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Aims/hypothesis: Genome-wide association studies have identified over 50 new genetic
loci for type 2 diabetes (T2D). Several studies conclude that higher dietary heme iron
intake increases the risk of T2D. Therefore we assessed whether the relation between
genetic loci and T2D is modified by dietary heme iron intake.

Methods: We used Affymetrix Genome-Wide Human 6.0 array data [681,770 single
nucleotide polymorphisms (SNPs)] and dietary information collected in the Health
Professionals Follow-up Study (n = 725 cases; n = 1,273 controls) and the Nurses’ Health
Study (n = 1,081 cases; n = 1,692 controls). We assessed whether genome-wide SNPs
or iron metabolism SNPs interacted with dietary heme iron intake in relation to T2D,
testing for associations in each cohort separately and then meta-analyzing to pool the
results. Finally, we created 1,000 synthetic pathways matched to an iron metabolism
pathway on number of genes, and number of SNPs in each gene. We compared the iron
metabolic pathway SNPs with these synthetic SNP assemblies in their relation to T2D to
assess if the pathway as a whole interacts with dietary heme iron intake.

Results: Using a genomic approach, we found no significant gene–environment
interactions with dietary heme iron intake in relation to T2D at a Bonferroni corrected
genome-wide significance level of 7.33 ×10−8 (top SNP in pooled analysis: intergenic
rs10980508; p = 1.03 × 10−6). Furthermore, no SNP in the iron metabolic pathway
significantly interacted with dietary heme iron intake at a Bonferroni corrected signi-
ficance level of 2.10 × 10−4 (top SNP in pooled analysis: rs1805313; p = 1.14 × 10−3).
Finally, neither the main genetic effects (pooled empirical p by SNP = 0.41), nor gene –
dietary heme–iron interactions (pooled empirical p-value for the interactions = 0.72) were
significant for the iron metabolic pathway as a whole.

Conclusions: We found no significant interactions between dietary heme iron intake and
common SNPs in relation to T2D.
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INTRODUCTION
Type 2 diabetes (T2D) is a multifactorial condition whereby
insulin resistance and beta-cell dysfunction produce glucose
metabolism alterations, most notably hyperglycemia, resulting in
microvascular and macrovascular complications. T2D affects over
25 million individuals (greater than 8% of the U.S. adult pop-
ulation; American Diabetes Association, 2011) Discovery of the
combination of genetic and environmental factors contributing to
T2D is essential so that more targeted preventive and management
strategies can be devised.

Abbreviations: 1-df test, one degree of freedom gene–environment interaction test;
2-df test, two degree of freedom gene–environment interaction test; HH, heredi-
tary hemochromatosis; HPFS, Health Professionals Follow-Up Study; NHS, Nurses’
Health Study; QC, quality control; SNP, single nucleotide polymorphism; T2D, type
2 diabetes.

Dietary heme iron intake is the iron derived from hemoglobin,
the protein in the red blood cells found in animal foods such as red
meat, fish, and poultry. A recent meta-analysis demonstrated that
non-heme iron intake (such as iron derived from vegetables), total
iron (iron from heme and non-heme sources) or iron supplements
were not associated with increased risk of T2D (Bao et al., 2012).
However, epidemiologic studies indicate that increased total body
iron stores are associated with an increased risk of T2D (Salo-
nen et al., 1998; Jiang et al., 2004b). While the relation between
dietary heme iron intake and obesity has not been well-studied,
diets with higher heme iron intake have consistently been associ-
ated with increased risk of T2D (Jiang et al., 2004a; Lee et al., 2004;
Song et al., 2004; Rajpathak et al., 2006). Iron is a catalyst in the
formation of hydroxyl radicals, which are powerful pro-oxidants
that attack cellular membrane lipids, proteins, and nucleic acids
(Nelson, 1999). While heme iron intake is not directly linked to
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obesity, excess iron stores produced by dietary behaviors may ren-
der pancreatic beta cells particularly vulnerable to oxidative stress
because they possess a weak antioxidative stress system (Tiedge
et al., 1997).

While dietary heme iron intake plays a role in T2D, genome-
wide association studies have revealed approximately 50 genetic
loci for T2D (Visscher et al., 2012), raising the question of whether
gene environment interactions focused on dietary heme iron
intake exist in T2D.

