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Background: Non-synonymous single-nucleotide polymorphisms (nsSNPs) within the
coding regions of genes causing amino acid substitutions (AASs) may have a large impact
on protein function. The possibilities to identify nsSNPs across genomes have increased
notably with the advent of next-generation sequencing technologies.Thus, there is a strong
need for efficient bioinformatics tools to predict the functional effect of AASs. Such tools
can be used to identify the most promising candidate mutations for further experimental
validation.

Results: Here we present prediction of AAS effects (PASE), a novel method that predicts the
effect of an AASs based on physicochemical property changes. Evaluation of PASE, using a
few AASs of known phenotypic effects and 3338 human AASs, for which functional effects
have previously been scored with the widely used SIFT and PolyPhen tools, show that PASE
is a useful method for functional prediction of AASs. We also show that the predictions can
be further improved by combining PASE with information about evolutionary conservation.

Conclusion: PASE is a novel algorithm for predicting functional effects of AASs, which can
be used for pinpointing the most interesting candidate mutations. PASE predictions are
based on changes in seven physicochemical properties and can improve predictions from
many other available tools, which are based on evolutionary conservation. Using available
experimental data and predictions from the already existing tools, we demonstrate that
PASE is a useful method for predicting functional effects of AASs, even when a limited
number of query sequence homologs/orthologs are available.
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INTRODUCTION
A non-synonymous single-nucleotide polymorphism (nsSNP) is
a single-nucleotide change in a protein-coding region of a gene
that causes an amino acid substitution (AAS) in the resulting pro-
tein. The importance of nsSNPs has been demonstrated in many
studies (Risch and Merikangas, 1996; Collins et al., 1997; Chasman
and Adams, 2001), and in databases such as the Online Mendelian
Inheritance in Man (OMIM), AASs represent most of the genetic
variants known to cause disease in human (Hamosh et al., 2005).
An increasing use of next-generation sequencing (NGS) tech-
nologies to re-sequence genomes has resulted in an accelerated
identification of nsSNPs.

As the functional effects of most AASs are experimentally unex-
plored, there is a need for development of tools to efficiently
predict substitution effects on protein structure and function.
Currently, several methods exist that are based on the degree of
evolutionary conservation as an indicator of the functional effect
of an AAS. Widely used software tools are, for example, SIFT (Ng
and Henikoff,2002,2003) and PolyPhen (Stitziel et al.,2003,2004).

Abbreviations: AA, amino acid; AAS, amino acid substitution; MDS, multiple
dimensional scaling; MSA, multiple sequence alignment; MSAC, MSA conserva-
tion; nsSNP, non-synonymous single-nucleotide polymorphism; PASE, prediction
of amino acid substitution effects; PRKAG3, protein kinase AMP-activated gamma
3; SNP, single-nucleotide polymorphism.

SIFT is based on sequence homology and position-specific scoring
matrices with Dirichlet priors, whereas PolyPhen uses sequence
conservation and ternary structure to model AAS sites combined
with SWISS-PROT annotation (Ng and Henikoff, 2006). How-
ever, when the degree of sequence conservation in distant related
species is difficult to assess due to a limited amount of ortholo-
gous sequences, alternative information such as physicochemical
properties of amino acid (AA) may be applied for functional pre-
diction of AAS. Here we present prediction of AAS effects (PASE),
a novel method for efficient computational prediction and visual-
ization of the effect of nsSNPs on the final protein. The prediction
from PASE is based on the selected seven physicochemical prop-
erties (Table 1). The information obtained from PASE can also be
combined with knowledge about sequence conservation to further
improve functional predictions. Several examples are provided to
illustrate the predictive ability of PASE both independently and
combined with conservation information.

IMPLEMENTATION
The PASE algorithm uses physicochemical properties of AAs and
sequence conservation to estimate the effect of each AAS on the
protein (Figure 1). To calculate the AAS-induced change in the
physicochemical properties, we imported seven physicochemical
properties from the AAindex database previously selected by
(Rudnicki and Komorowski (2004); Table 1), which gives every
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Table 1 | Physicochemical properties of amino acids as described in

the AAindex (Kawashima et al., 1999, 2008).

Descriptions Terms from AAindex

Transfer of free energy from octanol to water RADA880102

Normalized van der Waals volume FAUJ880103

Isoelectric point ZIMJ680104

Polarity GRAR740102

Normalized frequency of turn CRAJ730103

Normalized frequency of alpha-helix BURA740101

Free energy of solution in water CHAM820102

AA a unique profile. To illustrate how PASE can be combined with
information about sequence conservation, we calculate a simple
conservation score from a given protein sequence based on the
alignment of homologous and orthologous sequences.

