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Advances in genome sequencing are providing unprecedented resolution of rare and private
variants. However, methods which assess the effect of these variants have relied pre-
dominantly on information within coding sequences. Assessing their impact in non-coding
sequences remains a significant contemporary challenge. In this review, we highlight the
role of regulatory variation as causative agents and modifiers of monogenic disorders. We
further discuss how advances in functional genomics are now providing new opportunity
to assess the impact of rare non-coding variants and their role in disease.
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INTRODUCTION
In the next few years, hundreds of thousands of genomes will be
sequenced, exposing an unprecedented wealth of genetic informa-
tion. As each new genetic variant offers a potential window into
an individual’s past, present, and future by providing insight into
ancestry, traits, and disease risk, a major challenge will be to con-
nect genetic variants to their functional consequences. Essential to
addressing this challenge are high-throughput assays which con-
nect genetic variants to molecular and cellular phenotypes. For
instance, by assessing the association of genetic variants with the
expression level of nearby genes (Box 1), a broad spectrum of
causal variants, while potentially still unobserved, can be local-
ized and their functional impact ascertained. At the moment, this
experimental setting provides us with the most comprehensive
system to identify regulatory variants and model the functional
spectrum of human variation. Furthermore, genome-wide associ-
ation studies (GWAS) have increasingly utilized such information
to connect disease-predisposing variants to genes (Charlesworth
et al., 2009; Montgomery and Dermitzakis, 2011). The basic
principle behind such analyses has been to identify if a disease-
predisposing variant is also associated to the expression level of
a nearby gene – thereby providing a mechanistic hypothesis for
disease etiology. In this area, multiple methods have been devel-
oped to assess the relationship between genetic effects on gene
expression and disease by assessing the sharing of association
(Zhu et al., 2007; Emilsson et al., 2008; Schadt et al., 2008; Nica
et al., 2010). However, methods based on association do not well
address the functional impact of rare, private, and de novo variants
that dominate the site frequency spectrum in human popula-
tions. The extent of which was highlighted by two recent exome-
sequencing that uncovered as much as 95% of protein-coding
variation is rare (MAF ≤ 5%) and among these rare variants are

the majority of sites predicted to be deleterious (Nelson et al.,
2012; Tennessen et al., 2012). However, both studies focused on
protein-coding variants where the genetic code greatly facilitates
prediction of functional impact and not in the non-coding regions
of the genome where considerable trait-predisposing variation is
expected to reside (Hindorff et al., 2009). A considerable future
challenge will be to determine the functional impact of a del-
uge of rare non-coding variants – as either causative agents or
modifiers of traits. In this review, we first discuss the impact of
non-coding variants as causal and modifying agents of monogenic
disorders and then describe how advances in functional genomics
can facilitate discovery and interpretation of rare, private, and de
novo variants underlying a complete spectrum of human traits
and diseases.

IMPORTANCE AND CHALLENGES IN IDENTIFYING
NON-CODING VARIANTS
Advances in characterizing genome function have highlighted that,
per base, non-coding sequence is at least as important for bio-
chemical function as coding sequence (Birney et al., 2007; Ward
and Kellis, 2012a). However, there is marked difference in the
number of disease-predisposing variants that have been identi-
fied in the coding versus non-coding genome; for instance, the
Human Gene Mutation database lists only a few percent of pre-
viously identified variants as being non-coding and regulatory
(Stenson et al., 2009). This difference is attributable to how each
class of variant is identified. For coding variants, the genetic code
and data regarding protein structure and function facilitate pre-
dictions of causality. One can immediately identify if a variant
changes an amino acid, creates a premature stop codon, alters
hydrophobicity, disrupts a canonical splice junction, or impacts
the structure of a protein domain. Furthermore, historically high
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Box 1 Statistical techniques for detecting genetic effects on gene expression

Expression quantitative trait loci (eQTL) mapping requires three important steps:

