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A plethora of studies have described the disruption of key cellular regulatory mechanisms
involving non-coding RNAs, specifically microRNAs (miRNA) from the let-7 family, the miR-
17 family, miR-21, miR-143, and the miR-200 family, which contribute to aberrant signaling
and tumor formation. Certain environmental factors, such as bioactive dietary agents, e.g.,
folate, curcumin, polyunsaturated fatty acids, are also thought to impact the progression
and severity of cancer. In terms of the chemoprotective mechanisms of action, these bioac-
tive dietary agents appear to act, in part, by modulating tissue levels of miR-16, miR-17
family, miR-26b, miR-106b, and miR-200 family miRNAs and their target genes. However,
the mechanisms of nutrient action are not yet fully understood. Therefore, additional char-
acterization of the putative underlying mechanisms is needed to further our understanding
of the biology, early diagnosis, prevention, and the treatment of cancer. For the purpose of
elucidating the epigenetic landscape of cancer, this review will summarize the key findings
from recent studies detailing the effect of bioactive dietary agents on miRNA regulation in
cancer.
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INTRODUCTION
MicroRNAs (miRNAs) consist of a diverse class of highly con-
served small non-coding RNAs (∼22 nucleotides long) shown to
play a critical role in basic biological processes such as cellular
differentiation, apoptosis, cell proliferation, stem cell develop-
ment, consequently affecting complex biological events such as
carcinogenesis and immune modulation (Esquela-Kerscher and
Slack, 2006; Winter et al., 2009). miRNAs are found in both plants
and animals and regulate protein expression by acting through
perfect or imperfect complementarity to 3′ untranslated regions
(UTRs) of their“target”mRNAs, which results in repression of tar-
get gene expression post-transcriptionally (Esquela-Kerscher and
Slack, 2006; Sood et al., 2006). Currently, more than 800 human
and mouse miRNAs have been identified (Griffiths-Jones et al.,
2008). miRNA studies over the last decade have identified their
dysregulation in almost all human malignancies, either acting as
oncogenes (oncomirs) or tumor suppressors (Michael et al., 2003;
Bandres et al., 2006; Volinia et al., 2006; Yanaihara et al., 2006;
Blenkiron et al., 2007; Lee et al., 2007; Porkka et al., 2007; Varn-
holt, 2008; Bala et al., 2009; Bogner et al., 2009; Chen, 2009; Fassan
et al., 2009; Slaby et al., 2009; Zhang et al., 2009; Schaefer et al.,
2010; Wang and Sen, 2011; Alhasan et al., 2012; Hu et al., 2012b;
Lu et al., 2012; Piepoli et al., 2012).

Bioactive dietary agents appear to have significance in terms
of combating pathological diseases including cancer. Indeed,
recent evidence indicates that select dietary agents modulate
the expression of tumor suppressors/oncogenes involved in sig-
nal transduction pathways (Ashendel, 1995; Manson et al., 2000;
Neergheen et al., 2010; Shanmugam et al., 2011). Since miRNAs
regulate gene/protein expression; there is growing interest in

determining the effect of nutritional bioactive agents on the
modulation of miRNAs and their target mRNAs in cancer (David-
son et al., 2009b; Shah et al., 2011; Izzotti, 2012; Parasramka et al.,
2012a,b). Therefore, this review will focus on the effects of several
bioactive dietary treatments in terms of miRNA expression and
explain how this might modulate cancer risk.

BIOGENESIS OF miRNAs
MicroRNAs are generally transcribed from intergenic regions,
and less so from introns (Ruby et al., 2007). This class of non-
coding RNAs is initially transcribed by RNA polymerase II as long
hairpin-shaped primary transcripts (pri-miRNAs) that undergo
post-transcriptional modifications such as polyadenylation of the
3′ end and 7-methyl diguanosine phosphate capping at the 5′
end (Cai et al., 2004). The pri-miRNA is then cropped to form
a pre-miRNA (∼70 nucleotides long) by the enzymatic activity
of a cellular RNAse III-type protein endonuclease, Drosha, which
together with DGCR8/Pasha protein (DiGeorge syndrome criti-
cal region gene) is known as the microprocessor complex (Lee
et al., 2003). This pre-miRNA, which has a 2-nt 3′ overhang,
is recognized by the Ran-GTP-dependent transporter exportin-
5 and exported from the nucleus to the cytoplasm (Lee et al.,
2003; Lund et al., 2004). In the cytoplasm, the pre-miRNA is then
further cleaved by the RNAse III enzyme Dicer which is asso-
ciated with TRBP (TAR RNA-binding protein) and Argonaute
(AGO1-4) to generate a double-stranded (ds) miRNA:miRNA*
duplex. This double-stranded duplex is then loaded onto the
miRNA associated RNA-induced silencing (RISC) complex and
with the aid of AGO proteins is delivered to the target mRNA.
The guiding miRNA strand is then unwound by a helicase and is
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now referred to as“mature” miRNA. This mature miRNA can then
hybridize with the 3′ UTR of its “target mRNA” with either imper-
fect or perfect complementarity. Imperfect complementarity leads
to translational repression, while binding with high complemen-
tarity leads to either cleavage or degradation of the target mRNA
(Vasudevan et al., 2007; Figure 1). Recent studies have demon-
strated that miRNAs may also bind to the 5′ UTR and/or the
open reading frame (Lytle et al., 2007; Moretti et al., 2010; Qin
et al., 2010). Furthermore, there is evidence suggesting that there
are alternative pathways for the generation of miRNAs, such as
Drosha-independent pathways (Kim, 2005), Dicer-independent
pathways (Kawaji et al., 2008; Lee et al., 2009; Cheloufi et al., 2010;
Haussecker et al., 2010), and snoRNA-, shRNA- and tRNA-derived
pathways (Babiarz and Blelloch, 2008; Ender et al., 2008).

