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Differences between genomes can be due to single nucleotide variants, translocations,
inversions, and copy number variants (CNVs, gain or loss of DNA). The latter can range from
sub-microscopic events to complete chromosomal aneuploidies. Small CNVs are often
benign but those larger than 500 kb are strongly associated with morbid consequences
such as developmental disorders and cancer. Detecting CNVs within and between popu-
lations is essential to better understand the plasticity of our genome and to elucidate its
possible contribution to disease. Hence there is a need for better-tailored and more robust
tools for the detection and genome-wide analyses of CNVs. While a link between a given
CNV and a disease may have often been established, the relative CNV contribution to dis-
ease progression and impact on drug response is not necessarily understood. In this review
we discuss the progress, challenges, and limitations that occur at different stages of CNV
analysis from the detection (using DNA microarrays and next-generation sequencing) and
identification of recurrent CNVs to the association with phenotypes. We emphasize the
importance of germline CNVs and propose strategies to aid clinicians to better interpret
structural variations and assess their clinical implications.
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BACKGROUND INFORMATION ON CNVs

Genetic variations in the human genome take many forms rang-
ing from large chromosomal anomalies (segmental aneuploidy) to
single nucleotide variant (SNVs). Deletion, insertion, and dupli-
cation events which give rise to copy number variations (CNVs)
have been found genome-wide in humans (lafrate et al., 2004;
Sharp et al., 2005; Feuk et al., 2006; Fiegler et al., 2006; Freeman
et al., 2006; Redon et al., 2006; Kidd et al., 2008, 2010; Perry et al.,
2008; Conrad et al., 2010; Valsesia et al., 2012) and other species
(Dopman and Hartl, 2007; Graubert et al., 2007; Guryev et al.,
2008; Lee et al., 2008; Fontanesi et al., 2010; Liu et al., 2010). CNVs
are classically defined as events longer than 1 kb (Feuk et al., 2006);
smaller events are referred to as indels (see additional definitions
in Box 1). With the advent of next-generation sequencing (NGS),
CNVs as small as 500 bp can be identified. CNVs can occur at dif-
ferent frequencies in a given population. When this frequency is
greater than 1%, the CNV is referred to as a copy number poly-
morphism (CNP) (Feuk et al., 2006) (Box 1). This contrasts with

single nucleotide polymorphisms (SNPs) whose frequencies are
by definition greater than 1%.

The observation that CNVs and CNPs (here collectively
referred to as CNVs) could occur both in normal (Iafrate et al.,
2004; Sharp et al., 2005; Feuk et al., 2006; Fiegler et al., 2006;
Freeman et al., 2006; Redon et al., 2006; Kidd et al., 2008, 2010;
Perry et al., 2008; Conrad et al., 2010; Valsesia et al., 2012) and
disease (Firth et al., 2009; Zhang et al., 2009; Grozeva et al., 2010;
Walters et al., 2010; Wellcome Trust Case Control Consortium
et al., 2010; Jacquemont et al., 2011) populations has opened a
new chapter in human genomics. CNVs have been explored in
European (Redon et al., 2006; Li et al., 2009; Gayén et al., 2010;
Valsesia et al., 2012), African (Matsuzaki et al., 2009; McElroy
et al., 2009), and several Asian populations: Chinese (Lin et al.,
2008), Japanese (Takahashi et al., 2008), Korean (Kang et al., 2008;
Jeon et al., 2009). Comparisons have been performed between
human populations (Jakobsson et al., 2008; Conrad et al., 2010;
Kato et al., 2010) and across apes (Nistér et al., 1987; Conrad and
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Box 1| Additional definitions.

Structural variants

Structural variation defines a large class of genomic alterations. These alterations can be quantitative (copy number variants, indels), posi-
tional (translocations), or orientational (inversions). This term is used in a neutral sense and nothing is suggested with regards to variation
frequency or to association with a phenotype/disease.

