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We introduce NSeq, a fast and efficient Java application for finding positioned
nucleosomes from the high-throughput sequencing of MNase-digested
mononucleosomal DNA. NSeq includes a user-friendly graphical interface, computes
false discovery rates (FDRs) for candidate nucleosomes from Monte Carlo simulations,
plots nucleosome coverage and centers, and exploits the availability of multiple processor
cores by parallelizing its computations. Java binaries and source code are freely available
at https://github.com/songlab/NSeq. The software is supported on all major platforms
equipped with Java Runtime Environment 6 or later.
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1. INTRODUCTION
Eukaryotic DNA is organized into chromatin, consisting of
repeating nucleosomes adjoined by linker DNA. A nucleo-
some itself is composed of ∼146 bp of DNA wound around an
octameric histone core. The core histones participate in the epi-
genetic regulation of gene expression in two important ways:
they can block access to regulatory sequences by DNA-binding
factors; and covalent modifications of their N-terminal tails
can affect the recruitment of protein complexes, which in turn
influences transcriptional regulation. Although nucleosomes are
highly dynamic, being subjected to thermal fluctuations and
ATP-dependent remodeling (Blossey and Schiessel, 2011), some
nucleosomes are well-localized across populations of a given cell
type. Such positioned nucleosomes are likely to be more func-
tional than delocalized nucleosomes and may be under selection
and regulatory forces (Yuan et al., 2005; Ozsolak et al., 2007; Field
et al., 2008; Song et al., 2008).

This paper introduces NSeq, an open-source Java application
that rigorously identifies positioned nucleosomes from the next-
generation sequencing of micrococcal nuclease (MNase)-digested
mononucleosomal DNA. MNase preferentially cuts linker DNA,
leaving nucleosomal DNA largely intact. This ideally gives rise to
clusters of reads on both sides of a positioned nucleosome, with
the mean 5′-end positions of reads in the forward- and reverse-
strand clusters separated by ∼146 bp. NSeq uses a novel statistical
test to identify positioned nucleosomes from these reads.

The organization of the rest of this paper is as follows. The
next two sections highlight the distinctive features of NSeq and
compare it with competing nucleosome sequencing offerings.
The Usage section serves as a short user’s guide to our software.
The “Methods” section provides a detailed description of NSeq’s
algorithm.

2. DISTINCTIVE FEATURES
Publicly available software that also finds nucleosomes from
sequencing data includes NOrMAL (Polishko et al., 2012),
Template Filter (Weiner et al., 2010), PING (Zhang et al., 2012),
nucleR (Flores and Orozco, 2011), and NPS (Zhang et al., 2008a).
NSeq has several advantages over these alternatives:

• NSeq automatically controls for false positive positioned nucle-
osome calls and computes a false discovery rate (FDR). A
candidate nucleosome is excluded if its FDR is above a user-
specified cutoff. NOrMAL, Template Filter, and PING asso-
ciate measures of confidence with nucleosomes, but their
connection to FDR, if any, must be inferred by the user.

• NSeq has both user-friendly graphical and command-line
interfaces. NOrMAL, NPS, and Template Filter are solely
command-line utilities, while nucleR and PING run in R.

• NSeq accepts alignment data in BAM, SAM, and BED file
formats. Template Filter and NOrMAL use non-standard file
formats. NPS opens only BED files. PING and nucleR sup-
port input data in BAM, SAM, and BED formats through
shortread, an R/Bioconductor package.

• Unlike other software discussed here, NSeq has an integrated
plotting tool that displays nucleosome coverage and center
positions as well as raw read positions. NSeq also outputs a
WIG file with nucleosome center positions.

• NSeq is multithreaded: it exploits the availability of multicore
processors, parallelizing its nucleosome search and FDR com-
putations to improve performance. PING also supports parallel
processing of input data (through the R package snowfall),
but others do not.

• NSeq is fast. We ran NSeq and NOrMAL on chromosome 10
of human data (Schones et al., 2008) for default values of all
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parameters on an Intel i5 2.7 GHz CPU. NSeq took 133 s to
process the chromosome, while NOrMAL took 9.98 days.