ROLE OF miRNAs IN CANCER
Recently it has been demonstrated that cancer cells exhibit
widespread shortening of 3′ UTRs by alternative cleavage and

polyadenylation (Mayr and Bartel,2009). These shorter transcripts
produce substantially more protein than their full-length coun-
terparts, in part through escape of miRNA-mediated targeting.
The epigenetic nature of this mechanism of oncogene activation
directly links miRNAs to cancer risk. As an alternative mecha-
nism, the aberrant expression of miRNAs has been linked to the
development of colon (Michael et al., 2003; Bandres et al., 2006;
Volinia et al., 2006; Slaby et al., 2009; Piepoli et al., 2012), liver
(Varnholt, 2008; Bala et al., 2009; Chen, 2009), lung (Yanaihara
et al., 2006; Bogner et al., 2009; Lu et al., 2012), breast (Blenk-
iron et al., 2007; Fassan et al., 2009; Hu et al., 2012b), prostate
(Porkka et al., 2007; Schaefer et al., 2010; Alhasan et al., 2012),
and pancreatic cancers (Lee et al., 2007; Zhang et al., 2009; Wang
and Sen, 2011; Piepoli et al., 2012). Furthermore, miRNAs have
been correlated to tumor location, mutation status of several
tumor suppressor genes/oncogenes, and cancer disease stages. For
example, in colorectal cancer, miR-31 expression was found to be
significantly higher in stage IV tumors as compared to stage II

FIGURE 1 | Biogenesis of miRNA. miRNAs are first transcribed into
pri-miRNA, a hairpin structure which is capped and polyadenylated. Drosha
along with DGCR8 cleaves the pri-miRNA into a shorter hairpin structure
called pre-miRNA. With the aid of exportin and RanGTP, this pre-miRNA is
transported into the cytoplasm, where Dicer cleaves it further to form a
miRNA duplex. The main strand of the duplex (the guide strand) is assembled

into the RISC complex, while the “passenger” strand is degraded. Recently,
this passenger strand has been shown to play a role in targeting mRNAs. The
guide strand in the RNA interference silencing complex (RISC; also called the
mature miRNA) binds to the 3′ UTR of the target mRNA with perfect or
imperfect complementarity. This binding either causes mRNA target cleavage
or mRNA deadenylation, resulting in translational repression.
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tumors, while miR-21 expression was positively correlated with
colorectal cancer metastasis (Slaby et al., 2007). In addition, sev-
eral miRNAs such as miR-21 have been shown to be aberrantly
expressed in almost all types of cancers, while other miRNAs, e.g.,
let-7, miR-122, are expressed in a highly tissue-specific manner
(Castoldi et al., 2011; Iorio and Croce, 2012).

Two key “tumor suppressors,” miR-143 and miR-145, are dys-
regulated in a number of cancers (Michael et al., 2003; Bandres
et al., 2006; Slaby et al., 2007; Xi et al., 2007; Schepeler et al., 2008;
Arndt et al., 2009; Motoyama et al., 2009; Earle et al., 2010; Zhu
et al., 2011). Functional studies have identified several key targets
of miR-143, such as ERK5, KRAS, MAPK7, and DNMT3A, and
of miR-145, such as c-MYC, APC, IRS1, STAT1, YES1, and FLI1
(Akao et al., 2006; Arndt et al., 2009; Ng et al., 2009). Moreover, the
overexpression of these miRNAs in vitro leads to inhibition of cell
growth by increasing apoptosis and decreasing cell proliferation
(Gregersen et al., 2010; Borralho et al., 2011).

A diverse array of cellular activity has been shown to be mod-
ulated by the let-7 family of miRNAs. It has been demonstrated
that members of let-7 family act as tumor suppressors or onco-
genes based on the tissue type and histological grade of cancer
as compared to normal tissue (Johnson et al., 2005; Akao et al.,
2006; Sempere et al., 2007; Dahiya et al., 2008; Lawrie et al., 2008;
Nam et al., 2008; Ozen et al., 2008; Torrisani et al., 2009; O’Hara
et al., 2010). Some of the well-defined targets of the let-7 family
are RAS, HMGA2, Blimp-1, and eIF4F (Johnson et al., 2005; Lee
and Dutta, 2007; Mathonnet et al., 2007; Mayr et al., 2007; Shell
et al., 2007; Nie et al., 2008; Peng et al., 2008; Sun et al., 2009c).
Moreover, Ibarra et al. (2007) showed that let-7 is a marker for
differentiated cells and is undetected in stem cells.

miR-21 is one of the few well described “oncogenic” miRNAs.
High expression of miR-21 has been reported in cancers of the
breast (Iorio et al., 2005; Yang et al., 2009; Yan et al., 2011), pan-
creas (Bloomston et al., 2007; Dillhoff et al., 2008; Moriyama et al.,
2009), colon (Asangani et al., 2008; Davidson et al., 2009b; Wang
et al., 2009a), and glioblastoma (Chan et al., 2005; Ciafre et al.,
2005; Gaur et al., 2011). miR-21 exhibits anti-apoptotic properties
by targeting several tumor suppressors such as PTEN, PDCD4,
BCL2, TIMP3, TGFβR2, SPRY3, and RECK (Slaby et al., 2007;
Schepeler et al., 2008; Wang et al., 2009a; Slattery et al., 2011).

Similar to co-transcribed clusters of genes that code for
polypeptides, regions of DNA coding for miRNAs can also occur
as polycistronic clusters. One such well-known miRNA cluster,
miR-17∼92, consists of six individual miRNAs – miR-17, miR-
18a, miR-19a, miR-20a, miR-19b-1, and miR-92a (He et al., 2005).
These miRNAs are thought to have evolved from two highly con-
served mammalian paralogs, miR-106b∼25 and miR-106a∼363
(Tanzer and Stadler, 2004). Overexpression of this cluster has
been observed in several tumor types (He et al., 2005; Volinia
et al., 2006; Petrocca et al., 2008). Additionally, miR-17∼92 has
been shown to suppress c-myc-induced apoptosis in colorectal
adenoma and progenitor B cells and thus can be regarded as an
oncogene (Diosdado et al., 2009; Li et al., 2012). Using miR-17∼92
knockout mice, Ventura et al. (2008) demonstrated that each of the
miRNA components in the cluster may have its own specific func-
tion in addition to the common functions shared by the entire
cluster.