In fact, a previous candidate gene association study demon-
strated a significant interaction between dietary iron intake and
the H63D or C282Y risk variants for HFE, the gene for hered-
itary hemochromatosis (HH), in relation to T2D risk (Qi et al.,
2005). HH is a condition where secondary diabetes mellitus is
a well-known complication that results from high iron stores in
the pancreas (Utzschneider and Kowdley, 2010). In this work,
we assessed whether the relation between dietary heme iron
intake and T2D is modified by genome-wide single nucleotide
polymorphisms (SNPs) or iron metabolic pathway SNPs.

MATERIALS AND METHODS
STUDY POPULATION
This study included participants from two longitudinal cohort
studies, the Nurses’ Health Study (NHS) and the Health Profes-
sionals Follow-up Study (HPFS; Barton et al., 1980; Rimm et al.,
1990). The HPFS and the NHS are two populations of men and
women, respectively, for whom stored blood, DNA samples, and
dietary heme iron intake data are available. The NHS began in
1976 with 121,700 female registered nurses aged 30–55, and the
HPFS started in 1986 with 51,529 male health professionals aged
40–75. Both cohorts have been followed-up biennially through
mailed questionnaires that gather data on new diseases, diet, and
other lifestyle factors.

ASCERTAINMENT OF TYPE 2 DIABETES:
For participants with a self-report of diabetes on biennial ques-
tionnaires, we mailed supplemental questionnaires inquiring
about the diagnosis and treatment of their condition, as well
as a history of ketoacidosis to corroborate the self-report and
to differentiate between type 1 diabetes mellitus and T2D. We
applied criteria established by the National Diabetes Data Group
until 1997(National Diabetes Data Group, 1979), and then used
the revised criteria of the American Diabetes Association from
1998 onward to these supplemental questionnaires (Report of the
expert committee on the diagnosis classification of diabetes melli-
tus, 1997). This approach was found to be valid for identifying T2D
as medical record review confirmed 98% of cases in a subsample
(Manson et al., 1991).

FORMATION OF DOMESTIC CASE–CONTROL GROUPS AND
GENOTYPING
We accrued 2,591 cases with T2D and 3,508 controls with com-
pleted high throughput genotyping from 1986 to 2006 in HPFS
and 1980 to 2006 in NHS. From these cases we chose participants
of European descent with dietary questionnaire responses prior
to diagnosis of T2D. Controls were not strictly matched to cases
because some subjects did not consent to have their genotyping
data posted on dbGap. Thus we chose controls with complete
dietary data that were age matched to cases. Ultimately, 1,806
cases and 2,965 controls were eligible for the study (see Table 1).
Informed consent was obtained from all participants in this study
and the institutional review board at the Harvard School of Public
Health approved the study.

We completed genotyping on the Affymetrix Genome-Wide
Human 6.0 array at the Broad Institute (Cambridge, MA, USA).
Details regarding the quality control measures employed in geno-
typing these samples have been previously published (Qi et al.,
2010). After data cleaning, 706,034 SNPs remained for analysis on
725 cases and 1,273 controls in HPFS. In NHS, a total of 704,409
SNPs remained after data cleaning and were analyzed on 1,081
cases and 1,692 controls.

DATA ANALYSIS
To assess the interaction between dietary heme iron intake and
gene variants in relation to T2D, we created the following logistic
regression models:

(1) T2D = β0 + β1 (age) + β2 (body mass index, BMI) + β3

(heme) – Environmental model
(2) T2D = β0 + β1 (SNP) + β2 (age) + β3 (BMI) + β4(heme) –

Genetic model
(3) T2D =β0 +β1 (SNP) +β2 (age) +β3 (BMI) +β4 (heme) +β5

(SNP × heme) – one-degree of freedom gene–environment
(GxE) interaction model

Except for Model 1 (which we generated in SAS version 9.3,
Cary, NC, USA), we formulated these models in each cohort sep-
arately using PLINK. Heme iron intake (mg/day), BMI (kg/m2, as
of 1986 for HPFS and 1980 for NHS) and age (years, as of 1986
for HPFS and 1980 for NHS) were treated as continuous variables.
We transformed heme to be centered on the mean value for each
cohort. SNPs were coded as 0, 1, or 2 minor alleles. We controlled
for the top three eigenvectors in NHS and the top four eigenvectors
in HPFS. We also tested models that treated the dietary heme iron
intake term as a dichotomous variable divided at the median value
in controls.