3. SOFTWARE COMPARISON
Figure 1 compares the features of the aforementioned software
packages. Many of these features pertain to usability. NOrMAL
was released in June 2012, and it is currently the latest pub-
licly available nucleosome sequencing analysis software at the
time of this manuscript’s preparation. In its accompanying paper
(Polishko et al., 2012), Template Filter is described as the current
state-of-the-art in nucleosome detection software. The remain-
der of this section compares the accuracy of NSeq, NOrMAL, and
Template Filter in finding positioned nucleosomes.

Template Filter comes with seven characteristic distributions
(“templates”) of reads flanking a nucleosome. Each template is
designed to match a pattern of reads on a single strand that
ostensibly indicates the presence of a nucleosome. So there are
7 × 7 = 49 combinations of forward- and reverse-strand tem-
plates. The software advances a sliding window across a genome
to analyze read count data, computing cross-correlations with
the 49 combinations of forward- and reverse-strand templates for
various spacings between template pairs. This yields a correlation
heat map for each template pair, with template pair spacing and
window position on the axes. Local maxima are associated with
candidate nucleosomes. A greedy algorithm then selects the best
assignment of nucleosomes.

The seven templates that come with Template Filter were
obtained by applying the procedure outlined in the previous para-
graph to a Saccharomyces cerevisiae dataset, but using a single
Gaussian-shaped template. That is, a single cross-correlation was
calculated for a given window using Gaussian-shaped ansatzes to
characterize the forward- and reverse-strand read accumulations.

The read patterns of these nucleosomes were then clustered using
k-means clustering. Each of the seven templates was chosen from
a different cluster of read patterns.

NOrMAL uses a mixture model of k Gaussians per chro-
mosome to probabilistically model nucleosome occupancy and
applies an expectation-maximization (EM) algorithm to learn the
parameters from read count data. Each Gaussian corresponds
to a candidate nucleosome. NOrMAL’s output associates confi-
dence and fuzziness scores with each nucleosome. The fuzziness
scores are parameters from the mixture model. The lower the
fuzziness score, the better-positioned a nucleosome; the lower the
confidence score, the more likely a nucleosome is a false discovery.

The number k of Gaussian clusters in NOrMAL’s mixture
model is found by following these steps:

1. k is set equal to the size of a chromosome divided by the
expected size of a nucleosome, an underestimated parameter
specified by the user.

2. The EM algorithm mentioned above is run until it converges.
3. Distances between Gaussian clusters are checked, and clusters

are merged if they overlap above a threshold input by the user.

Steps 2 and 3 are repeated until clusters are no longer merged.
We ran Template Filter, NOrMAL, and NSeq on nucleosome

sequencing data for S. cerevisiae (Tsankov et al., 2010). Default
values of all parameters were used. NSeq found 28,896 positioned
nucleosomes in the data. NOrMAL found 49,218 nucleosomes,
and the distribution of their fuzziness scores peaked at 15; we
thus considered as positioned those nucleosomes whose fuzziness
scores were less than 15. We then simulated delocalized nucle-
osomes as follows: for each read, a random integer was drawn
from the uniform distribution on {−73, . . . , 73} and added to its

FIGURE 1 | Chart comparing features of NSeq and other publicly available nucleosome sequencing software.
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position. Since a sharply positioned nucleosome is associated with
tightly clustered reads, shaking the original data in this random
manner removes the characteristic signatures of localized nucle-
osomes; a good algorithm for detecting positioned nucleosomes
should not call many candidates in such simulated data. We stress
that our simulations do not merely add noise to the original data;
they effectively reconstruct the data so the signal-to-noise ratio is
nearly zero. While a good nucleosome detector should be robust
to noise, it should not often mistake noise for signal.

Denote as C(f , s) the criteria that fuzziness is less than f
and confidence score is greater than s. FDRs were computed for
NOrMAL as the average ratio of the total number of nucleo-
somes satisfying C in simulated data to that in the original data.
The FDRs corresponding to C(15, s) and C(30, s) are displayed
in Figure 2. Note that the FDR decreases to close to zero for
fuzziness scores <15 as the confidence score increases, indicating
that low fuzziness score and high confidence score are generically
associated with true positive positioned nucleosomes. An FDR
was computed for NSeq just as for NOrMAL, but without the
criteria C, giving 1.31 × 10−3%.