Recently, two miRNA clusters formed from miR-200 family
members (the first cluster consisting of miR-200a, miR-200b,
and miR-429 and the second cluster consisting of miR-200c and
miR-141) have been examined in relation to cancer risk. miRNA
profiling studies indicate their down-regulation in breast (Gregory
et al., 2008; Radisky, 2011), colon (Burk et al., 2008; Park et al.,
2008; Slaby et al., 2009; Mongroo and Rustgi, 2010; Shah et al.,
2011), pancreatic (Yu et al., 2010; Soubani et al., 2012), prostate
(Kong et al., 2009; Sossey-Alaoui et al., 2009), and other tumor
types. miR-200 may exert its effect through a double negative
feedback loop between miR-200 family members and transcrip-
tion factors ZEB1 and ZEB2 (Hurteau et al., 2006; Christoffersen
et al., 2007; Burk et al., 2008; Brabletz and Brabletz, 2010). Inhi-
bition of ZEB1 and ZEB2 by these miRNAs is thought to increase
key epithelial markers, e.g., E-cadherin, resulting in the acquisition
of an “epithelial phenotype” (Christoffersen et al., 2007; Hurteau
et al., 2007). Findings from an extensive study performed using
NCI-60 cell lines suggest that miR-200 is a marker of epithe-
lial phenotype (Park et al., 2008). Several studies have also linked
the miR-200/ZEB system to the TGFβ (Burk et al., 2008; Gregory
et al., 2011) and p53 pathways (Chang et al., 2011; Kim et al., 2011;
Knouf et al., 2012), which play a role in cancer progression of many
tissue types.

In the last few years, there has been a growing interest in deter-
mining the biological impact of single-nucleotide polymorphisms
(SNP) located in the 3′ UTRs of gene targets and in miRNA
sequences. This is noteworthy because SNPs in miRNA sequences
can influence miRNA processing and/or miRNA–mRNA inter-
actions, thereby modulating cancer risk (Sun et al., 2009a). For
example, three SNPs, hsa-miR-196a2 rs11614913 C/T, hsa-miR-
499 rs3746444 A/G, and hsa-miR-146a rs2910164 G/C, residing
in pre-miRNA regions have been associated with hepatocellular
carcinoma (HCC; Xu et al., 2008), familial breast and ovar-
ian cancers (Shen et al., 2008), breast cancer (Hu et al., 2009),
prostate cancer (Xu et al., 2010), papillary thyroid carcinoma
(Jazdzewski et al., 2008), cervical squamous cell carcinoma (Zhou
et al., 2011), gastric cancer (Peng et al., 2010; Zeng et al., 2010),
and lung cancer (Tian et al., 2009). Moreover, rs11614913 located
within pre-miR-196a2 has been associated with increased risk
of lung cancer (Kim et al., 2010). Furthermore, a recent study
showed that presence of SNP rs4938723 in the promoter region
of pri-miR-34b/c was significantly associated with increased risk
of HCC (Xu et al., 2011). Also, the presence of SNPs residing
within the 3′ UTR of genes that are either tumor suppres-
sors or oncogenes could contribute to tumorigenesis and thus
increase the risk of developing cancer (Chin et al., 2008). Stud-
ies in breast cancers indicate the presence of SNPs rs799917 in
exon (1) of BRAC1 and rs334348 in the 3′ UTR of TGFBR1
which are localized to the predicted binding sites of miR-638.
These SNPs were associated with increased risk of sporadic and
familial breast cancer (Kontorovich et al., 2010; Nicoloso et al.,
2010). Additionally, the presence of SNPs in the let-7 comple-
mentary sites in KRAS (rs712) were associated with increased
risk of both lung and colon cancer (Chin et al., 2008; Landi
et al., 2008, 2012). These findings stress the importance of genetic
variation in modulating the actions of miRNAs and their target
genes.
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MODULATION OF miRNAs BY BIOACTIVE DIETARY AGENTS
There is clinical, experimental, and epidemiological evidence
suggesting that diet is one of the most important modifiable
determinants of risk for developing a number of chronic diseases.
Various natural dietary chemoprotective agents have been shown
to exert pleiotropic actions in cancer cells. Recent data suggest that
environmental agents, specifically bioactive food components and
exercise, play a role directly or indirectly in the modulation of
miRNA expression (Davis and Ross, 2008; Davidson et al., 2009b;
Saini et al., 2010; Shah et al., 2011; Parasramka et al., 2012b).
Observations and mechanisms by which several of the above men-
tioned dietary factors modulate miRNA expression and function
– leading to inhibition of cancer growth, induction of apoptosis
and other protective processes – are highlighted below.