PHYSICOCHEMICAL PROPERTY (PASE) SCORE
Each AA has a characteristic profile of physicochemical prop-
erties. Therefore, any AAS may influence the final protein
structure by altering its physicochemical properties. PASE applies
Euclidean distance formula to compute the physicochemical prop-
erty changes of AAS between the original and the substituting AA:

P = 2

√∑i=1

7

(
aai

o − aai
s

)2
, (1)

where aai
o and aai

s indicate one of the seven physicochemical
properties of original AA and substituted AA, respectively.

The seven physicochemical properties: (1) transfer of free
energy from octanol to water, (2) normalized van der Waals
volume, (3) isoelectric point, (4) polarity, (5) normalized fre-
quency of turn, (6) normalized frequency of alpha-helix, and
(7) free energy of solution in water used by PASE, have been
selected from the AAindex database of protein indices (Kawashima
et al., 1999, 2008) using an algorithm described by Rudnicki and
Komorowski (2004). Briefly, the properties were selected to reflect
the major biologically meaningful features of protein sequences:
(1) hydrophobicity, (2) polarity, (3) size, (4) tendency to form
particular secondary structure, and (5) electrostatic properties of
the AA. At least one property has been selected from each of these
broad groups and resulted in a seven tuple of properties. Due to
the low pairwise correlation within the selected properties, the
ability to uniquely identify each AA is preserved (Kierczak et al.,
2009; Figure 2). In other words, the selected properties span a
nearly orthogonal 7D coordinates space in which every AA is a
unique point (Figure 3).

MSA CONSERVATION SCORE
Highly conserved sequences often indicate a functional impor-
tance of the AA and substitutions tend to be deleterious, whereas
those within areas of low conservation are often tolerated. We cal-
culate a simple sequence conservation score (multiple sequence
alignment conservation, MSAC), by searching for functionally
related protein sequences by using NCBI-blastp (Thompson et al.,

FIGURE 1 |The algorithm of PASE.

1994) and generating an alignment with multiple homologous
sequences with an arbitrary threshold of 0.01, where the redun-
dant homologous sequences are filtered out in order to retrieve
only one hit per species. ClustalW (Larkin et al., 2007) is used
to make a multiple sequence alignment (MSA) to score con-
servation at each site. To accomplish it, we use the following
formula:

C = r(1 − 0.95N ), (2)

where N is the number of assessed sequences of MSA, and r is the
proportion of the AAs of interest in MSA. The formula (1 − 0.95N ;
Pei and Grishin, 2001) indicates the probability of 20 different
AAs in a position for N random equal frequent AA sequences.
For example, when N = 1, the probability of each AA in a posi-
tion is 0.05, which is consistent with 20 AAs with frequency 1/20
each.

COMBINED PASEC SCORE
The PASE score can be combined with information about sequence
conservation by creating a combined score – PASEC. PASEC is
computed as S = PC, where the score of physicochemical proper-
ties changes is multiplied by the conservation score. The PASEC
score ranges from 0 to 1, where 0 is neutral, and higher ratio indi-
cate stronger predicted effects on the protein. We have here for
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FIGURE 2 | Pairwise correlations between the selected

physicochemical amino acid properties. The actual correlation
coefficients are presented in the upper triangle together with correlation
significance symbols: ***p < 0.001, **p < 0.01, *p < 0.05, ’p < 0.1.
Lower triangle shows smoothed trend lines together with confidence 1 SD
ellipses. The vast majority of the selected properties show low pairwise
correlation thus spanning a close-to-orthogonal coordinates frame in the
physicochemical property space. As expected, there is a significant
correlation between polarity-and transfer of free energy from octanol to
water as the latter is to a large degree amino acid polarity-dependent.
Similarly, normalized frequency of alpha-helix and normalized frequency of
turn, the two secondary structure-related properties show significant
pairwise correlation. This partial redundancy is the result of the
physicochemical property selection procedure where the initial set of
available AAindex descriptors has been narrowed down to only the
easy-to-interpret properties. Thus, the selected seven properties are a
reasonable trade-off between minimizing the number of dimensions
necessary to preserve amino acid discernibility and the ease of
interpretation. For a more detailed discussion, see Rudnicki and
Komorowski (2004) and Kierczak et al. (2009).

illustration combined PASE with a simple MSAC score, but other
and more advanced measures of conservation can be used in the
same manner.

RESULTS AND DISCUSSION
To explore the predictive ability of the new method, we have
studied two protein sequences, with known AASs that have
well-characterized phenotypic effects.