Single Nucleotide Polymorphism (SNP)

Single nucleotide polymorphisms are the most common type of DNA polymorphisms, which occur when a single nucleotide in the genome
sequence is altered. By definition, SNPs occur in a population with a frequency greater than 1%. When this frequency criterion is not met,
this variation is referred to as a single nucleotide variant (SNV).

Copy Number Variant (CNV)

Copy number variant refers to a segment of DNA, for which copy number differences can be observed between individuals. Translocations
and inversions do not involve copy number changes and thus are not considered as copy number variants. Following the initial genome-wide
discovery of CNVs using BAC arrays and early SNP arrays, the minimal length of a CNV was arbitrary defined at 1 kb. With the advent of
next-generation sequencing and new generation arrays, several studies use a minimal length of 500 bp.

Copy Number Polymorphisms (CNP)
Common CNVs shared by >1% of a population are referred to as copy number polymorphisms.

Copy Number Aberration (CNA)

Copy number aberrations refer to CNVs identified in oncogenomics studies. These aberrations can be germline (predisposition to cancer) or
somatic (present in the tumor cell but not in the “normal” diploid cell from the same donor). Somatic copy number aberrations are abbre-
viated as SCNA. This abbreviation does not suggest whether a given aberration is a driver (initial mutation that led to tumor development
and progression) or a passenger event (molecular aberration that is the consequence of one or several driver events).

Insertion/deletion (indel)

An indel describes the relative gain or loss of a segment of one or more nucleotides in a genomic sequence.

It is used when the direction of copy number change cannot be defined. For example when it is not clear whether the variant is an insertion
in the reference genome or a deletion in the genome of interest. Indels are typically used to denote small-scale variants (smaller than 1 kb
in length).

Segmental duplication (also called low-copy repeat or duplicon)
A segment of DNA with a length greater than 1 kb that occurs in two or more copies per haploid genome. The different copies share at least
90% of sequence identity. These segments can also be CNVs. Due to the high sequence similarity between the duplicated sequences,

CNV detection and clinical interpretation

segmental duplication predispose to non-allelic homologous recombination.

Hurles, 2007; Kidd et al., 2008, 2010). CNVs constitute a non-
negligible part of the genetic diversity, with consequences in term
of evolution and disease susceptibility (Conrad and Hurles, 2007).
Consequently, their detection and association with quantitative
traits and clinical phenotype constitute an important step toward
a better understanding of disease etiology. However, such their
detection remains challenging. There are numerous factors in the
data generation and computational analyses that can lead to spu-
rious associations. Finally, the sheer amount of data that can be
generated already for a single subject imposes severe challenges in
terms of data interpretation. In this review, we provide an overview
of the different platforms and analytical steps from CNV detection
to association with clinical traits. We discuss promising strategies
to interpret structural variations in the context of personalized
medicine.

HIGH-THROUGHPUT CNV DISCOVERY PLATFORMS

Gross copy number (CN) alterations were initially detected with
karyotyping in the early days of cytogenetics. Several large-
scale aberrations (Pepler et al., 1968; Dowjat and Wlodarska,
1981; Nistér et al., 1987) were identified before the development
of higher resolution techniques. Fluorescence in situ hybridiza-
tion (FISH) has increased this resolution, enabling the detec-
tion of sub-microscopic CNVs that could not be detected with
karyotyping. Today, the most widely used techniques can be
classified as amplification-based (polymerase chain reaction),

hybridization-based (FISH, comparative genome hybridization,
and SNP arrays) or sequencing-based. These techniques differ in
precision, throughput, and resolution. In this review we focus on
genome-wide CNV discovery platforms: DNA microarrays (CGH
and SNP) and NGS.