To test for interactions between dietary heme intake and SNP
genotypes in relation to T2D, we utilized a one degree of freedom

Table 1 | Characteristics of Health Professionals Follow-up Study (HPFS) and Nurses’ Health Study (NHS) cohorts.

Cohort N Mean heme, SD (mg/day) Mean body mass index, SD (kg/m2) Mean age at baseline, SD (years)

HPFSCasesControls 19987251273 1.29 (0.43)1.39 (0.43)1.23 (0.42) 25.05 (3.46)27.87 (3.82)25.01 (2.74) 54.19 (8.36)52.93 (8.16)54.91 (8.39)

NHSCasesControls 277310811692 1.36 (0.45)1.41 (0.44)1.33 (0.45) 26.08 (5.00)28.66 (4.95)24.43 (4.29) 47.47 (6.76)47.31 (6.73)47.57 (6.78)

SD, standard deviation.
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(1-df) test, which is represented as β5 of Model 3. Models 1 and 2
tested the marginal effects of dietary heme iron intake and SNPs
respectively, adjusting for age and BMI. We also performed a two
degree of freedom joint test (2-df) by comparing the fit of the null
model containing the environment exposure only (Model 1) to
the model with gene and gene–environment covariates (Model 3)
as an alternate test of the gene–environment interaction (Cornelis
et al., 2011; Manning et al., 2011). After running these models sep-
arately in NHS and HPFS, we performed tests for heterogeneity of
the cohort specific results to check for appropriateness of pooling
the data. We conducted an inverse variance-weighted fixed-effects
meta-analysis of estimates from the two cohorts using the METAL
software.1 Only SNPs with genotypes available in both cohorts
were included in the meta-analysis (N = 681,770).

Next we limited our gene–environment interaction analyses
to SNPs in the iron metabolic pathway created using the KEGG
database2 and other sources (Michal, 1999; Andrews and Schmidt,
2007; Andrews, 2008; Iron Health Alliance, 2009; William, 2009).
We identified 237 SNPs in genes coding for enzymes in this path-
way that were present on the Affymetrix 6.0 platform (Table 2). We
repeated the logistic regression analysis of Models 2 and 3 using
the iron metabolic pathway SNPs. We used a Bonferroni correc-
tion based on the number of SNPs analyzed to establish statistical
significance in genome-wide (p = 0.05/681,770 = 7.33 × 10−8)
and pathway analyses (p = 0.05/237 = 2.10 × 10−4). These esti-
mates of the correction for multiple comparisons are somewhat
liberal in that they do not account for the secondary analyses we
performed.

To evaluate whether the iron metabolic pathway as a whole
might interact with dietary heme intake, we assessed whether the
iron metabolic pathway SNP panel was enriched with variants
strongly associated with T2D. We compared the distribution of
p-values in the SNPs from the iron metabolic pathway with the
distribution of SNPs from 1,000 permuted “synthetic pathways”
generated by randomly picking SNPs available on the platform
that were not in the iron metabolic pathway. To ensure an adequate
comparison, all synthetic pathways were constructed such that
they had the same number of genes and the same number of SNPs
per gene ±10% as the heme pathway. Enrichment of SNPs with
low p-values was evaluated by comparing Cobs, the count of SNPs
with a p-value below a given significance threshold T in the heme
metabolic pathway, to Csyn, the corresponding count derived in
the synthetic pathways. The empirical p-value (for both the main
genetic effect and the gene–environment interaction term) related
to enrichment for a given T was derived as the number of times
Cobs was higher than Csyn divided by 1,000, the total number of
synthetic pathways.