Data normalization:
Normalization is critical to mitigating the influence of technical artifacts or “batch effects” (Johnson et al., 2007; Williams et al., 2007)
which can lead to spurious eQTL findings (Akey et al., 2007; Breitling et al., 2008). For microarray data, there are numerous normalization
techniques to cope with batch effects (Irizarry et al., 2003; Johnson et al., 2007; Leek and Storey, 2007; Kang et al., 2008). For RNA-seq
data, read counts can be transformed to RPKM (Reads Per Kilobase of transcript per Million mapped reads) (Mortazavi et al., 2008) or
FPKM (Fragments Per Kilobase of transcript per Million mapped reads) (Trapnell et al., 2012) to account for differences in quantification due
to transcript length and sequencing library depth. However, the utility of this approach is largely beneficial when comparing quantification
between genes. As eQTL studies compare gene or transcript expression across samples, variability due to differences in transcript length
can generally be ignored. However, in addition to library depth, the influence of highly expressed genes across samples can be profound – for
instance, given equal numbers of reads sequenced, if a single gene (or small subset of genes) accounts for 10% of all reads in one sample
and 5% of the reads in another, many other, unrelated genes may appear differentially expressed between these samples because reads
not sequenced for one gene will yield extra reads sequenced for other genes. Such effects can be mitigated directly by inspection and
regression or by using PCA-based normalization methods to correct out hidden factors (Pickrell et al., 2010). However, such normalization
may be effective for dealing with global sequencing biases, individual genes can still be significantly influenced by read mapping errors
(Marioni et al., 2008). Fundamental to addressing this issue are specific and sensitive read mapping algorithms for RNA-Seq data and an
appropriate selection of an objective function for evaluating their performance in eQTL discovery. Here, number of eQTL discoveries is
not sufficient as mappers which are highly influenced by variation may be enriched in false discoveries – advanced approaches account for
alternative mappings and/or gain support from sequencing data across the expressed loci.

Association and linkage analysis:
In the presence of genetic marker data, different statistical tests are used to identify eQTL within populations and/or families (approaches
for dealing with admixed or multi-population study designs are not covered in this review). Generally, the expression trait is assumed to be
additive where each allele contributes equivalently. For population data, the most commonly used approach is a single-marker to single-trait
linear or non-parametric regression; this analysis can be performed by statistical packages like R or statistical genetics tools such as PLINK
(Purcell et al., 2007). For family data, linkage approaches based on inferring identity-by-descent (IBD) or linkage maps among family members
are applied. Such a test can be conducted among all sib-pairs (Haseman and Elston, 1972) or all available family members (Amos, 1994).
Many linkage analysis tools such as MERLIN (Abecasis et al., 2002) and SOLAR (Almasy and Blangero, 1998) can perform such analysis. For
mixed designs, where data are composed of many nuclear families, transmission disequilibrium tests can be applied using tools like QTDT
(Abecasis et al., 2000). However, each study design and associated statistical test has different advantages and limitations – association
tests are powerful for detecting and localizing eQTL for common variants whereas linkage analyses cannot well localize variants but can
identify intervals harboring rare eQTL.

Despite the availability of tools and simple statistical methods that support eQTL discovery, there remain important caveats in their uti-
lization. For instance, considerable statistical power advantages can be achieved by restricting tests to variants nearby a gene (also termed
cis-eQTL discovery). However, the size of the selected interval and the number of genes tested can be as influential as differences in sample
size and number of variants tested. Complementary approaches have aimed to increase statistical power by integrating information from
genes sharing regulatory pathways (Schadt et al., 2003). Here, the principal is that bonafide variant effects will propagate to downstream
targets. For genome-wide (or trans-eQTL) analyses, many of the same limitations as present in GWA studies are equally applicable –
common covariates such as ethnicity, relatedness, age and sex are also confounding factors in eQTL studies and should be appropriately
accounted.

Though eQTL mapping is methodologically similar to GWA or family based linkage analysis, it can also be computationally more chal-
lenging when huge number of genes and variants need to be tested. Some newly developed computational tools are specifically optimized
for fast eQTL mapping such as Matrix eQTL (Shabalin, 2012) and fastMap (Gatti et al., 2009).