MICROARRAY-BASED METHODS

Single nucleotide polymorphism genotyping arrays

The Hapmap project (The International HapMap Project, 2003)
has played a major role in the discovery and characterization of sin-
gle nucleotide polymorphisms (SNP). Investigation of genotype
data from trios played a major role in the identification of CNVs
from SNP genotyping arrays. Indeed CNVs could be detected from
the following patterns: (1) SNPs violating Mendelian inheritance
principle (Conrad et al., 2006), (2) clusters of genotyping errors,
and (3) regions not in Hardy—Weinberg equilibrium (McCar-
roll et al., 2006). Both McCarroll et al. (2006) and Conrad et al.
(2006) showed that these events corresponded to deletions. This
prompted the need to re-analyze SNP genotyping arrays for CNVs.
Although these arrays were not primarily designed for CNV analy-
sis, it is possible to obtain a CN ratio by combining the intensities
of the two alleles and normalizing this quantity with respect to
reference. CNV can then be detected by identifying significant
deviations from the baseline CN ratio. Some publicly available
software combines CN and allelic ratio (the ratio of the allele
intensities) to improve CNV detection (Table 1). Such strategy
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cyan =3 copies; dark blue >3 copies). (B) Analysis of the Me275 sample with
SNP array. The top panel shows genome-wide copy number. Subsequent
panels show chromosome 7 with, from top to bottom: hybridization log2 ratio,
B allele frequency and copy number prediction.

can be applied both for tumor analysis (LaFramboise et al., 2005;
Attiyeh etal.,2009) (Figure 1) and diploid sample analysis (Colella
etal.,2007; Wang et al., 2007a; Coin et al., 2010). Now, genotyping
arrays include both SNP probes and CN probes to cover previ-
ously established CN variant regions. The choice of a method will
depend on several factors: (1) which platform is to be analyzed
(Ilumina or Affymetrix), (2) the desired output (discrete or con-
tinuous CN prediction), and (3) the type of DNA to be analyzed
(germline or somatic CNV analysis). Methods should not be used
only with their default parameters. Provided that technical repli-
cates are available, the analyst should compare different methods
in combination with different parameters. This can lead to sig-
nificant improvement both in term of sensitivity and specificity
(Valsesia et al., 2011, 2012).

Comparative genome hybridization arrays

Comparative genome hybridization compares the relative CN of a
test DNA with respect to a reference DNA (Kallioniemi et al., 1992;
Ylstra et al., 2006; Carter, 2007; Redon et al., 2009). The two DNA
samples are labeled with different dyes (red or green), and then
hybridized competitively. A ratio of relative CN changes can then
be measured; significant deviations from the baseline indicate CN
gains or losses with respect to the reference genome (Figure 1).
Initial CNV detection was made using arrays having a resolution
close to 50kb (Fiegler et al., 2006; Redon et al., 2006). Current
CGH arrays, such as Agilent 1 M arrays, have a median resolu-
tion of one probe every 2.1 kb. Such resolution is not as good as
the one obtained from recent SNP arrays (<500 bp) but the signals
obtained from few CGH probes tend to be more reliable than those

obtained from few adjacent SNPs (Curtis et al., 2009; Pinto et al.,
2011) and although allele-specific CN cannot be inferred from
CGH (as opposed to SNP arrays), these arrays remain popular
for the detection of CNV both in somatic (tumors) (Kallion-
iemi et al., 1992; Pinkel and Albertson, 2005; Bignell et al., 2007)
and in constitutional diagnostics (Oostlander et al., 2004; Shaffer
and Bejjani, 2006; Edelmann and Hirschhorn, 2009; Boone et al.,
2010).

Sequencing-based methods

Today, NGS technologies allow one to sequence millions of reads in
parallel. New methods for structural variant analysis were devel-
oped (Medvedev et al., 2009; Dalca and Brudno, 2010; Ruffalo
et al.,, 2011; Koboldt et al., 2012) including paired-end mapping
(PEM), read-depth analysis, split-read strategies, and sequence
assembly comparisons. References to freely available tools are given
in Table 2.

Paired-end mapping approaches

Before the advent of NGS, structural variants were detected from
fosmid paired-end sequencing (Tuzun et al., 2005; Kidd et al,
2008). The principle is as follow: (1) the genomic sequence is
fragmented and cloned into fosmids. (2) Ends of the cloned
fragments are sequenced using universal primers and aligned
to the reference genome. (3) Paired-ends, discordant in length
or direction, indicate respectively possible indels or inversion
(Figure 2A). PEM enables precise breakpoint determination
and performs well even in the presence of repetitive elements
(LINE, SINE). However it fails when both paired-ends map
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Table 2 | Algorithms for the detection of structural variants from NGS data.