FIGURE 3 | An MDS projection of the AA’s property space spanned by

the seven selected physicochemical properties. The distance between
any pair of letters corresponds to the physicochemical similarity between
respective amino acids. The figure shows the ability to discern any pair of
amino acids using selected physicochemical properties. The more similar
amino acids, the smaller the distance between them, e.g., Ile (I) and Leu
(L). Likewise, amino acids with similar physicochemical properties like basic
Lys (K), Arg (R), and His (H) form distinct groups.

nsSNPs IN THE HUMAN Cx50 GENE
Gap junction proteins, also called connexins, belong to a fam-
ily of channel-forming structure proteins in contacting plasma
membranes (Dbouk et al., 2009). Recently, two consecutive AASs
(W45S and G46V) in the human connexin 50 (Cx50) gene have
been associated with cataracts. It has been shown that these two
mutations cause the disease through different mechanism (Tong
et al., 2011).

As shown in Table 2, both W45S and G46V show large
properties changes (PASE scores 0.80 and 0.56) as well as high
conservation scores (MSAC scores for both of 0.93). The com-
bined PASEC scores are 0.74 and 0.52 for W45S and G46V,
respectively, indicating considerable expected effects on protein
function. This is consistent with the disease association of both
these AASs (Tong et al., 2011) as well as with predictions made
using the SIFT and PolyPhen tools, although the PolyPhen pre-
diction were less decisive regarding the effect of the mutations
(Table 2).

Table 2 | Functional prediction of AASs in Cx50 and PRKAG3.

Genes AAS MSAC score PASE physicochemical score PASEC score SIFT PolyPhen

Cx50 W45S 0.93 0.8 0.74 Deleterious Possibly damaging

G46V 0.93 0.56 0.52 Deleterious Possibly damaging

PRKAG3 I199V 0.93 0.14 0.12 Tolerated Benign

R200Q 0.85 0.54 0.5 Deleterious Probably damaging
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Table 3 | Functional predictions of AASs in Human Chromosome 22.

Name of tools Classifications Number of AAS MSAC score PASE physicochemical score PASEC scores

SIFT Tolerated 1987 0.47 0.39 0.18

Deleterious 1351 0.6 0.51 0.3

PolyPhen Benign 1637 0.44 0.37 0.16

Possibly damaging 539 0.56 0.43 0.24

Probably damaging 1162 0.63 0.53 0.33

nsSNPs IN THE PORCINE PRKAG3 GENE
The protein kinase AMP-activated gamma 3 (PRKAG3) gene
encodes the regulatory γ subunit of adenosine monophosphate-
activated protein kinase (AMPK), which is prevalently expressed
in white skeletal muscle fibers (Mahlapuu et al., 2004). The dom-
inant RN mutation that causes excess glycogen content in pig
skeletal muscle is caused by the R200Q AAS in AMPKγ3 of pure-
bred Hampshire pigs (Enfält et al., 1997; Milan et al., 2000). A
substitution of the adjacent AA, I199V accounts for smaller
increase in the muscle glycogen content than the R200Q substitu-
tion, but also co-participates with R200Q in the process (Ciobanu
et al., 2001).

Exploration of the conservation and changes in physicochem-
ical property of the AASs in the porcine PRKAG3 revealed
large physicochemical property changes for R200Q (PASE score
0.54) and smaller for I119V (PASE score 0.14) as well as high
degrees of conservation at both 199th (MSAC score 0.85) and
200th (MSAC score 0.93) sites (see Table 2). The combined
PASEC functional prediction scores are 0.50 and 0.12, respec-
tively, thus consistent with the observed phenotypic effects and
with the SIFT and PolyPhen predictions for these mutations (see
Table 2).

COMPARISON OF FUNCTIONAL PREDICTION SCORES FOR PASE, PASEC,
SIFT, AND PolyPhen
To further evaluate the PASE and PASEC predictions, we used 3338
AASs in the Ensembl database representing nsSNPs on human

Table 4 | Proportion of AAS’s with deleterious/damaging predictions

from the SIFT/PolyPhen algorithm at different PASEC scores.

PASEC score range SIFT (%) PolyPhen (%)

0.8 100 100

0.7 100 95

0.6 86.50 91

0.5 80.70 86.60

0.4 67.10 71.60

0.3 61.40 62.70

0.2 55.70 53.30

0.1 47 42.10

0 40 34.80

chromosome 22 with functional effects previously predicted with
the widely used SIFT and PolyPhen tools. For AASs predicted with
SIFT as “tolerated” (1987 AASs) or with PolyPhen as “benign”
(1637 AASs), PASE/PASEC showed average scores of X/0.18 and
Y/0.16, respectively, whereas AASs predicted with SIFT as “dele-
terious” (1351 AASs) or with PolyPhen as “probably damaging”
(1162 AASs) showed average scores of Z/0.3 and A/0.33 (Table 3).
The distributions of PASE, MSAC, and PASEC scores are shown
in Figures 4A–C, respectively.