RESULTS
Type 2 diabetes cases were similar in age compared to controls
in men (overall mean ± SD = 54.3 ± 8.4 years) and women
(47.5 ± 6.8 years). As expected, cases had higher BMI and higher
mean dietary heme iron intake than controls in men and women
(Table 1). Dietary heme iron intake was adversely associated

1www.sph.umich.edu/csg/abecasis/metal/
2www.genome.jp/kegg/pathway.html

with T2D [OR = 1.36 (1.17, 1.58); pooled p = 7.51 × 10−5;
Model 1]. As expected, the top SNP associated with T2D
was in TCF7L2 (rs7901695; pooled p-value =1.88 ××10−14)
(Model 2).

Using the 1-df test (Model 3), no gene–environment interac-
tion achieved genome-wide significance level. The most signif-
icant interaction with continuous dietary heme iron intake was
rs10980508 (pooled p = 1.03 × 10−6; an intergenic SNP between
muscle, skeletal, receptor tyrosine kinase (MUSK) and Sushi, von
Willebrand factor type A, EGF, and pentraxin domains-containing
1 (SVEP1; Table 3). The 2-df test revealed that SNPs in TCF7L2
had genome-wide margin association with T2D but did not reveal
new marginal gene effects of genome-wide significance; nor was
there significant interaction between TCF7L2 and dietary heme
iron intake in T2D (data not shown). When we generated mod-
els substituting dietary heme intake with red meat, processed
meat, and total meat, we found similar results with top marginal
genetic effects in TCF7L2; yet, Model 3 did not yield significant
gene–environment interactions (data not shown).

No significant iron metabolism SNP – dietary heme iron intake
interaction was detected with the 1-df test (Model 3) in relation
to T2D (top SNP rs1805313; in ALAD (delta-aminolevulinate
dehydratase); pooled p = 1.14 × 10−3; Bonferroni corrected
significance level p = 2.10 × 10−4). The 2-df test of gene and
gene–environment interactions also did not reveal any signifi-
cant interactions between dietary heme iron intake and SNPs
in the iron metabolic pathway SNP in pooled analyses (data
not shown).

Compared with synthetic pathways, the iron metabolic pathway
was not associated with T2D when we performed the analyses by
SNP (pooled empirical p by SNP = 0.41). Similar null results were
obtained when interactions with dietary heme iron intake were
considered (pooled empirical p-value for the interactions =0.72).
Interactions between various forms of dietary meat intake and the
iron metabolic pathway were also not significant.

DISCUSSION
Neither the 1-df test nor the 2-df test revealed any genome-
wide significant interactions between dietary heme iron intake
and genomic SNPs in T2D. Furthermore, the relation between an
iron metabolic pathway SNP panel and T2D was not modified by
dietary heme iron intake. Finally the iron metabolic pathway was
not enriched with SNPs related to T2D.

There could be several possible reasons for the null results
reported here. First, despite its large size (n = 4,771) our study
could be underpowered to find modest interaction terms. In fact,
only in a log additive model would we achieve 80% power to detect
a genome-wide environmental interaction effect of 1.8 (assumes
minor allele frequency = 0.4; genetic relative risk = 1.2, and rela-
tive risk of the highest tertile of dietary heme iron intake = 1.3).
Nonetheless we had ∼80% power to discover an interaction effect
of 1.5 between iron metabolic SNPs and dietary heme iron intake
in relation to T2D using similar assumptions in a dominant
inheritance model. Second, power could be compromised due
to inherent error in measuring dietary heme iron intake. Third,
self-reported iron intake, while collected using a validated food
frequency questionnaire, could be prone to recall bias. Finally, the
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Table 2 | Genes and single nucleotide polymorphisms (SNPs) in the heme iron metabolic pathway on the Affymetrix 6.0 array that passed

quality control.

Gene Chromosome SNPs

ACO1 24 rs1028932, rs10435797, rs10813816, rs13293491, rs10813818, rs2026739, rs7032871, rs10738885, rs16918276, rs3780473,

rs3780474, rs4495514, rs13302577, rs7866419, rs7022554, rs4879583, rs10970961, rs7033149, rs10970972, rs10970974,

rs7019520, rs13292540, rs13293491, rs3780474

ALAD 7 rs8177800, rs8177804, rs818684, rs2761016, rs8177812, rs1805313, rs1805316