Strategy

Approach

Reference

Paired-end mapping

Read-depth analysis

Split-read analysis

Sequence assembly
analysis

Mixed strategies

Detection of discordant end-pairs
Clustering of end-pairs

Detection of local change points
Detection of outliers compared to the read-depth baseline

Event-wise testing
Identification of breakpoints with a pattern growth algorithm

De novo assembly and comparison to reference genome
Burrows-Wheeler transform

Simultaneously assembly of multiple eukaryotic genomes
Detection of small indels through local reassembly

Combines both paired-end mapping and read-depth analysis

Tuzun et al. (2005), Chen et al. (2009), Korbel et al. (2009)
Korbel et al. (2007, 2009), Kidd et al. (2008), Hormozdiari et al.
(2009), Lee et al. (2009)

Campbell et al. (2008), Chiang et al. (2009), Klambauer et al. (2012)
Alkan et al. (2009)
Yoon et al. (2009)

Ye et al. (2009)

Simpson et al. (2009), Li et al. (2010), Simpson and Durbin (2012)
Simpson and Durbin (2010, 2012)

Boone et al. (2010), Simpson et al. (2009), Igbal et al. (2012)
Massouras et al. (2010)

Medvedev et al. (2010)

A B
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FIGURE 2 | NGS approaches. Analytical strategy to detect CNV from NGS data: (A) pairend mapping approached, (B) read-depth approach, and (C) split-read
approach.

within repeats. Also the detection resolution is limited to the
distance between pairs; therefore, neither large nor very small
rearrangements can be detected, with the exception of large

deletions.

Read-depth approach

The read-depth analysis investigates change in read coverage com-
pared to an expected depth distribution (Figure 2B). Mutual
information about paired-reads is used to improve the mapping
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quality and to detect complex and large rearrangements. However
read-depth analysis is challenging in repeat-rich regions (due to
mapping issues).

Split-read approach

The split-read strategy entails in gapped-alignment of reads onto
candidate breakpoints (Figure 2C). The strategy is to detect
paired-reads where only one end is uniquely mapped onto a
reference genome (Ye et al., 2009). The assumption is that the
second paired-read could not be mapped, even with few mis-
matches allowed, because it corresponds to a deletion or insertion
breakpoint. The mapped-read is used as an anchor and know-
ing both a maximum event length and the direction to search for
the unmapped-read; alignment of the unmapped-read can be per-
formed either by splitting it into two or three fragments whereby
the former indicates a deletion event and the latter indicates an
insertion event (Figure 2C).

Sequence assembly comparison
Provided a high sequencing depth, de novo assembly can be
attempted (Simpson et al., 2009; Li et al., 2010; Igbal et al., 2012;
Simpson and Durbin, 2012) such that a sequence comparison can
be made with the reference genome to identify deletions and inser-
tions. The advantage of de novo assembling over PEM approaches
is that deletions or insertions smaller than the paired-end insert
size can be detected. But on the other hand, de novo assembling is
very difficult for repeat-rich regions and until recently (Igbal et al.,
2012) was only possible with high read-depth. When this criterion
is not met, several experiments can be pooled together (The 1000
Genomes Project Consortium, 2010).

The above techniques present different and complementary
advantages. Combining several approaches definitely empowers
the detection of structural variations (Mills et al., 2011).