Template Filter found 64,990 nucleosomes in the original
S. cerevisiae data, and the distribution of their correlation coef-
ficients peaked at 0.9. Denote as D(F, R) the criteria that a
nucleosome has correlation coefficient >0.9, and is associated
with template F on the forward-strand and template R on the
reverse-strand, with F, R ∈ {1, . . . , 7}. We computed FDRs for
Template Filter as for NOrMAL but with the criteria D rather
than C. The median FDR across the 49 forward-reverse template
combinations was 36.5%, with a median absolute deviation of
8.50%. The minimum FDR of 25.3% occurred for D(4, 4).

Template Filter thus lacks the efficacy of both NSeq
and NOrMAL for reliably identifying positioned nucleo-
somes, and NOrMAL requires the user to manually estimate
the FDR.

4. USAGE
NSeq is distributed as a Java Archive (NSeq.jar) and can be run
on any machine equipped with Java Runtime Environment 6 or
later. Netbeans IDE 7.0.1 was used to design the graphical user
interface (GUI), which consists of standard Swing components.

FIGURE 2 | FDRs computed from NOrMALÕs results using simulations

described in text at fuzziness score thresholds 30 (blue) and 15 (red).

To start the GUI and set a maximum Java Virtual Machine heap
size of 2 GB, enter

java -jar -Xmx2g NSeq.jar

at any Windows or Unix-like command prompt. For processing
large genomes like human and mouse, NSeq should be run with
a maximum heap size of at least 10 GB:

java -jar -Xmx10g NSeq.jar.

4.1. STARTUP SCREENS
The opening screen (Figure 3A) explains the purpose of the
application and the inputs required of the user. NSeq analyzes
alignment data in BAM, SAM, or BED format. It assumes that
the data are single-end. To facilitate fast reading of aligned data,
a tab-separated value (TSV) file with chromosome lengths is
required for genome assemblies other than ce10, mm9, mm10,
hg18, and hg19. This is a text file with reference sequence names
(e.g., chr1) in its first column and chromosome lengths (e.g.,
249,250,621) in its second column; it is used to preallocate mem-
ory for storing read data. Click “Get started” to proceed to
the load screen (Figure 3B). Here, the user specifies the loca-
tions of the chromosome-length and alignment files, as well as
parameters used by NSeq in its nucleosome search. The num-
ber T of threads controls the extent to which the computation
is parallelized. When T = 1, the computation is not parallel. We
recommend using a value of T at least as large as the num-
ber of available CPU cores; we found that computations are
fastest when T is about twice the number of available cores.
The default FDR cutoff F is 0.01. If the FDR computed for
a given candidate nucleosome is above F, the nucleosome is
excluded from all results. Other parameters that can be tog-
gled on the load screen are explained in the gray help box as
well as in “Methods.” Most users will find the default settings
adequate.

4.2. ANALYZING ALIGNMENT DATA
NSeq starts searching for nucleosomes using the alignment data
after “Run” is clicked on the load screen. Status updates are dis-
played in a text box (Figure 3C). Each chromosome is divided
into overlapping intervals; chromosomes are analyzed interval by
interval, and different intervals are assigned to different threads.
When NSeq has finished its analysis, two files are written in the
same directory as the alignment data. One is a text (TXT) file with
genomic coordinates and FDR estimates of nucleosome centers,
which correspond to the centers of scan windows with non-zero
N-statistics. (Our algorithm is described in detail in “Methods.”)
The second file written is a WIG file that can be opened in the
Integrated Genome Browser (Nicol et al., 2009). It contains nucle-
osome centers and their associated triangle statistics. The parts
of the filenames that precede their extensions have the format
[alignment filename]_[datestamp]_[timestamp].

4.3. DISPLAYING RESULTS
Clicking “Display” on the run screen brings up a histogram of
raw read positions and an overlay of nucleosome center positions
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FIGURE 3 | Continued
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FIGURE 3 | (A) NSeq’s welcome screen. (B) NSeq’s load screen. (C) NSeq’s run screen. (D) NSeq’s display screen.
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on a plot of nucleosome coverage (Figure 3D). A genome can
be navigated by changing the chromosome number as well as
the start and end coordinates of the plots. In the read-position
histogram, positive-strand read counts are in blue, and negative-
strand read counts are in red. The nucleosome coverage plot is
obtained as described in Zhang et al. (2008b): NSeq extends a
positive-strand read by 75 bases to the right, and a negative-
strand read by 75 bases to the left. Here, “extend” means that
each of the counts at included coordinates is incremented by 1.
The extended counts are then shifted by 37 bases to the right for
positive-strand reads and 37 bases to the left for negative-strand
reads. This gives rise to accumulations of counts near nucleosome
centers, which are denoted by red lines in the bottom panel in
Figure 3D.