The PASE is novel in its approach to utilize seven physicochem-
ical properties of AA’s to predict the effect of an AAS. In Figure 4,
we illustrate the overlap between the scores obtained with PASE,
MSAC, and PASEC and those obtained using the conservation-
based scores from SIFT and PolyPhen. Figure 4A shows that the
PASE score provides novel predictions regarding which AAS are
likely to have a functional effect in that both AAS that have high
and low SIFT and PolyPhen scores have high PASE scores. Inter-
estingly, however, there is an overrepresentation of AASs predicted
to be deleterious/damaging among those with high PASE scores,
which indicates that combining information on conservation and
physicochemical properties might help to further refine the pre-
dictions of function of AAS. Figure 4B shows the overlap between
the simple conservation score MSAC and SIFT/PolyPhen. The
MSAC score overlaps to a large extent with the predictions of
deleterious/damaging AAS from SIFT/PolyPhen, in that such AAS
have higher MSAC scores, but shows little overlap for the tol-
erated/benign AAS. Figure 4C shows that the combined PASEC
score, combines the information about the physiochemical prop-
erties in the PASE score and the conservation information in
the MSAC score to further refine the predictions. As shown in
Table 4, at PASEC scores above 0.8, all of these are predicted by
SIFT/PolyPhen to be damaging/deleterious and at a score of 0.5
this has decreased to 81/87%. Most of the AASs with high PASEC
scores are thus defined as deleterious/damaging in SIFT/PolyPhen.
There are, however, also a few AAS defined as tolerated/benign
with high PASEC scores and a large number of AAS defined
as deleterious/damaging with low PASEC scores. This probably
reflects that at poorly conserved locations AASs often do not affect
the protein function significantly, and even large physicochemical
property changes are tolerated and more easily become abundant.
Conversely, at highly conserved locations the protein function is
very sensitive even for AASs with small physicochemical property
changes. Combining conservation and physicochemical property
scores thus identifies a smaller number of functional candidates
that simultaneously fulfills both criteria and thus are the most
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FIGURE 4 |The distribution of (A) PASE, (B) MSAC, and (C) PASEC scores within different SIFT and PolyPhen prediction classes. Blue solid and dashed
lines in panel (C) correspond to the probability of deleterious/damaging prediction from AAS’s PASEC scores.

interesting candidates for further characterization. We have here
used MSAC as a simple score for measuring sequence conservation
and compared the overlap to results from other methods based on
sequence conservation. It should be noted that MSAC only serves
an illustrative purpose in our description of PASEC and could
also be exchanged by sequence conservation scores from SIFT or
PolyPhen when applied to real data.

Our future research will focus on tailoring PASEC to spe-
cific protein classes (e.g., trans-membrane proteins) and protein
families. We are planning to use statistical learning methods to take
into account the specific microenvironment of the substituted AA
and to infer more general, interpretable rules describing the degree
of AAS impact on protein function. To this end we need to collect
larger datasets of carefully curated examples of different classes of

AAS and to integrate information available from several sources,
like databases, structure prediction servers, etc.

CONCLUSION
Functional prediction of AASs is highly important in genetic stud-
ies. Functional importance of an AA is often reflected by a high
degree of evolutionary conservation. This has earlier been used for
functional prediction of AAS in, e.g., the SIFT and PolyPhen algo-
rithm predictions. Here, we propose a new method, PASE, which
predicts the functional effect of an AAS based on the physicochem-
ical properties of the alternative AAs. This allows prediction of the
potential effect of an AAS in the protein structure and its inter-
action with other residues. PASE complements already available
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tools by allowing such functional prediction of an AAS’s effect
in situations where information on evolutionary conservation is
not available or applicable. As the physiochemical property of
an AA and its degree of evolutionary conservation are indepen-
dent, these two sources of information should if combined be able
to better predict the potential functional importance of an AAS.
Here, we also show the usefulness of this combined approach
and its potential to refine predictions made by the approaches
independently.

AVAILABILITY AND REQUIREMENTS
Project homepage: http://www.computationalgenetics.se/
wp-content/uploads/software/PASE/pase.tar

Project name: PASE
Operating system(s): Linux and Unix
Programing language: Python and Biopython
Other requirements: Python 2.6 or higher, Biopython 1.58 or

higher and ClustalW (1.82) or higher

License: GNU
Any restrictions to use by non-academics: none
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