PITFALLS IN CNV ANALYSES
The need for adequate design and laboratory quality control
Despite tremendous improvement in the different technologies
and analytical methods, CNV detection remains a difficult task
(Wineinger et al., 2008; Curtis et al., 2009; Winchester et al., 2009;
Eckel-Passow et al.,2011; Haraksingh et al.,2011; Pinto et al., 2011;
Valsesia et al., 2011, 2012). Both DNA microarrays and NGS are
prone to batch effects. Date of experiment, plate id, experimenter
or ozone levels are all factors that can influence CNV predic-
tion. Batch effects can have very severe consequences and lead to
spurious associations. Inappropriate sample randomization, such
as genotyping cases and controls within separate batches, is the
worst-case scenario in case-control studies. Unfortunately such a
scenario is all too common and is typically discovered late in the
data generation process. Therefore careful experimental planning
and quality control, including thorough investigation about puta-
tive batch effects, should be considered as part of the core analysis.
A number of approaches should be considered such as (1)
detecting outliers at different laboratory QC steps, (2) using
positive and negative controls to check the consistency between
batches, (3) performing principal component analyses or other
multivariate analyses to detect possible batch effects, (4) Using
technical replicates to check consistency of the results and estimate

noise levels in the data. In addition, to these common pitfalls in
any CNV analysis, there are other limitations that are inherent to
either DNA microarrays or NGS experiments.

DNA microarray limitations

DNA microarrays suffer from several limitations, notably the
measured CN ratio derived from fluorescence intensities is very
noisy and is subject to artifacts such GC-biases, probe spatial
auto-correlation, non-specific hybridization, differences between
color dyes for CGH arrays, and allelic crosstalk for SNP arrays.
Numerous normalization procedures have been proposed (Mar-
ioni et al., 2007; Bengtsson et al., 2008; Chen et al., 2008; Diskin
et al., 2008; Fitzgerald et al., 2011) to address these issues. Never-
theless these normalizations, e.g., LOESS smoothing, can mask
small CN changes and often are not sufficient to avoid false-
positives. Typically, a number of adjacent probes will be required
to define a CNV but de facto this prevents the detection of very
small CNVs.

Also repeat-rich regions and regions close to segmental duplica-
tions remain poorly covered, owing to the challenge at designing
probes with limited risk of cross-hybridization. These genomic
regions are highly dynamic (prone to rearrangements) and may
thus be enriched for CNVs. To overcome this density limitation,
the latest SNP array generation combines both SNPs and non-
polymorphic probes to cover CNV regions (McCarroll et al., 2008).

Finally, DNA microarrays do not provide a CN digital read-
out due to hybridization saturation. Several methods (Greenman
et al., 2010; Van Loo et al., 2010; Scharpf et al., 2011) for SNP
arrays allow a continuous CN prediction that is not limited to a
discrete five-state classification (CN =0, 1, 2, 3, or >3). Although
precise CN estimation remains difficult (for example to distin-
guish between six and seven copies), such estimates are sufficient
to identify loci to be re-assessed with targeted methods. Contin-
uous CN prediction is possible due to the use of allele-specific
information (allelic intensity ratios). Traditional CGH arrays do
notinclude such information, but newer arrays developed for diag-
nostic purpose combine both CGH and SNP probes resulting in a
better CN classification and allowing the detection of uniparental
dysomy and copy-neutral LOH.

NGS limitations

Next-generation sequencing offers several advantages over DNA
arrays in particular; it allows detection of very small variants
(indels, SNPs) and inversion. It can estimate exact breakpointloca-
tion and does not suffer from hybridization saturation allowing a
better (digital) estimation of high CNs. However CNV analysis
from NGS data is not trivial (The 1000 Genomes Project Con-
sortium, 2010; Mills et al., 2011). Biases can be introduced by the
experimental protocol and need to be addressed. Sequence capture
arrays, used for exome sequencing, tend to introduce biases due
to the range of GC content that is captured (hybridized) (Dohm
et al., 2008; Klambauer et al., 2012; Li et al., 2012). Sequence read
quality score might be biased due to the presence of indels/CNVs,
these scores need to be re-calibrated with local realignment around
known indel sites (McKenna et al., 2010; DePristo et al., 2011). In
addition, the coverage will not be uniform across the genome:
longer genes will have in average a better coverage compared to
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smaller ones; and low-complexity regions will have low coverage.
Thus modeling of read-depth across samples at each position and
across samples helps to account for such biases, to estimate the
noise, and to control the false discovery rate (FDR) by filtering
noisy predictions (Klambauer et al., 2012). Another promising
approach is to use singular value decomposition to detect rare
CNVs and to infer CNP genotypes from exome sequencing data
(Krumm et al., 2012). The NGS field is still evolving and more
sophisticated methods are frequently made available (Table 2).
A promising strategy to limit the risk of false positives, in par-
ticular in the context of clinical diagnosis, is to predict CNVs
using multiple algorithms (The 1000 Genomes Project Consor-
tium, 2010; Sudmant et al., 2010) and/or using methods that allow
FDR control (Klambauer et al., 2012).