Multiple testing correction:
Given the large numbers of tests and a typically small sample size, multiple testing correction is critical for eQTL mapping. Commonly
used methods are Bonferroni correction, FDR/q-value (Hochberg and Benjamini, 1995; Storey and Tibshirani, 2003) and permutation-base
p-value adjustment (Churchill and Doerge, 1994). A general practice of permutation is to generate a p-value distribution by randomly shuffling
phenotype labels (typical for adjusting cis p-value) or by generating synthetic genotypes and phenotypes (typical for adjusting trans p-value).
Using a permutation approach, a false-discovery rate can be estimated.

costs of sequencing have made it reasonable to focus exclusively
on variant detection in coding sequences where gene structure is
known. In contrast, for regulatory variants the size of the tar-
get region to survey is poorly defined. For example, it is not
clear whether to screen a single kilobase from the transcrip-
tion start site or 100 kb or whether to also include intronic and
downstream sequence of a gene or even whether to assume the

effect is not cis-acting at all and is located elsewhere in the genome.
Complicating matters further is that given our incomplete under-
standing of regulatory architecture, even if a segregating non-
coding variant is found, it has generally been difficult without
further molecular biology-based experimentation to differentiate
it from other variants and demonstrate its impact (Montgomery,
2009).
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RARE NON-CODING VARIANTS UNDERLYING DISEASE
Despite the challenges of detecting causal regulatory variants,
several studies have implicated them as the principal drivers of
monogenic disorders. One of the earliest examples of a regulatory
variant associated with a monogenic disorder was discovered in
an individual affected with β-thalassemia (Poncz et al., 1982). The
affected individual was identified to have an A–C transversion in a
TATA-box element. Since this discovery, multiple regulatory vari-
ants associated with thalassemia have been described (Giardine
et al., 2007). However, it is frequently the case that segregating non-
coding variants lack differentiating genomic annotation and have
required functional assays to support their effect. Such assays have
generally included a combination of protein-expression, compe-
tition, electrophoretic mobility shift, and reporter gene assays.
While such techniques are labor intensive, they have been critical
to furthering the identification of non-coding variants underlying
monogenic disorders. For instance, in Bernard–Soulier syndrome,
an affected individual was identified with a G–C transversion
within a predicted GATA-box motif (Ludlow et al., 1996). Sub-
sequent functional assays supported the role of this variant by
demonstrating in vitro an 84% reduction in promoter activity
for the C allele and significant reduction in GATA-1 occupancy.
Another similar example was described where a psoriasis-linked
variant was identified through sequencing and predicted to influ-
ence a RUNX1 binding site. Subsequent functional assays con-
firmed to that the variant altered RUNX1 binding activity and
reporter gene expression when RUNX1 and its coactivator CBFβ

are present (Helms et al., 2003). We have further reported over
100 such variants where predicted regulatory polymorphisms have
been assayed using a combination of electrophoretic mobility shift
and reporter gene assays (Griffith et al., 2008). Despite this evi-
dence however the in vivo activity and pathological cell types
are rarely tested. Furthermore, the lack of availability of robust
genome-wide assays for regulatory variation has been a chal-
lenge that is only more recently being addressed by advances in
sequencing.

NON-CODING VARIANTS AS DISEASE MODIFIERS
Genetic modifiers can dramatically alter the penetrance of patho-
genic mutations or influence the expressivity of disease. Modifiers
need not be rare when involved in rare diseases but here we
focus on their effect in monogenic disorders where we know the
impact of modifiers is considerably influential. In monogenic dis-
eases such as CPS1 deficiency, pathogenic and non-coding variant
interaction can manifest strikingly different morbidities and mor-
talities ranging from asymptomatic to perinatal death (Klaus et al.,
2009). This phenomenon is further well characterized by the phe-
notypic diversity diseases such as sickle cell anemia and cystic
fibrosis. For instance, in sickle cell anemia, affected individuals
can be protected by a higher level of HbF expression which sub-
stitutes function of a defected HBB gene (Steinberg and Adewoye,
2006). HbF is a gene coding fetal hemoglobin which is expressed
only in residual levels in adults after a developmental switch to
the adult hemoglobin gene HBB, however, adult HbF expression
level is highly variable and genetically determined (Thein and
Menzel, 2009). In cystic fibrosis, a genome-wide association study
within affected individuals identified IFRD1 as modulating disease

phenotype by influencing pathogen defense and inflammation.
Beyond modifier gene effects as in both sickle cell anemia and
cystic fibrosis, pathogenic mutations and their associated disease
phenotypes have been demonstrated to be modulated by multiple
different types of modifier effects including variable expression
of the primary disease gene itself as in thalassemia (Marzo et al.,
2010; Sankaran et al., 2010) and allelic modulation of expression
of defected and normal copies of a gene as in erythropoietic pro-
toporphyria (Gouya et al., 1996). Table 1 lists several well studied
Mendelian diseases and an example of their modifier effects.

