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Asthma—snapshot or motion picture?
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Asthma is a complex disease physio-
logically characterized by shortness of
breath, coughing, and wheezing (Holgate,
2011). In response to a variety of stim-
uli, the airways become more sensitive
leading to bronchial hyperresponsiveness
(Sterk and Bel, 1989; Scichilone et al.,
2006; Kang et al., 2012). Consequently,
in a process known as bronchoconstric-
tion, airways become narrower, imped-
ing the normal airflow into and out
of the lungs (WHO, 2011), by con-
traction of the bronchial smooth mus-
cle (EPR-3, 2007). In addition, increased
production of mucus occurs, further con-
tributing to airway obstruction (EPR-3,
2007). Asthma is a chronic inflammatory
disease, which if untreated can lead to
structural changes in the smooth mus-
cle and may result in airway remodeling
(EPR-3, 2007).

At the molecular level, asthma usually
involves a T-helper 2-type cell response
(Th2)-(Lloyd and Hessel, 2010; Wenzel,
2012). The antigen-presenting cells (APC),
including dendritic cells, present the anti-
gen to the T-cell precursor, through
the major histocompatibility complex II
(MHCII) molecule coupled to the T-cell
receptor (Kim et al., 2010). This leads
to the activation of Th2 pathway, with
the production of IL4, IL5, and IL13
cytokines and the consequent activation of
B-lymphocytes and production of plasma
cells, these last responsible for IgE pro-
duction (Wenzel, 2012). Subsequently,
basophils, eosinophils, and mast cells are
activated, amplifying the allergic inflam-
mation (Lloyd and Hessel, 2010; Wenzel,
2012).

More than 100 genes have been implied
in asthma susceptibility across populations
(Bijanzadeh et al., 2011; Torgerson et al.,
2012; Zhang et al., 2013) while the asso-
ciation of environmental factors ranges

from excessive cleanliness, constituting
the “hygiene hypothesis” (Graham-Rowe,
2011), to poor socioeconomic develop-
ment (Neto et al., 2012) and smoke expo-
sure (Burke et al., 2012) to “anything
and asthma” (Buchanan et al., 2006).
Furthermore, replication studies of asthma
candidate genes are often inconsistent
(Rogers et al., 2009). Among the main rea-
sons pointed out for this lack of replication
are the populations’ heterogeneous genetic
backgrounds and their interaction with
environmental factors, the different study
designs and the lack of statistical power
of the studied sample sets (Cardon and
Bell, 2001; Nicolae and Ober, 2009; Grant
and Hakonarson, 2010). Additionally, it
is believed that in complex diseases many
factors with weak effect rather than few
with strong predictive power are thought
to contribute to the disease susceptibility
(Buchanan et al., 2006; von Mutius, 2009).

However, and despite of our current
understanding of the biology and the con-
tribution of environmental and genetic
factors (Vercelli, 2008; Mukherjee and
Zhang, 2011; Antó, 2012; Kumari and
Rana, 2012), asthma is still a puzzling
concept. The identification of causal fac-
tors and their contribution to complex
diseases remain mostly unanswered ques-
tions, given the lack of robustness, inad-
equacy and/or limitations of many of
the present-day methodologies (Buchanan
et al., 2006). In addition, the broadly
used case-control and GWA approaches,
designed to unveil genetic variants under-
lying multifactorial diseases, do not take
into consideration the evolutionary his-
tory of each biological trait (Buchanan
et al., 2009).

The increasing incidence of complex
diseases in the human populations sug-
gests a high frequency of deleterious
genetic variants (Kryukov et al., 2007).

One may speculate that these genetic
variations could have been beneficial or
neutral in the past but have become detri-
mental as a result of changes in the
surrounding environment and lifestyle of
contemporary societies (Kryukov et al.,
2007). A classical example supporting
this idea is the “thrifty genes hypothe-
sis” (Neel, 1962), sustaining that geno-
types that once were protective against
food scarcity are currently predisposing to
obesity and diabetes, due to the current
abundance in food resources and seden-
tary lifestyle (McDermott, 2006; Kryukov
et al., 2007; Vardi and Bloch, 2008). Given
the interface between genes and environ-
ment underlying this premise, it has been
proposed that not only genetic but also
epigenetic factors might be involved in the
heritability of type 2 diabetes (Goh and
Sum, 2010; Pijl, 2011).

Epigenetics, the study of changes in
DNA expression that do not imply changes
in the DNA sequence (Miller and Ho,
2008) but can be transgenerationally
transmitted (Anway et al., 2005), have
been transforming the way complex dis-
eases and their risk are perceived (Miller
and Ho, 2008; Feinberg and Irizarry,
2010; Relton and Smith, 2010). There is
increasing evidence that epigenetic pat-
terns can be altered by environmen-
tal factors since as early as in utero
life (Fraga et al., 2005; Relton and
Smith, 2010; Thornburg et al., 2010;
Durham et al., 2011). Ethnic differ-
ences in human DNA methylation have
been observed between an African and
an European population (Fraser et al.,
2012) and methylation-associated SNPs
(mSNPs) were also found to exist, in
which one of the alleles was associated
with higher levels of methylation (Fraser
et al., 2012). Furthermore, given a par-
ticular environmental exposure, genetic
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variants affecting the susceptibility to
DNA methylation (methQTL-methylation
quantitative trait loci) can modify the
response of modifiable genetic variants
(modGV), influencing the expression of
the disease phenotype. This finding may
partially explain conflicting results among
several genetic studies (Karmaus et al.,
2013). Taken together, these findings
prompt us to a combined action of envi-
ronment and genetics to epigenetic sig-
natures, therefore modulating the genetic
basis of a trait or disease.