4.4. COMMAND-LINE INTERFACE
NSeq can also be used at the command-line just to obtain the out-
put TXT and WIG files. This option may be preferred for batching
jobs on a cluster. For information on the command-line interface,
enter

java -jar NSeq.jar -h

at a prompt.

5. METHODS
We discuss how NSeq finds nucleosome centers in this section.
The steps are summarized in Figure 4. Parameters from the load
screen (Figure 3B) explained here are the scan-window width W ,
the center width Bw, the critical triangle-statistic cutoff tc, the
FDR cutoff F, and the number of simulations S.

FIGURE 4 | Steps taken by NSeq during nucleosome detection. NSeq
runs through the steps summarized here to extract nucleosome centers
from raw sequencing data. The plots in black representatively depict
quantities computed across the genome.

5.1. CONVERTING READS INTO A NUCLEOSOME CENTER
PROBABILITY LANDSCAPE

The alignment data are a snapshot of nucleosome locations in
random samples from a cell population. But no nucleosome is
exactly static with respect to DNA, and even well-localized nucle-
osomes experience small shifts. In addition, a given read should
correspond to one end of a nucleosome in one cell, but there is
inherently some uncertainty in where linker DNA is cleaved by
MNase. [Indeed, MNase cleavage sites are known to have a bias
toward AT-rich regions (Horz and Altenburger, 1981)]. Consider
a histogram of read counts whose bins are genomic-coordinate
positions. A positive-strand alignment starts at the 5′ end of
the reference sequence and extends to the right; a negative-
strand alignment starts at the 3′ end of the reference sequence
and extends to the left. So there should be minimally spread
accumulations of reads (more precisely, alignment start-position
counts) on either side of a positioned nucleosome.

Our algorithm first converts each read location into a prob-
ability distribution of the corresponding nucleosome center and
attempts to capture the uncertainty in where the linker DNA is
cut (Figure 5). Suppose yi is the 5′-end position of the ith read;
then, allowing for 5 bp of ambiguity in either direction, we model
the center of the corresponding nucleosome as a random variable
Zi = yi + X, where X ∈ {68, . . . , 78} and P(X = x) is obtained
from discretizing the beta distribution:

P(X = x) =
∫ x + 1

x (t − 68)α− 1(79 − t)β − 1dt

B(α, β)(11)α+ β − 1
. (1)

Our choice of the beta distribution is strategic: we require
an analytic distribution with a finite domain, flexible enough to
describe the empirical distribution of nucleosomal DNA lengths,
yet also fast to sample from. The parameter values 68 and 78
were selected to accommodate the 5-base-pair ambiguity from
the expected nucleosome center located at 146/2. For a negative-
strand read at yj, we model its center as Zj = yj − X. NSeq
estimates α and β by using previously published paired-end nucle-
osome sequencing data for S. cerevisiae (Henikoff et al., 2011). In
these data, a given read pair should flank a full nucleosome. The
genomic-coordinate distance between the reads in each pair was
halved to obtain an empirical distribution of distances between

FIGURE 5 | Mapping reads to a relative probability distribution of

nucleosome centers. A positive-strand alignment is mapped to a
discretized beta distribution whose leftmost bin is 68 bins to the right of the
read’s start position (blue). A negative-strand alignment is mapped to a
discretized beta distribution whose rightmost bin is 68 bins to the left of the
read’s start position (red).
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reads and their corresponding probable nucleosome centers. We
then obtained the maximum-likelihood estimates (MLEs) of α =
1.9204 and β = 1.8937, by numerically solving the equations

1

N
log

(
N∏

i = 1

ti − 68

11

)
= ψ(α) − ψ(α + β)

and

1

N
log

(
N∏

i = 1

79 − ti

11

)
= ψ(β) − ψ(α + β),

where ψ is a digamma function, and N is the total number
of paired-end reads with their center location ti in the range
{68, . . . , 78}; we used the Scipy optimize.fsolve module with
default parameters. This approach thus models the fuzziness in
nucleosome-center position for every read in the alignment data.
The center probability densities are then summed at each genomic
location k and provide a score sk defined as

sk =
R∑

i = 1

P(Zi = k), (2)

where R is the total number of reads, resulting in a relative proba-
bility landscape for the presence of nucleosome centers across the
genome.