Post-filtering and post-processing steps

Subsequently to CNV detection, additional filtering and process-
ing are often needed to discard possible false-positives. These steps,
referred to as either post-filtering or post-processing, are essential
prior to any attempt to associate CNVs with clinical/phenotypic
traits because false-positives are likely to create spurious associa-
tions. Moreover, we showed that a high FDR decreases significantly

the discovery power of omics studies (Clevert et al., in press).
These post-filtering steps aim at removing either dubious samples
or probes. Subjects predicted with too many CNVs as compared
to other subjects from the study, should be discarded. An aberrant
number of CNVs has proved to be a proxy for poor data qual-
ity and/or high FDR. Probe filtering can involve discarding CNV
regions that are too rare in the population (for example seen in less
than three individuals). But this might remove putative rare CNVs,
which are of most importance for association studies and contrary
to some common CNVs may not be tagged by SNPs (Redon et al.,
2006; Stranger et al., 2007; Conrad et al., 2010; Wellcome Trust
Case Control Consortium et al., 2010). These filters remain useful
as they discard many false positives and in the context of asso-
ciation studies decrease the multiple-testing burdens. Alternative
filtering criteria may flag or use models that account for CNVs
with low-confidence score or that are too short to support the call
(Figure 3).

CNV GENOME-WIDE ASSOCIATION TESTS

GENERAL CNV-GWA FRAMEWORK

Association between a given trait and a CNV locus can be per-
formed in several ways. For quantitative traits linear regressions
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score. Fluctuations in these histograms (such as inversion of the
proportion “small CNVs over long CNVs" or “low-confidence over
high-confidence CNVs") are associated with non-monotonic changes
in the FDR curve.
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are very popular while logistic regression, Fisher’s exact test or
Armitage—Cochrane trend test are often used with binary traits.
All these tests may apply at single probe level, but not for CN
regions. CNVs across subjects do not necessarily have the same
boundaries (Figure 4) and defining a “consensus” CNV locus is
not trivial. This problem is frequently ignored and association
tests are made using probe-level CN information (Figure 4). Such
an approach, assumes that all samples were assayed on the same
platform and that data can be combined into a matrix samples by
probes, where each element corresponds to a predicted CN. Then
association tests can be performed independently for each probe.
Since adjacent probes may carry the same information, many tests
are redundant. This might not be a computational issue; however
it is problematic in terms of multiple-testing corrections. A num-
ber of procedures have been previously proposed to identify the
number of independent tests in SNP-based genome-wide associa-
tion tests (GWAs) and would prove useful with CNV-based GWAs
(Cheverud, 2001; Nyholt, 2004; Gao et al., 2008).

“Aligning CNVs” from different subjects and identifying the
consensus CNV can be useful to identify clusters of CNVs with
similar boundaries and help interpretation (Figure 4). This can
be done with the so-called merge-by-overlap approach (Conrad
et al., 2006; Redon et al., 2006), where CNVs from different indi-
viduals are merged into the same CNV region if their reciprocal
overlap satisfies a minimal cut-off [>50% is frequently used (Con-
rad etal., 2006; Redon et al., 2006)]. We proposed recently another
approach based on principal component analysis and clustering
(Valsesia et al., 2012). Once “aligned,” a matrix CNV by subjects

can be derived and the association tests can be performed as
aforementioned.