More recently, genome-wide surveys of allelic expression have
highlighted the abundance of interaction between protein-coding
and non-coding variation. These studies have estimated that as
high as 20% of non-synonymous variants and 30% of genes have
allelic-specific expression (ASE) (Dimas et al., 2008; Ge et al., 2009;
Lappalainen et al., 2011; Montgomery et al., 2011). Through RNA-
sequencing, allelic expression of protein-coding variants can be
routinely assessed and offers the potential to survey this type of
interaction for rare or de novo variants without requiring vari-
ant phasing (Pastinen, 2010). When the correct pathological tissue
is interrogated, it is expected that future studies which integrate
allelic expression data for their pathogenic mutations will rou-
tinely have improved capacity for interrogating the interaction
between protein-coding and non-coding variation and predicting
disease expressivity.

ASSIGNING FUNCTION TO RARE NON-CODING VARIANTS
LINKAGE ANALYSIS FOR GENE EXPRESSION
Linkage analysis is used in family based studies to detect cis- and
trans-acting variants affecting genes expression. Gene expression
level can be treated as a quantitative trait and analyzed by a general
purpose linkage tool such as FBAT (Laird et al., 2000), GENE-
HUNTER TDT (Kruglyak et al., 1996), HRRR/HHRR (Terwilliger,
1995), LAMP (Li et al., 2005), MENDEL (Lange et al., 2005),
PLINK (Purcell et al., 2007), PSEUDOMARKER (Hiekkalinna
et al., 2011), QTDT (Abecasis et al., 2000), TRANSMIT (Clayton,
1999), UNPHASED (Dudbridge, 2008), and MERLIN (Abecasis
et al., 2002). Many of these tools further model association in
the presence of linkage and estimate the within family effect to
the between family effects. Of these, the QTDT test has been
well utilized in eQTL studies combining families and unrelated
individuals (Cheung et al., 2010). A recent survey of the above
methods has demonstrated improved power in the PSEUDO-
MARKER method relative to QTDT for which the authors account
its ability to model true relationships between pedigrees, complete
data usage and estimation of recombination, and allele frequencies
from available data (Hiekkalinna et al., 2012). Using such methods,
family studies have investigated the landscape of regulatory vari-
ants in different cell types such as lymphoblastoid cell lines (Schadt
et al., 2003; Monks et al., 2004; Morley et al., 2004; Dixon et al.,
2007; Cheung et al., 2010), lymphocytes (Göring et al., 2007), and
adipose tissues (Emilsson et al., 2008). These studies have iden-
tified chromosomal regions co-segregating with transcriptome
features, and most of them discover many eQTLs proximal to the
genes they regulate. The reason why distal or trans-eQTLs are less
detectable is in part due to a combination of smaller effect sizes
and statistical power limitation by family size.

www.frontiersin.org May 2013 | Volume 4 | Article 67 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Li and Montgomery Rare regulatory variants in disease

Table 1 | Mendelian disorders modified by gene expression.

Mendelian disorder with

wide phenotypic diversity

Primary disease

gene

Example of

genetic modifier

Modifier effect Reference

Cystic fibrosis CFTR IFRD1 Regulation of neutrophil effector function Gu et al. (2009)

Sickle cell anemia HBB HbF Substitutes function of HBB Steinberg and

Adewoye (2006)

Thalassemia HBA, HBB Promoter variant Changes levels of HBA, HBB expressions Weatherall (2001)

Hemochromatosis HFE TFR2 Co-modulator of hepcidin Camaschella (2005)

Familial Hypercholesterolemia LDLR TNFRSF1B Reduces shedding of theTNFRSF1B receptor Geurts et al. (2000)

Hereditary deafness DFNB26 DFNM1 Suppress DFNB26 Riazuddin et al. (2000)

Retinitis pigmentosa RPGR IQCB1 Interaction with RPGR Fahim et al. (2011)

Familial Mediterranean fever MEFV MICA MICA behaves as a stress-inducible

self-antigen

Touitou et al. (2001)