MODULATION OF miRNAs BY FATTY ACIDS
A growing body of evidence demonstrates that high intake of
n-3 polyunsaturated fatty acids (PUFAs) suppresses the develop-
ment of colon cancer (Chang et al., 1998; Davidson et al., 2009a;
Kachroo et al., 2011; Turk et al., 2012), breast cancer (Dimri et al.,
2010), and glioblastoma (Leaver et al., 2002), by modifying gene
expression and cellular signaling pathways. This is consistent with
human studies where diets rich in n-3 PUFAs (docosahexaenoic
acid, DHA and eicosapentaenoic acid, EPA) found in fish oil,
were protective against colon tumorigenesis (Potter, 1993; Chang
et al., 1998; Hall et al., 2008; West et al., 2010). In contrast, diets
rich in n-6 PUFAs (linoleic acid, LA and arachidonic acid, AA)
found in vegetable oils and red meat, enhance both the initia-
tion and promotion of colon cancer (Reddy et al., 1991; Whelan
and McEntee, 2004). However the mechanism of action of these
fatty acids with respect to the prevention of cancer has not yet
been fully established. Therefore, we investigated the chemopro-
tective effects of n-3 and n-6 PUFAs in a colon carcinogenesis
rodent model system and demonstrated that expression of let-7d,
miR-15b, miR-107, miR-191, and miR-324-5p were modulated in
rats injected with azoxymethane (AOM, a colon carcinogen) fed
a fish oil (containing n-3 PUFA) enriched diet (Davidson et al.,
2009b). Furthermore, an integrated global approach was used to
elucidate the biological effects of these PUFAs in the presence of
a carcinogen. Specifically, complementary computational analy-
ses with miRNA and mRNA expression datasets were performed.
We observed that a corn oil-cellulose-based diet in the presence
of carcinogen compared to fish oil-pectin-based diet increased the
expression of miR-16, miR-19b, miR-21, miR-26b, miR-27b, miR-
93, 200c, and miR-203, while reducing the expression of some of
their targets, e.g., PTK2B, TCF4, PDE4B, HDAC4, and IGF1. These
data suggest that dietary PUFAs modulate non-coding RNAs in the
colon. In comparison, in glioblastoma cells, following treatment
with three different types of PUFAs (GLA, AA, and DHA), several
miRNAs including miR-16, miR-143, miR-22, miR-20b, miR-31,
miR-145, miR-182, miR-183, miR-200c, miR-26a, miR-206, miR-
140, miR-17, miR-29c, and miR-34 were differentially expressed.
Specifically, in PUFA-treated cells, miR-143 was reduced, while
miR-20b was elevated when compared to untreated cells (Farago
et al., 2011). Vinciguerra et al. (2009) observed that unsaturated
fatty acids (oleic, palmitoleic, and linoleic acid) reduced PTEN
expression in hepatocytes. They reported that treatment with oleic

acid (n-9 monounsaturated fatty acids) also up-regulated miR-
21 synthesis by activating the miR-21 promoter via an mTOR/
NF-κB65-dependent mechanism. In vitro studies in breast cancer
cell lines (MCF-7 and MDA-MB-231) showed that DHA inhibited
the expression of CSF-1 (colony stimulating factor-1). Addition-
ally, DHA treatment inhibited miR-21, which was associated with
increased PTEN protein levels and attenuated CSF-1 expression.
These results were recapitulated in mouse breast tumor cells (Man-
dal et al., 2012). Thus, it appears that miRNAs may be involved
in mediating some of the anti-oncogenic and chemoprotective
properties of PUFAs.

MODULATION OF miRNAs BY BUTYRATE
Butyrate, a short-chain fatty acid produced via fermentation of
dietary fiber predominantly in the distal intestine, is a puta-
tive chemoprotective agent. With respect to epigenetic changes,
butyrate acts as a histone deacetylase inhibitor capable of decreas-
ing proliferation and increasing apoptosis in colorectal cancer
cells (Hodin et al., 1996; Hinnebusch et al., 2002; Chirakkal et al.,
2006; Comalada et al., 2006). Studies have demonstrated that these
effects are mediated in part through induction of p21waf1/cip1
expression (Crim et al., 2008). Recent evidence suggests that the
protective effects of butyrate may be mediated in part by mod-
ulating miRNA expression. Hu et al. (2011) showed that upon
treatment of human colon cancer cells (HCT116) with butyrate,
expression of multiple members of the miR-17∼92, miR∼18b-
106a, and miR-106b∼25 clusters were significantly reduced. Also,
p21 was determined to be a direct miR-106b target. These data
indicate that short-chain fatty acids regulate host gene expression
by modulating miRNAs implicated in intestinal homeostasis and
malignant transformation. An additional study by Humphreys
et al. (2012) explored the effects of several histone deacetylase
inhibitors (HDI) on miRNA expression in human colon cancer
cell lines (HCT116 and HT-29). They reported that these HDIs
also decreased miR-17∼92 cluster miRNAs, while their target
genes, e.g., PTEN, BCL2L11, CDKN1A, were increased. When
miR-17∼92 cluster miRNAs were overexpressed in the presence
of HDIs, the protective effects of HDIs were diminished. Simi-
larly, Wolter and Stein (2002) showed that resveratrol intensified
the differentiation-inducing effects of butyrate in colorectal cancer
cells. We observed that when dietary n-3 PUFAs were combined
with fermentable fiber (pectin) in carcinogen injected rats, it
led to the increased expression of miR-19b, miR-26b, miR-27b,
miR-200c, and miR-203 and decreased the expression of their
predicted targets, some of which have been shown to mediate
oncogenic signaling. Collectively, these findings support the claim
that pleiotropic bioactive components generated by fermentable
fiber (butyrate) and fish oil (DHA and EPA) work coordinately to
protect against colon tumorigenesis (Shah et al., 2011).

ROLE OF VITAMINS IN miRNA MODULATION
Vitamin A
All-trans-retinoic acid, the most biologically active metabolite of
vitamin A, is an essential dietary factor involved in vision, cell
growth and differentiation, and immune function and acts as a
tumor suppressor in lung, liver, bladder, prostate, breast, and pan-
creatic cancer models (Sun et al., 2002). In two separate studies
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using acute promyelocytic leukemia cells, retinoic acid exposure
up-regulated miR-186, miR-215, miR-223 (Rossi et al., 2010),
miR-15a, miR-15b, miR-16-1, let-7a-3, let-7c, let-7d, miR-107,
miR-223, and miR-342 (Garzon et al., 2007) and down-regulated
miR-17, miR-25, miR-93, miR-193, and miR-181b. In breast
cancer (MCF-7) cells, retinoic acid exposure inhibited cell prolif-
eration by modulating miR-21 (Terao et al., 2011). More detailed
studies need to be carried out to elucidate how retinoic acid mod-
ulates miRNA levels and whether this phenomenon is responsible
for its chemoprotective properties.