ALAS1 6 rs352166, rs352167, rs352169, rs11712164, rs352170, rs9813468

BLVRA 8 rs10234057, rs849161, rs699510, rs849162, rs849165, rs10233867, rs10268054, rs1317916

BLVRB 1 rs2613843

CP 17 rs17787768, rs3816893, rs772908, rs16861598, rs16861634, rs16861590, rs4974389, rs701755, rs7652826, rs13072552,

rs16861577, rs13075921, rs9853335, rs1879169, rs773050, rs16861579, rs11924961

CPOX 2 rs3804622, rs1675534

FECH 20 rs1788002, rs1790619, rs492274, rs317806, rs8094527, rs533952, rs12969847, rs1041951, rs7243988, rs317807,

rs12454808, rs2269221, rs2269222, rs8099511, rs1736439, rs8092783, rs2272783, rs8095390, rs12968109, rs7242288

FTH1 2 rs5904861, rs195154

HAMP 1 rs8101606

HFE 3 rs1800562, rs2071303, rs2858996

HFE2 2 rs10218795, rs7540883

HMBS 7 rs1799993, rs1784304, rs1006195, rs494048, rs1144041, rs17075, rs549893

HMOX1 7 rs9306300, rs8140669, rs2071749, rs8140370, rs2285112, rs5995097, rs2269533

HMOX2 16 rs4786500, rs2160567, rs1362626, rs9302781, rs11076834, rs3789038, rs4786501, rs2270366, rs10500325, rs8063084,

rs4785969, rs9929475, rs7192051, rs9936357, rs8048958, rs8055559

IL6 7 rs2069837, rs2066992, rs2069835, rs1548216, rs2069842, rs2069840, rs1474347

IL6R 16 rs11265618, rs4845626, rs4537545, rs10752641, rs4240872, rs11265610, rs6694817, rs6427658, rs4845618, rs10159236,

rs6689393, rs12060250, rs4129267, rs8192282, rs4537545, rs10752641

IREB2 18 rs13180, rs2568491, rs9920411, rs924840, rs17483929, rs16969899, rs2656071, rs16969858, rs17483721, rs905742,

rs8043227, rs10519198, rs7181486, rs2568483, rs2656073, rs8041628, rs11636431, rs2568492

SLC11A2 6 rs17125212, rs2269683, rs224572, rs224573, rs224568, rs224589

SLC25A37 33 rs7826247, rs2872716, rs17089392, rs2942194, rs17089394, rs7833754, rs7834536, rs17089335, rs11778179, rs2928672,

rs752778, rs7846025, rs3736032, rs7834883, rs7830129, rs2928665, rs7816824, rs10503725, rs17698981, rs2942204,

rs2978471, rs2978475, rs17089332, rs11781222, rs7015818, rs12548753, rs7829094, rs13266950, rs17089358, rs2004644,

rs4871881, rs4871880, rs7834536

SLC40A1 10 rs4667287, rs2304704, rs1439816, rs930373, rs1123110, rs3792079, rs11568350, rs13431938, rs1123109, rs13404407

SMAD4 5 rs3764465, rs10502913, rs16952790, rs12457540, rs948588

STAT3 16 rs3809758, rs2306580, rs4796646, rs17880900, rs8069645, rs3785898, rs7215104, rs744166, rs4796644, rs8078731,

rs8074524, rs6503698, rs1026916, rs7211777, rs3816769, rs9912773

STEAP3 30 rs838075, rs708675, rs3769659, rs838074, rs12711924, rs41527945, rs7596511, rs838083, rs708672, rs838072, rs708670,

rs865688, rs838095, rs12465926, rs11888609, rs838103, rs12990907, rs10182241, rs838090, rs1867856, rs10188946,

rs838092, rs4592854, rs12104548, rs838079, rs6542517, rs838102, rs1867749, rs13401854, rs6720040