5.2. TRIANGLE STATISTIC ON THE NUCLEOSOME CENTER
PROBABILITY LANDSCAPE

NSeq identifies nucleosomes by advancing a scan-window that
spans W bins across the aforementioned nucleosome-center rel-
ative probability landscape bin-by-bin, where each bin spans one
basepair. Thus, two successive scan windows overlap by W − 1
bins. A positioned nucleosome in the landscape should appear
as clustered probability masses. We assess the statistical signifi-
cance of such clustering by using what we call the triangle statistic,
which is motivated by the scan statistic. Suppose we partition
the scan-window of length W = 200 into disjoint sub-windows
of lengths 75, 50, and 75 (Figure 6). The triangle statistic to be

defined below detects significant accumulation of nucleosome
center probability mass in the central 50 bp sub-window, which
allows for roughly two superhelical turn ambiguity in either direc-
tion. Although W = 200 by default, NSeq allows the user to
change its value.

Denote as A, B, and C the sums of probability masses in the
first, second, and third sub-windows, respectively; and, let Aw,
Bw, and Cw be the corresponding lengths of sub-windows. By
default, Aw = 75, Bw = 50, and Cw = 75. Now, consider the odds
B/A and B/C. For a uniform distribution of counts across the
scan-window, B/A and B/C should both approach 2Bw/(W −
Bw) = 50/75. However, the presence of a positioned nucleosome
preferentially puts probability masses in the central sub-window,
so that both B/A and B/C are large compared to the null value of
2Bw/(W − Bw). The significance of this distortion is measured by
our triangle statistic

t = min(B/A, B/C)

2Bw/(W − Bw)
. (3)

We call t the triangle statistic, because it is typically much
larger than 1 for peaks in the probability landscape that look,
roughly, like triangles. Importantly, by construction, the triangle
statistic is small when the scan-window is centered around linker
DNA or delocalized nucleosomes.

5.3. IMPROVING THE ESTIMATES OF TRIANGLE STATISTIC
B/A and B/C are MLEs of the odds. The MLE estimates have
high variance when A, B, or C is small; NSeq thus uses median-
unbiased estimates (MUE) which are known to be more robust
and accurate for small sample data (Hirji et al., 1989; Parzen et al.,
2002). NSeq uses the MUE of odds ratios in the triangle statistic
calculations.

Estimating the odds can be mapped to the following problem:
given a Bernoulli random variable with success probability p, esti-
mate r = p/(1 − p) from m successes out of total M i.i.d. trials.
In our problem, both m and M are non-negative real numbers,
but the formalism described below has a natural generalization to
the continuous case. The MLE of r is m/(M − m). The MUE of
r instead uses a MUE p̂ of the success probability p to form the

FIGURE 6 | How the triangle statistic works. Red dots denote the
centers of discretized beta distributions corresponding to reads, and
rounded rectangles denote nucleosomes. The triangle statistic divides
a scan-window into regions A, B, and C of sizes (in bp) 75, 50,

and 75, respectively. The greater the number of dots in B (more
precisely, the sum of the probability masses at positions spanned by
B) compared to the number of dots in both A and C, the greater
the triangle statistic.
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odds p̂/(1 − p̂). The MUE p̂ satisfies the probability conditions

Pr(p̂ ≥ p) ≥ 1

2
and Pr(p̂ ≤ p) ≥ 1

2
.

Note that the number of successes after M Bernoulli trials is a
sufficient statistic ms and is drawn from the binomial distribution.
An alternative formulation of the MUE is obtained by consider-
ing the distribution of the sufficient statistic ms. For the observed
value ms = m, the MUE p̂ occurs where (Hirji et al., 1989)

Pr(ms ≤ m | p = p̂) ≥ 1

2
and Pr(ms ≥ m | p = p̂) ≥ 1

2
. (4)

In general, some range of p̂ satisfies the conditions, and the
midpoint between its boundary values p̂1 and p̂2 is taken as the
MUE. Each of the boundary values p̂1 and p̂2 occurs where one of
the inequalities (Equation 4) is saturated:

Pr(ms ≤ m | p̂1) =
m∑

ms = 0

M!
(M − ms)!ms! p̂ms

1 (1 − p̂1)
M − ms = 1

2
;

(5)

Pr(ms ≥ m | p̂2) =
M∑

ms = m

M!
(M − ms)!ms! p̂ms

2 (1 − p̂2)
M − ms = 1

2
.