Folic acid
Folic acid is converted to 5-methyltetrahydrofolate and is abun-
dant in fruits, vegetables, and grains. It serves an important role
in DNA synthesis, repair, and methylation. Several studies have
demonstrated the modulation of miRNAs by folate in a number
of model systems. For example, when male Fisher rats were fed
a folate-deficient diet, they developed HCC at 54 weeks in the
absence of carcinogen. The onset of cancer was associated with
the up-regulation of several miRNAs, such as let-7a, miR-21, miR-
23, miR-130, miR-190, miR-17-92 and the down-regulation of
miR-122 in liver tumors as compared to rats receiving adequate
folate. After 36 weeks of folate replenishment, miR-122 levels were
increased and associated with the inhibition of liver tumorigenesis.
These findings indicate that a chemoprevention paradigm which
involves folate affects miRNAs (Kutay et al., 2006; Pogribny et al.,
2008). In human lymphoblastoid cells, folate deficiency produced
a pronounced global increase in miRNA expression, including
miR-222 (Marsit et al., 2006). These studies demonstrate that
dietary modulation of miRNA expression is reversible.

Vitamin D
Clinical and epidemiological studies have shown that vitamin
D (calciferol) and its metabolites 1,25-dihydroxyvitamin D3
(1,25(OH)2 D3) and 25-hydroxyvitamin D3 (25(OH)D3), exert
protective effects by inducing G0/G1 arrest, cell differentiation,
apoptosis, via modulation of a range of signaling pathways (Gar-
land et al., 2011; Fleet et al., 2012). The classical model of action
of 1,25(OH)2 D3 is via the vitamin D receptor (Fleet, 2004).
Recent studies have suggested that vitamin D may exert its pro-
tective effects by modulating miRNA expression and its targets.
Specifically, in human myeloid leukemia cells, vitamin D3 down-
regulated miR-181a and miR-181b, resulting in an up-regulation
of p27KIP1 and p21CIP1 and cell cycle arrest (Wang et al., 2009b).
Additionally, vitamin D treatment up-regulated miR-32, which
was associated with the inhibition of Bim and AraC-induced
apoptosis (Gocek et al., 2011). Mohri et al. (2009) observed that
miR-125b modulated the expression of the vitamin D receptor,
through which the cancer chemoprotective effects of vitamin D are
mediated. In malignant melanoma cells, Essa et al. (2010) observed
an inverse relationship between miR-125b expression and vitamin
D3 receptor levels. In colon cancer cell lines (SW480-ADH and
HCT116), expression of miR-22 was induced by 1,25(OH)2D3

and when miR-22 was inhibited, the anti-proliferative and anti-
migratory effect of 1,25(OH)2D3 was suppressed. Bioinformatic
analysis demonstrated that genes affected by 1,25(OH)2D3 are also
predicted targets of miR-22. Also, in human colon tumors, reduced

expression of miR-22 correlated with vitamin D receptor expres-
sion as compared to the matched normal tissue. These data help to
explain the mechanism of action of vitamin D and how it modu-
lates gene expression via changes in miRNA synthesis/degradation
(Alvarez-Diaz et al., 2012).

MODULATION OF miRNAs BY PHYTOCHEMICALS
Polyphenols
Polyphenols are ubiquitous secondary metabolites found in fruits
and vegetables, whole grain cereals, and beverages, including tea,
coffee, and wines. Several clinical, experimental, and epidemi-
ological studies have suggested an inverse association between
polyphenol-rich food consumption and the prevention of chronic
diseases (Arts and Hollman, 2005; Scalbert et al., 2005; Schroeter
et al., 2006; Spencer et al., 2008). From a mechanistic perspec-
tive, polyphenols including ellagitannins, flavanol-rich extracts,
epigallocatechin-3-gallate, curcumin, and resveratrol appear to
modulate several miRNAs and their targets in several cancer
models. Some of these findings are discussed below.

An in-depth study carried out by Milenkovic et al. (2012)
examining liver metabolism in apolipoprotein E-deficient mice
demonstrated that upon dietary polyphenol supplementation
at doses that are considered nutritionally achievable, cellular
functions were modulated by changes in miRNA expression.
Specifically, exposure to nine polyphenols – quercetin, hesperidin,
narangin, anthocyanin, catechin, proanthocyanin, caffeic acid, fer-
ulic acid, and curcumin – modulated five overlapping miRNAs,
miR-30c, miR-291b-5p, miR-296-5p, miR-373, and miR-467b,
suggesting a common mechanism of action. Joven et al. (2012)
demonstrated that consumption of a high fat diet significantly
increased the liver expression of miR-103 and miR-107, but did not
cause any change in target gene PANK1 expression. Supplemen-
tation with polyphenols resulted in reduction in the expression of
miR-103, miR-107, and liver-specific miR-122. Collectively, these
studies suggest that polyphenolic micronutrients exert their pre-
ventive effects, in part, by modulating the expression of select
miRNAs.