TF 37 rs4854759, rs8177201, rs1358022, rs8177203, rs8177306, rs1049296, rs2715627, rs1799852, rs7638018, rs4241357,

rs7633232, rs6778321, rs1800277, rs8177241, rs8177232, rs2715631, rs8177277, rs8177235, rs8177220, rs8177238,

rs8177233, rs2715632, rs8177272, rs12493168, rs2718796, rs1115219, rs8177253, rs8177318, rs8177224, rs7628133,

rs8177248, rs1525892, rs8177262, rs7645538, rs8177191, rs8177215, rs3811657

TFR2 1 rs4521695

TFRC 6 rs3933, rs3804141, rs3804142, rs4927866, rs480760, rs12330245

UROD 1 rs13948

UROS 12 rs10510149, rs1571278, rs2281956, rs10794025, rs3814624, rs11244653, rs10901450, rs2027515, rs3740179, rs10751533,

rs2149019, rs12251135
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Table 3 |Top 10 p-values from genome-wide SNP–heme interactions predicting type 2 diabetes adjusting for age, body mass index, dietary

heme iron intake, and eigenvectors using a one degree of freedom test from meta-analysis of the Health Professionals Follow-up Study and

Nurses’ Health Study.a

Chromo-

some

SNP Beta,

HPFSb

Beta,

NHSb

p-Value,

HPFSb

p-Value,

NHSb

p-Value,

pooledb,c

Associated gene

9 rs10980508 0.96 0.64 1.81 × 10−4 1.23 × 10−3 1.03 × 10−6 Upstream of MUSK, downstream of SVEP1

9 rs12378245 0.96 0.61 1.77 × 10−4 1.76 × 10−3 1.51 × 10−6 Upstream of MUSK, downstream of SVEP1

9 rs10817049 0.92 0.61 3.09 × 10−4 1.61 × 10−3 2.16 × 10−6 Upstream of MUSK, downstream of SVEP1

9 rs7048110 0.96 0.58 1.80 × 10−4 2.75 × 10−3 2.53 × 10−6 Upstream of MUSK, downstream of SVEP1

9 rs10817052 0.90 0.60 4.43 × 10−4 1.93 × 10−3 3.53 × 10−6 Upstream of MUSK, downstream of SVEP1

16 rs17177078 1.48 0.83 1.50 × 10−4 5.66 × 10−3 5.06 × 10−6 Intron in TNRC6A

9 rs10980495 0.91 0.57 3.60 × 10−4 3.33 × 10−3 5.49 × 10−6 Upstream of MUSK, downstream of SVEP1

7 rs1525739 −0.58 −0.44 7.85 × 10−4 2.11 × 10−3 6.26 × 10−6 Downstream of AGR3, upstream of AGR2

9 rs10448267 0.94 0.54 2.58 × 10−4 4.95 × 10−3 6.58 × 10−6 Upstream of MUSK, downstream of SVEP1

22 rs470089 −0.59 −0.55 2.90 × 10−3 9.43 × 10−4 8.64 × 10−6 Intron in SULT4A1

aModel controls for BMI (kg/m2) and age (years), both as continuous variables, continuous mg dietary heme intake per day, centered on the mean heme value for
each cohort and eigenvectors 1–3 for NHS or eigenvectors 1–4 for HPFS. SNPs are coded as 0, 1, or 2 minor alleles.
bBetas and p-values are from the β5 (gene variant × dietary heme iron intake) term in Model 3: T2D = β1 (BMI) + β2 (age) + β3 (dietary heme iron intake) + β4 (gene
variant) + β5 (gene variant × dietary heme iron intake) + eigenvectors.
c P for heterogeneity is >0.05 (lowest p-value is 0.4).
HPFS, Health Professionals Follow-up Study; NHS, Nurses’ Health Study; MUSK, muscle, skeletal, receptor tyrosine kinase; SVEP1, Sushi, von Willebrand factor
type A, EGF, and pentraxin domains-containing 1; TNRC6A, trinucleotide repeat-containing gene 6A; AGR3, anterior gradient 3; AGR2, anterior gradient 2; SULT4A1,
sulfotransferase family 4A, member 1.

reason why a higher dietary heme iron dietary intake increases the
risk of T2D could be solely related to environmental influences
(Lee et al., 2004).

A prior study, using a candidate approach, did find a marginal
interaction between HFE and dietary heme iron intake in T2D
(p = 0.03; Qi et al., 2005). While we did not discover any new
gene-dietary heme iron interactions, more studies using serum

biomarkers as surrogates of dietary heme iron intake might point
to new gene–iron intake interactions in T2D.
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