The normalized incomplete beta function Ix(α, β) is defined as

Ix(α, β) =
∫ x

0 uα− 1(1 − u)β−1 du∫ 1
0 uα− 1(1 − u)β − 1 du

.

Equation (5) can be rewritten in terms of I as

Ip̂1
(m + 1, M − m) = 1

2
;

Ip̂2
(m, M − m + 1) = 1

2
.

These relations are numerically solvable for p̂1 and p̂2 even for
non-integer values of M and m, and the MUE p̂ is determined
from

p̂ = p̂1 + p̂2

2
.

To compute the triangle statistic, NSeq uses this formalism
with m = B and M = A + B, or m = B and M = C + B.

5.4. REMOVING CORRELATIONS AMONG ADJACENT TRIANGLE
STATISTICS

Triangle statistics corresponding to scan windows that have sub-
stantial overlap are correlated. For the S. cerevisiae data consid-
ered in Results and other nucleosome sequencing data, we found
that the autocorrelation length is 20–30 bins when W = 200.
Several successive scan windows covering a single localized nucle-
osome will thus all return large values of the triangle statistic. This
correlation is a problem for FDR estimation procedures, which
often assume independent samples of random variables. We thus

need to modify the triangle statistic so that only one of the corre-
lated windows would yield a significant statistic for a positioned
nucleosome. A similar problem arises in the analysis of ChIP-
chip or ChIP-seq data, and a Poisson-clumping approach was
previously used to remove the positive correlation (Zhang, 2008).
Inspired by that method, we define a new statistic N in terms of
the triangle statistics. Let ti be the triangle statistic for the scan-
window whose leftmost bin position is i. Define the new statistic
Ni for the ith scan-window as

Ni =
⎛
⎝ i − 1∏

j = i − 25

I(tj < ti)

⎞
⎠
⎛
⎝ i + 26∏

j = i + 1

I(ti ≥ tj)

⎞
⎠ I(ti ≥ tc)

× I

⎛
⎝ 10∑

j = 1

ti + 68 + j ≤ 10

⎞
⎠ I

⎛
⎝ 10∑

j = 1

ti − 78 + j ≤ 10

⎞
⎠, (6)

where I denotes an indicator function, and tc is a critical cutoff.
Ni is either 1 or 0, and the Ni for successive windows are anti-
correlated. Moreover, at most only one Nj ∈ {Ni − 25, . . . , Ni + 25}
is non-zero; the N-statistic picks out clumps of scan windows
with large triangle statistics. The last two indicator functions set
Ni = 0 when there are similar clumps in the neighborhood of
the ith window; they provide extra insurance against the pos-
sibility of detecting overlapping or delocalized nucleosomes. In
NSeq, the critical cutoff tc is by default 1.7, which we found to
be sufficiently low to detect all nucleosomes below FDR 0.01.
NSeq nominates all scan windows for which Ni = 1 as candidate
positioned nucleosomes, and then filters out candidates which
are above the specified FDR cutoff F, as described below. Both
F and tc can be toggled in the load window.

5.5. COMPUTING FALSE DISCOVERY RATES
An FDR associated with a candidate nucleosome is found by
performing the following steps:

FDR Estimation

Let S = number of simulations;

Let R = total number of reads in the
sequencing data;

Let tj = triangle statistic associated with
the jth candidate nucleosome.

Let Mj = number of candidate nucleosomes with
triangle statistic ≥ tj.
For k = 1, . . . , S:
For i = 1, . . . , R :
Sample X ∼ uniform distribution on
{−73, . . . , 73}.
Shift ith read by X to simulate delocalized
nucleosomes.

Run NSeq on the simulated data.

Set mkj = number of nucleosomes with

triangle statistic ≥ tj in the simulated
data.

Set FDR(tj) = ∑nsim
k = 1 mkj/Mj .
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