Curcumin
Curcumin, a flavonoid derived from rhizomes of Curcuma longa,
is considered to be a strong antioxidant with anti-inflammatory
properties (Kuo et al., 1996). A number of studies have demon-
strated that curcumin has protective properties against several
types of cancer by modifying gene expression (Lopez-Lazaro,
2008). Sun et al. (2008) have demonstrated that treatment of
human pancreatic cancer cells with curcumin resulted in the sig-
nificant up-regulation of eleven miRNAs and down-regulation
of eighteen miRNAs. Of these, miR-22 was the most signifi-
cantly up-regulated non-coding RNA and was associated with
the suppression of Sp1 and estrogen receptor 1, while miR-199a*
was the most significantly down-regulated miRNA. Curcumin
and its synthetic analog, diflourinated curcumin (CDF), either
alone or in combination, down-regulated miR-200 and miR-21
expression, inducing the up-regulation of its target, PTEN, in
pancreatic tumor cells (Bao et al., 2011). In another study by the
same group, curcumin reduced EZH2 expression and increased
a panel of tumor suppressive miRNAs, specifically let-7 family
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members, miR-26a, miR-101, miR-146a, miR-200b, and miR-
200c (Bao et al., 2012). These data suggest that CDF inhibits
pancreatic cancer tumor growth by targeting an EZH2-miRNA
regulatory circuit. Soubani et al. (2012) also assessed the effects of
CDF and BioResponse 3,3′-diindolylmethane (BR-DIM; a natural
derivative of curcumin) on pancreatic cancer cells. The treatment
increased levels of miR-200 and PTEN, while reducing the expres-
sion of MT1-MMP. This is noteworthy, because the loss of miR-200
and PTEN expression is a causative factor linked to the aggres-
sive behavior of pancreatic cancer cells. Recently, curcumin was
implicated in the reduction of WT1, a transcription factor, in pan-
creatic cancer cells (PANC-1) and leukemia cells (K562 and HL-60)
(Glienke et al., 2009; Gao et al., 2012). Its effects were linked to the
down-regulation of miR-15a/16-1. Hence, curcumin analogs may
have application in the treatment of pancreatic cancer (Zhang
et al., 2010).

With respect to other forms of cancer, e.g., breast cancer cells
(MCF-7, SKBR-3, and Bcap-37), curcumin reduced the expression
of Bcl2 by up-regulating miR-15a and miR-15b (Yang et al., 2010).
In colorectal cancer cells, curcumin inhibited the transcriptional
regulation of miR-21 via AP-1 and also suppressed cell prolifera-
tion, tumor growth, invasion, and in vivo metastasis (Mudduluru
et al., 2011). In addition, curcumin has been shown to promote
apoptosis in A549/DDP multidrug-resistant human lung adeno-
carcinoma cells by its action on miR-186*. Collectively, these data
suggest that modulation of miRNA expression may be an impor-
tant mechanism underlying the biological effects of curcumin and
the effects likely vary depending on the target tissue.

MODULATION OF miRNAs BY RESVERATROL AND ITS ANALOGS
Resveratrol, a stilbenoid found in the skin of fruits, especially
grapes, has protective properties against cancer in terms of its
ability to modulate canonical signal transduction pathways that
control cell division and growth, apoptosis, inflammation, angio-
genesis, and metastasis (Jang et al., 1997; Bhat and Pezzuto,
2002; Latruffe et al., 2002; Delmas et al., 2006; Pallas et al., 2009).
Recently, several studies have demonstrated that resveratrol may
exhibit these protective effects at least in part by modulating miR-
NAs. Tili et al. (2010b) reported that upon treatment of colorectal
cancer cells (SW480) with resveratrol, miR-663 was up-regulated,
which was linked to the inhibition of TGF-β. In addition, miR-17,
miR-21, miR-25, miR-92a, and miR-196a were down-regulated
and their targets, PDCD4, PTEN, and Dicer, were reciprocally up-
regulated. Also, resveratrol treatment of monocytic cells induced
miR-663-dependent effects by targeting AP-1 through JunB and
JunD and impaired the up-regulation of well-known oncogenic
miRNA, miR-155 (Tili et al., 2010a). Moreover, in lung cancer and
nasopharyngeal carcinoma cells, up-regulation of miR-663 was
shown to promote cell proliferation via the TGF-β and p21 path-
ways. In human lung cancer cells (A549), resveratrol treatment
led to a significant up-regulation of miR-194, miR-299, miR-
338, miR-582, and miR-758 and down-regulation of miR-92a.
The predicted targets of these miRNAs modulate apoptosis, cell
cycle regulation, cell proliferation and differentiation (Bae et al.,
2011). In human bronchial epithelial cells (16HBE-T), miR-622
was up-regulated following resveratrol treatment, which was asso-
ciated with the inhibition of cell proliferation and suppression

of 16HBE-T cell primary tumor growth in nude mice (Han et al.,
2012). Also in lung cancer cells, Hu et al. (2012a) showed that treat-
ment with resveratrol inhibited cell mobility through induction
of mesenchymal-epithelial transition (EMT) and the overexpres-
sion of miR-520h, which in turn reduced FOXC2. Resveratrol
treatment in prostate cancer cells down-regulated the oncogenic
miR-17∼92 and miR-106b clusters and up-regulated several miR-
NAs, including miR-150, miR-149, and miR-1290. Also, PTEN,
which is a predicted target of some of these miRNAs, was up-
regulated (Dhar et al., 2011). Hence, the discovery that resveratrol
can modulate the levels of miRNAs by targeting pro-inflammatory
and/or pro-tumorigenic factors provides a rationale to optimize
resveratrol-targeted treatments for the purpose of manipulating
the levels of critical miRNAs.

