.2 0.8284 0.3120 0.3148 0.6912 0.1683 0.1703 0.5421 0.0823 0.0841

1.3 1.3 1.3 1.3 1.3 0.9985 0.8735 0.8796 0.9937 0.7586 0.7670 0.9873 0.6101 0.6226

1.4 1.4 1.4 1.4 1.4 1.000 0.9951 0.9951 1.000 0.9828 0.9832 1.000 0.9539 0.9545

1.5 1.5 1.5 1.5 1.5 1.000 0.9997 0.9997 1.000 0.9991 0.9991 1.000 0.9978 0.9979

1.2 1.2 1.3 1.3 1.4 0.9940 0.7678 0.7779 0.9829 0.6153 0.6310 0.9592 0.4549 0.4693

1.3 1.3 1.4 1.4 1.5 0.9998 0.9843 0.9854 0.9998 0.9598 0.9625 0.9996 0.9164 0.9202

1.3 1.4 1.4 1.5 1.5 1.000 0.9928 0.9931 1.000 0.9772 0.9783 1.000 0.9453 0.9472

1.2 1.2 1.4 1.4 1.5 0.9997 0.9267 0.9299 0.9985 0.8498 0.8560 0.9960 0.7414 0.7514

FIGURE 1 |The stratification structure plotted by the first PC versus the second PC for the two data sets ARIC (A) and MESA (B).
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Table 5 |Top SNPs with p-values <10−5 in a meta-analysis with PCA

correction, single GC correction (1 GC), or double GC correction

(2 GC).

Chromo-

some

SNP Reference

allele

p-Value

PCA 1 GC 2 GC

1 rs6688672 T 6.63e−6 1.25e−5 1.35e−5

1 rs6657751 G 3.46e−6 6.40e−6 6.94e−6

1 rs10493964 C 6.64e−6 1.17e−5 1.27e−5

4 rs7673213 G 4.06e−6 9.20e−6 9.95e−6

4 rs3762865 A 8.44e−6 1.80e−5 1.94e−5

5 rs1477654 A 7.29e−6 7.82e−6 8.47e−6

9 rs10960562 A 4.07e−6 1.82e−5 1.96e−5

9 rs10960592 T 5.50e−6 2.13e−5 2.29e−5

of promising SNPs identified from previous meta-analysis. As can
be seen from the results described above, using PCA correction
controls type I error rates well, and more importantly can have
increased power in meta-analysis compared to the widely used
double GC correction.

When evaluating the three methods for correcting for strati-
fication in meta-analysis for case–control studies, we only con-
sidered the fixed-effect model and the additive genetic model
for case–control designs with binary traits. We expect that the
conclusion will also hold for quantitative traits. We plan to con-
sider random-effects model in meta-analysis and the dominant,
recessive genetic models for evaluating the three methods for pop-
ulation stratification correction used in meta-analysis in our future
study.

In our simulation studies, we did consider cryptic relatedness
among individuals. Since GC method can be useful for con-
trolling spurious association caused by relatedness in the data,
investigators proposed a “PCA + double GC” method to control

the spurious association findings in meta-analysis as follows: 1
to perform PCA adjustment for population stratification in the
individual study association analysis, followed by a GC correc-
tion on the genome-wide results, 2 to perform a GC correction
on the combined statistics over all studies by the correspond-
ing GC inflation factor λ (see Materials and Methods). Although
this “PCA + double GC” method may control type I error rate
well, it may not maximize power to detect true associations
in meta-analysis (Price et al., 2010). To adjust for the cryp-
tic relatedness and population stratification in meta-analysis, a
better choice may be using the mixed model approaches, such
as the EMMAX and TASSEL software (Kang et al., 2010; Zhang
et al., 2010).
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