Asthma drug response ADRB2 Promoter variant Alters ADRB2 receptor expression Drysdale et al. (2000)

Gaucher disease GBA SCARB2 Causes extracellular excretion of GCase Velayati et al. (2011)

Adrenoleukodystrophy ABCD1 SOD2 Modulates the response of neurons to

oxidative damage

Brose et al. (2012)

Alpha 1-antitrypsin deficiency A1AT NOS3 Regulates vascular tone DeMeo (2004)

Wilson disease ATP7B PRNP Produces prion protein also involved in

transporting copper

Weiss et al. (2010)

Hereditary pancreatitis PRSS1 SPINK1 Serine protease inhibitor Weiss et al. (2003)

Polycystic kidney disease PKD1, PKD2 ACE Increase angiotensin II levels Devuyst (2003)

Erythropoietic protoporphyria FECH Intronic variant Reduces FECH activity Gouya et al. (2006)

Despite restricted resolution in linkage analysis, family stud-
ies are especially useful for detecting potentially strong effect of
rare variants. Deep sequencing of human exomes has detected an
abundance of such rare variants (Nelson et al., 2012; Tennessen
et al., 2012) in protein-coding sequences, however the extent to
which rare variants have strong regulatory effects is only begin-
ning to emerge. We recently reported increases in fold change
for rare eQTLs when stratified by their derived allele frequency
(Lappalainen et al., 2011). Existing linkage studies of gene expres-
sion are all based on families genotyped from SNP microarrays,
yet to connect a discovered eQTL to a causal variant requires the
use of deep sequencing data, which is also a necessary step for
understanding the functional consequences of rarer variants.

RNA-SEQUENCING/ChIP-SEQUENCING
Compared with microarrays, RNA-sequencing can potentially
cover gene activity over the whole transcriptome while provid-
ing higher resolution of transcript complexity (Figure 1). Two
studies utilizing this new technology have discovered hundreds
of genetic effects on gene expression in European and African
populations (Montgomery et al., 2010; Pickrell et al., 2010). Fur-
thermore, utilizing RNA-sequencing reads spanning splice junc-
tions, an indicator of alternative splicing events, studies have also

shown wide spread splicing polymorphisms between individuals
(Lalonde et al., 2011). However RNA-sequencing has its own tech-
nical biases (Mortazavi et al., 2008; Labaj et al., 2011), highly
expressed genes may consume majority of reads which leaves many
genes below quantifiable threshold, mapping artifacts may intro-
duce false positive associations and technical biases like library
construction and PCR-based amplification may further distort
true allelic ratios. From the perspective of genome mapping, treat-
ment of RNA reads is also substantially harder than DNA as reads
from mRNA transcripts are gapped by introns; however, compu-
tational methods specifically designed for RNA-Seq data such as
Tophat/Cufflinks tools (Trapnell et al., 2012) are increasingly avail-
able to support mapping and quantification of RNA reads for gene
expression and alternative splicing analysis.

As gene expression is closely related to transcription fac-
tor binding, genetic studies of transcription factor binding
offer insight into the functional of non-coding variants. Here,
chromatin immunoprecipitation followed by high-throughput
sequencing (ChIP-seq) can provide a comprehensive survey of
transcription factor binding sites across the genome. ChIP-seq
studies comparing related and unrelated individuals (McDaniell
et al., 2010) have demonstrated heritability of chromatin struc-
ture and transcription factor binding, which has also been shown
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FIGURE 1 | RNA-Seq supports the characterization of diverse transcriptome features providing increased ability for linking trait-predisposing
variation to their mode of impact. Each box in this figure highlights a specific-type of biological data that can be assessed from RNA-Seq data.

as a result of underlying genetic variation. Family information can
be further utilized to distinguish the effects of rare variants and
identify difference in binding of transcription factors specific to
paternal and maternal alleles. One ChIP-seq study used phased
diploid genomes from a family trio (Rozowsky et al., 2011) and
by linking ASE to allele-specific binding of transcription factors
connected expression of a gene to transcription factor binding on
the same chromosome.