MODULATION OF miRNAs BY CATECHINS
Epigallocatechin-3-gallate (EGCG) and other tea polyphenols
have been shown to alter cancer growth by targeting key oncogenic
signaling pathways (Mukhtar and Ahmad, 1999; Tachibana, 2009).
EGCG exposure has been linked to apoptosis, NFκ-B activation,
suppression of nitric oxide synthase, and up- or down-regulation
of tumor suppressor genes/oncogenes such as MAPK and PKC
(Surh et al., 2005). Tsang et al. (2010) observed that by treat-
ing HCC cells (HepG2) with EGCG, expression of 61 miRNAs
including miR-16, let-7c, miR-18, miR-25, and miR-92 were up-
regulated, while miR-129, miR-196, miR-200, miR-342, and miR-
526 were down-regulated. Also, the pro-survival gene, Bcl2, was
shown to be targeted by miR-16. Similarly, miR-30b was down-
regulated in the same model following EGCG treatment (Arola-
Arnal and Blade, 2011). In human and mouse lung cancer cells,
the tumor suppressor effects of EGCG treatment were linked to
miR-210 expression and the modulation of the hypoxia-inducible
factor 1α (HIF-1α) pathway (Wang et al., 2011). In addition, in
mouse prostate cancer cells, EGCG treatment resulted in the
reduced expression of miR-21 and miR-330 (Siddiqui et al., 2011).
In comparison, treatment with polyphenon-60 (green tea extract)
in breast cancer cells (MCF-7) down-regulated oncogenic miRNAs
miR-21 and miR-27 (Fix et al., 2010). These emerging data suggest
that EGCG may inhibit cancer cell growth by targeting specific
miRNAs.

MODULATION OF miRNAs BY ISOFLAVONES
Soy isoflavones such as daidzein, genistein, and glycitein have
been reported to have anti-carcinogenic effects, e.g., inhibition
of cell growth, invasion, and metastasis (Barnes, 1997; Dixon
and Pasinetti, 2010; Li et al., 2011). Recently, two studies have
demonstrated that isoflavones are capable of modulating miRNA
expression in pancreatic cancer. Li et al. (2009) showed that
genistein treatment in pancreatic cancer cells resulted in the
up-regulation of miR-200, which was associated with the down-
regulation of validated targets ZEB1 (zinc finger E-box-binding
homeobox 1), slug, and vimentin, known to play a role in epithelial
mesenchymal transition. Also, induction of let-7 and inhibition
of cancer cell growth was noted after genistein treatment in this
model. With respect to pancreatic cancer cells, genistein treat-
ment resulted in an up-regulation of miR-146a expression and the
concomitant down-regulation of several oncogenic targets such as
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EGFR, MTA-2, IRAK-1, and NF-κB, consistent with the inhibi-
tion of pancreatic cancer cell invasion (Li et al., 2010). Chen et al.
(2011) used prostate cancer cell lines to demonstrate that genistein
up-regulated ARHI, a tumor suppressor gene, via down-regulation
of miR-221 and miR-222. In addition, to determine the effects of
genistein in ovarian cancer cells (UL-3A, UL-313), a global miRNA
profiling study was carried out. The expression of 53 miRNAs was
associated with the up-regulation of estrogen receptor α and β lev-
els (Parker et al., 2009). In comparison, in human uveal melanoma
cells (C918), genistein treatment reduced miR-27a levels and
inhibited tumor growth in nude mice (Sun et al., 2009b). Incuba-
tion of hepatoma (HepG2) cells with isoflavone (an anthocyanin)
down-regulated miR-20b and up-regulated miR-197, miR-532,
and miR-1224 (Arola-Arnal and Blade, 2011). Additional stud-
ies are needed in order to determine the biological significance of
these observations.

MODULATION OF miRNAs BY INDOLES
Indole-containing compounds, such as indole-3-carbinol (I3C)
and sulforaphane isolated from cruciferous vegetables have been
reported to possess chemoprotective properties (Higdon et al.,
2007). Recently, in breast, lung, and pancreatic cancer cells,
these agents have been shown to modulate miRNA expression.
Jin (2011) showed that treatment of MCF-7 and MDA-MB-468
breast cancer cell lines with 3,3′-diindolylmethane (DIM), an in
vivo dimeric product of I3C, increased miR-21 expression and
reduced expression of its target Cdc25A, consistent with a dose-
dependent inhibition of cell proliferation and development of
breast tumors in an in vivo xenograft model. In several human
pancreatic cell lines, DIM treatment up-regulated let-7b, let-7c,
let-7d, let-7e, miR-200b, and miR-200c. These pancreatic cells
displayed EMT characteristics by down-regulating E-cadherin,
vimentin, and ZEB1, and treatment with DIM-inhibited cancer
cell growth (Li et al., 2009). Therefore, induction of miR-200 and
let-7 by isoflavone could be important for designing novel ther-
apies for cancers. Melkamu et al. (2010) observed that in lung
tissues obtained from mice upon treatment with vinyl carbamate
(a potent carcinogen causing lung tumors) and given I3C in the
diet, the expression of several “oncomiRs,” miR-21, miR-31, miR-
130a, and miR-146, were reduced as compared to mice injected
with carcinogen in the absence of I3C. These results indicate that
I3C is able to reduce the effect of carcinogens in the lung by
modulating expression of key miRNAs. In comparison, in rats
exposed to cigarette smoke, I3C treatment restored the expres-
sion of miR-34b, miR-26a, miR-125a, and miR-10a (Izzotti et al.,
2010; Melkamu et al., 2010). Collectively, these preliminary results
suggest that I3C and DIM could function as miRNA regulators
in a number of cancer cell types due to their chemoprotective
properties.

MODULATION OF miRNAs BY ISOTHIOCYNATES
Another compound found in cruciferous vegetables, phenethyl
isothiocyanate (PEITC), has been shown to modulate carcino-
gen metabolism in different tissues (Pappa et al., 2006; Higdon
et al., 2007; Clarke et al., 2008; D’Agostini et al., 2009). Studies
have demonstrated that PEITC modulates miRNA expression in
lung and liver tissues. Izzotti et al. (2010) conducted two PEITC

feeding studies in mice exposed to cigarette smoke and carried
out miRNA profiling in lung and liver tissues. In mice exposed
to cigarette smoke, PEITC counteracted the biological effect of
cigarette smoke by modulating ten miRNAs, e.g., let-7a, miR-
26a, miR-31, miR-125b, miR-135, miR-200a, and miR-382 in the
lung, whereas mixed alterations were observed in the liver. These
data suggest that PEITC protects the lung from cigarette smoke-
induced miRNA alterations, but had different effects in the liver.
This could be due to the presence of different cell types in the two
organ systems. Hence, it is very critical to study the effects of such
chemoprotective agents in several organ systems and not just the
target system.