While many genes are potential tar-
gets for epigenetic modification we will
mainly focus our remarks on IL4. IL4
is a key cytokine involved in inducing
IgE production via Th2 pathway (Oh
et al., 2010), central in allergic response
(Minton, 2008). IL4 DNA methylation
appears to be important in T-helper cell
differentiation: while methylation of a
highly conserved region at the 3′ end of IL4
gene drives Th1 differentiation, demethy-
lation of sites within the first intron of
IL4 results in enhanced IL4 production
and Th2 differentiation (Miller and Ho,
2008) which is associated with an atopic
asthmatic phenotype. Further, evidence of
the importance of IL4 comes from obser-
vations of individuals with atopic asthma.
Asthmatics who were sensitized to house
dust mite extract (Dermatophagoides
pteronyssinus/Dermatophagoides farinae)
demonstrate a decreased level of methy-
lation in the IL4 gene that was strongly
correlated to their IL4 concentration
(Kwon et al., 2008).

The IL4-c.590 C/T SNP variant
(rs2243250) is located in the IL4 pro-
moter region, with allele IL4-590∗T being
associated to a 3-fold increase in IL4
transcription and expression, given its
extra NFAT transcription activator bind-
ing site (Rockman et al., 2003) and/or
likely association of the SNP to methyla-
tion patterns, to our knowledge yet to be
tested.

The frequency of IL4-590∗T varies
across populations, from 10.5% in
Madeira Island population (Berenguer
et al., 2012) to 11.3% in the South
of England (Howell, 2004), and 15%
in Spain (Leon et al., 2006). However,
when considering Africans, the allele fre-
quency increases dramatically, reaching
54.4% (Burchard et al., 1999), 59.2%

in Cabo–Verde, and 76.5% in Guinea–
Bissau (Berenguer et al., 2012). This
frequency variation across present-day
populations was likely shaped by posi-
tive selection, particularly influenced by
pathogens (Fumagalli et al., 2009; Casto
and Feldman, 2011). The IL4-590∗T
allele has been in fact associated with
elevated anti-malarial IgG and IgE lev-
els (Luoni et al., 2001; Farouk et al.,
2005) and inversely correlated with par-
asitaemia in different African populations
(Tangteerawatana et al., 2007). Because the
Th2 response—in which IL4 plays a key
role (Fumagalli et al., 2009)—is likely to
be advantageous in tropical regions, where
the likelihood of helminthic infection is
higher (Le Souëf et al., 2006), differences
in the allele frequencies across popula-
tions are likely to have occurred by natural
selection (Le Souëf et al., 2006). The same
allele has been linked to asthma suscep-
tibility in a number of studies, mostly in
Eurasian populations (Wang et al., 2004;
Gervaziev et al., 2006; Kabesch et al., 2006;
Chiang et al., 2007; Li et al., 2008; de Guia
and Ramos, 2010; Berenguer et al., 2012)
likely a side-effect of IL4 positive selection,
acting not only over genetic and environ-
mental factors, but also over epigenetic
signatures shaped through time.

One of many questions concerning
asthma that have been in discussion
over the last 20 years is the apparent
sudden increase of asthma prevalence
in westernized societies (von Mutius,
1998; Bloomfield et al., 2006; Umetsu
and DeKruyff, 2006; Graham-Rowe, 2011)
and, in particular, the implications on
the disease incidence in developing coun-
tries, where selection has favored the
Th2–cell immune response (Le Souëf
et al., 2006). On one hand, the “hygiene
hypothesis” postulates that increased
hygiene and reduced exposure to microbes
could be responsible for the increase in
asthma prevalence in developed countries
(Romagnani, 2007; Brooks et al., 2013).
On the other hand, exposure to outdoor
pollution resulting from traffic and other
sources has been also associated to asthma
in a number of studies (Lee et al., 2006;
McConnell et al., 2010; Patel et al., 2011;
Tzivian, 2011). It has been recently shown
that methylation levels in the promoter of
Neuropeptide S Receptor 1 (NPSR1) gene
were associated to asthma in both children

and adults as a result of smoking expo-
sure (Reinius et al., 2013). Another recent
study suggests that promoter variants in
NOS2 encoding for the inducible nitric
oxide synthase (iNOS), when exposed
to particulate matter with aerodynamic
diameter ≤2.5 µm (PM2.5), were found
to influence iNOS methylation pattern
and thus affect the concentration of nitric
oxide in exhaled breath (FeNO) levels,
FeNO being considered a predictor for the
future risk of asthma and wheeze (Salam
et al., 2012). Interestingly, simultaneous
exposure to inhaled diesel particles and
allergen were found to induce hypomethy-
lation within a CpG−408 site of the IL4
gene promoter in vivo correlating to IgE
production putting forward a new model
for the aetiology of asthma (Liu et al.,
2008).

These observations provide evidence
that the role of the environment on epige-
netic “angels and devils over DNA” should
be of central interest to research.

Although, asthma is a likely intricate
network of factors and these observations
regarding IL4 gene cannot be considered
per se, they can still provide the oppor-
tunity for reflection about the current
understanding of asthma targeting for new
strategies, aimed to understand complex
multifactorial diseases.

Rather than a present-day snapshot,
asthma is more likely a motion pic-
ture across evolutionary time, in per-
manent interaction with the surrounding
environment.
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