ALLELE-SPECIFIC EXPRESSION
Allele-specific expression has also been shown to be a heritable trait
under genetic control through family studies (Yan et al., 2002) and
studies of monozygotic twins (Cheung et al., 2008), with 0.47–
0.98 correlation between monozygote twins. Allelic expression is
a more sensitive indicator of cis-acting effects (Pastinen et al.,
2006; Ge et al., 2009) and can be used as supporting evidence
for the presence of cis-regulatory variants near a gene (Mont-
gomery et al., 2011). A specific advantage of the availability of
functional genomic studies like RNA-Seq and ChIP-Seq using
high-throughput sequencing has been that allelic effects can be
ascertained en masse by assessing biases in sequencing reads over
heterozygous positions (the null being that both alleles are equally
present). However, robust calls of ASE typically require heterozy-
gous sites to be identified through genotyping or DNA sequencing.
Genotypes may be directly observed from RNA data, however due
to systematic variation of read depth of RNA (since transcripts
are expressed at different levels and have different sizes) and ref-
erence genome mapping biases (due to unobserved variants or
homologous sequences) such approaches are error prone (Degner
et al., 2009; Heap et al., 2010) and may further fail at sites which are

monoallelically expressing and appear homozygous. Furthermore,
as read depth is only evaluated at a single variant site, there can
be considerable variation due to random sampling effect, which
overshadows most allelic effects with small fold changes. We have
previously used a modified binomial test to assess significance of
skewed expression at a site (Montgomery et al., 2010). However,
the power of the test to distinguish true ASE from random sam-
pling is determined by read depth at that site. Due to variation
in expression levels of different genes, only a small proportion
of sites may reach required confidence level. Targeted approaches
to assessing ASE have been reported which combining capture
technology over previously identified heterozygous positions and
may ultimately offer more uniform assessments of allelic effects
(Zhang et al., 2009). The advantage of high-quality allelic expres-
sion information will provide extra information to aid in mapping
cis-eQTL (Sun, 2012) and causal regulatory variants (Montgomery
et al., 2011). For protein-coding variation implicated in disease, it
will further demarcate the bounds of haploinsufficiency such that
disease risk may be stratified by the levels of functional protein
product an individual produces.

CONNECTING EXPRESSION QUANTITATIVE TRAIL LOCI TO
HUMAN DISEASE
Most early attempts to connect expression to phenotypic traits in
families have involved using standard Pearson correlation between
the expression and trait measurements. However, despite the sta-
tistical simplicity of this methodology, it can inflate significance
when there are few families and the trait and expression variance
has a large between family component, and can reduce significance
if there is a large within family component and no correlation
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between families. To address this, expression trait concordance
tests which account for family structure have been reported (Kraft
et al., 2003; Lu et al., 2004).

When combining genetic data to search for concordance of
expression and trait association, an advantage is that the compo-
nent of expression due to technical or environmental perturbation
can be better controlled. We have previously reported methods that
connect genetic effects on gene expression in unrelated samples to
trait values by assessing if the genetic perturbation on expression
is similar to the distribution of association scores for a trait (Nica
et al., 2010). We have further developed a method to assess if there
is an excess of causal regulatory variants of any frequency under-
lying a disease-associated variant (Conde et al., 2013). Here, our
method tests if there are more ASE effects for heterozygotes of the
disease-associated variant than homozygotes under the assump-
tion that there may be one or more variants which stratify the
risk and protective-associated alleles. Such approaches are now
further complemented by the increasing amount of non-coding
annotation from ChIP-Seq data and associated methods have been
developed to determine the context and impact of trait-associated

variants on epigenetic states (Boyle et al., 2012; Ward and Kellis,
2012b).

FUTURE PERSPECTIVES
As genome studies have been identifying large numbers of rare
variants, it is expected that new methods and data will be required
to uncover the impact of these variants and their involvement in
diseases and traits. One of the most promising future technologies
which will aid in interpreting the effect of rare regulatory vari-
ants in different tissues and developmental stages will be through
the generation of induced pluripotent cells where gene expres-
sion can be assayed in multiple stages and differentiated cell types.
Complementing this will be further advances in sequencing meth-
ods which provide phasing information – these advances will
position rare and de novo mutations on the correct haplotype
background and aid in investigations of genetic interaction. Fur-
thermore, advances in ChIP-Seq and RNA-Seq will better aid in
characterization of genetic effects on transcription factor binding
and isoform expression and will ultimately unlock more complex
functional interactions that underlie the etiology of diverse traits.
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