CONCLUSIONS AND FUTURE PERSPECTIVES
In the last 5 years, a plethora of studies have examined the effect
of nutritional bioactive agents on miRNAs and their targets in the
context of cancer biology. Several of the targets of these miRNAs
are tumor suppressors or oncogenes that mediate the initiation
and progression of carcinogenesis. Examination of a broad range
of miRNA studies involving dietary agents revealed that seven
miRNAs – let-7a, miR-21, miR-26, miR-34, miR-125, miR-146,
and miR-200 – were shown to be modulated by at least five agents
as shown in Figure 2. It is possible that these miRNAs are preferred
targets for chemoprotective dietary agents and may be used as
indicators of the efficacy of dietary intervention.

A number of miRNAs exhibit complex trends of expression
in response to dietary manipulation. This could be due to the
fact that these miRNAs are expressed in a tissue-specific manner.
For example, PEITC, a known bifunctional metabolic inducer, has
been shown to exert different effects in lung and liver (Izzotti et al.,
2010). Additional studies are needed to interpret the significance
of these findings.

The majority of the studies with dietary agents have been
performed in cancer cell lines. This is noteworthy because obser-
vations using cell line models are not always recapitulated in vivo.
Clearly, in vivo whole animal studies are more likely to bear rel-
evance to humans, especially since miRNAs are well conserved
across species. Besides, in vivo approaches take into account the
metabolic features of the bioactive dietary compounds. Also, most
of the studies utilizing dietary agents are descriptive in nature.
Hence, there is a need for in-depth examination of the temporal
and functional mechanisms linking chemoprevention, miRNAs,
and their target mRNAs. The majority of studies mentioned in
this review have looked at the global effect of dietary bioactives
on miRNA expression and only a few studies have validated the
downstream targets. Additionally, it is necessary to probe the
upstream mediators that are responsible for the alterations in
miRNA expression. One of the causes of aberrant miRNA expres-
sion is the modification of histones and DNA methylation at the
epigenetic level (Bao et al., 2004; Tuddenham et al., 2006). Some
of the dietary agents such as butyrate, flavonoids, and curcumin
are capable of altering the epigenetic landscape which can modu-
late gene/miRNA transcription and subsequently trigger changes
in cell proliferation, differentiation, and cell survival (Fu and
Kurzrock, 2010; Duthie, 2011; Berni Canani et al., 2012). Inter-
estingly, several investigators have recently begun to explore how
bioactive dietary agents alter the inter-regulatory patterns between
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FIGURE 2 | Bioactive dietary agents modulate “oncogenic” miRNAs.

(A) let-7a, typically down-regulated in several types of cancer, is up-regulated
by several chemoprotective dietary agents. Subsequently, RAS (gene target)
expression is suppressed which coincides with a decrease in cancer growth.
(B) miR-21, a well-defined oncogene, is down-regulated by several dietary
agents in different cancer cell types, resulting in the up-regulation of one
of its targets, PTEN, a well-known tumor suppressor. (C) miR-146 is

up-regulated by chemoprotective diets resulting in down-regulation of its
targets, leading to inhibition of cancer cell invasion (D) miR-200, miR-26a/b,
and miR-203 are up-regulated by chemoprotective diets resulting in
down-regulation of their respective targets, leading to increased apoptosis
and decreased cell proliferation. PEITC, phenethyl isothiocyanate; DIM;
diindolylmethane; EGCG, epigallocatechin gallate; DHA, docosahexaenoic
acid, PUFA, polyunsaturated fatty acid, I3C, indole-3-carbinol.

promoter regions of miRNAs and several genes (Hu et al., 2011;
Saini et al., 2011).

The interaction between bioactive dietary agents and SNPs in
miRNAs (such as let-7a, miR-34, miR-125, miR-146, and miR-
200) with respect to cancer risk is an open avenue of investigation.
This may help improve our understanding of the inter-individual
variability seen in response to dietary treatments. In addition,
recent studies have shown that miRNAs in serum can serve as non-
invasive biomarkers for cancer. Determining the change in miRNA
levels in serum after exposure to dietary agents could be utilized as
a diagnostic tool to monitor the effects of treatment over time. In
addition, miRNA signatures could be used as potential biomarkers
for cancer evaluation, once additional information regarding the
role of miRNAs is obtained. Another major challenge for current
miRNA studies is the need to identify the biologically relevant
downstream targets that directly mediate the effect of the miRNA.
The use of transgenic mice with a specific loss or gain of miRNA

expression would help clarify the function of miRNAs and their
targets in vivo (Rodriguez et al., 2007; Mu et al., 2009).

Results from a number of studies indicate that there is great
interest to determine if combining conventional therapeutics with
natural bioactive agents having chemoprotective properties is able
to confer enhanced protection by modulating miRNAs and their
targets. Because of the innocuous nature of dietary bioactives, it
is likely that few, if any, safety concerns will arise. With respect to
dietary molecular mechanisms of action, it would be worthwhile to
determine how diet impacts components of the miRNA biogenesis
pathway, specifically Dicer. Recently, it has been demonstrated
that Dicer is a preferential cytoplasmic target for mutagens, which
in turn affects miRNA maturation by competing with the pre-
miRNA binding to Dicer (Ligorio et al., 2011). A recent study
showed that dietary intake of natural products contributes to the
prevention and treatment of diseases by regulating the miRNA
biogenesis pathway (Hagiwara et al., 2012). It would be interesting
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to determine whether these dietary agents compete with mutagens
and pre-miRNAs to affect the maturation of miRNAs. Insight from
these studies will lead to a better understanding of the molecular
mechanisms linking diet to chronic disease prevention.
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