DIFFERENCES BETWEEN GENOME-WIDE CNV ANALYSIS AND
GENOME-WIDE SNP ANALYSIS

Conducting a genome-wide CNV analysis differs greatly from con-
ducting a genome-wide SNP analysis. CNVs and SNPs can both
be mined from SNP genotyping arrays, yet data needed for their
detection are different. SNP genotypes can be predicted from the
two measured allelic intensities while CNVs can be predicted by
combining several type of information such as CN ratios and
allelic intensity ratios. Methods like Birdsuite (McCarroll et al.,
2008) can also integrate SNP genotype data and use prior infor-
mation such as regions of known CNVs to improve the CNV
detection.

Another difference is that SNP analysis is carried out using
the whole cohort, while CNV analysis can be performed using
either the whole cohort (multi-sample analysis) or sample-wise
(each sample is analyzed independently from the others). While
SNP genotyping is a fairly standardized procedure; CNV genotyp-
ing remains challenging and is prone to high false-positive rates.
Therefore, while SNP genotypes can be obtained with a very high
prediction confidence; CNV predictions have higher uncertainty
levels. These uncertainty levels greatly challenge the subsequent
CNV association with a given phenotype or clinical trait.

In addition, these two types of analyses differ in the number of
independent tests that are performed. This difference has conse-
quences in the correction for multiple testing. While for SNPs the
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ratio between the number of tested SNPs and the effective num-
ber of truly independent tests is ~2.5-fold (Han et al., 2009) (in
the case of HapMap SNPs), for CNV probes this ratio is several
folds higher. We showed recently with the Colaus cohort (Valsesia
et al., 2012) (a population-based health survey with more than
5,600 subjects genotyped on Affymetrix 500k SNP arrays) that
CN predictions obtained at 490 k autosomal SNPs could be com-
pressed into about 8 k distinct CNV regions, including both rare
and common CNVs. This number of regions gives a first approx-
imation about the number of independent tests. Using the simple
M method (Gao et al., 2008), we estimated that the number of
truly independent tests was 6,643 corresponding to a 74-fold dif-
ference compared to the probe-level CN predictions. Therefore,
while for SNP analysis the difference between number of SNPs and
number of independent tests is negligible, this quantity is much
greater for CNVs and can cause substantial p-value deflation, as
can be observed with QQ-plots.

For these reasons, a genome-wide CNV analysis, such asa CNV-
GWA, is often considered as a secondary analysis, after an initial
SNP-GWA. Studies, like those of the GIANT consortium, often
check whether SNPs discovered to be associated with a certain
trait could potentially tag underlying CNV associations. Two BMI
associations (Willer, 2009; Speliotes et al., 2010) (near the NEGRI
and GPRC5B genes) have been identified as potentially driven by
deletions.

FREQUENT ISSUES IN CNV-GWAs

Copy number variations genome-wide associations (GWAs) are
much more challenging than SNP-based GWAs, mostly because
of the uncertainty of the predicted CNVs. This may explain the
lack of published reports from CNV-GWAs. This uncertainty in
CN can be tackled by missing data likelihood methods resulting
in the usual test statistics (likelihood ratio, Wald test). However
these methods can be computationally intensive and the speed of
convergence (as sample size tends to infinity) ensured by the cen-
tral limit theorem is not always as fast as it is for normal linear
models.

Non-Gaussian test statistic distributions can lead to spurious
associations (Kutalik et al., 2011) and give rise to inflated p-values
(as can be detected with QQ-plots, see Figure 5A). Although
genomic control methods (Devlin and Roeder, 1999) allow cor-
recting for inflated p-values in most cases, critical assessment
of the CNV pipeline remains necessary both for sensitivity and
specificity. Combining methods that estimate FDRs (Clevert et al.,
2011; Klambauer et al., 2012) with technical replicates is essential
to achieve a good sensitivity-specificity compromise. Figure 5D
shows a QQ plot where neither strong p-values inflation nor
deflation can be seen.

Inflated p-values (Figure 5A) can be due to various violations
of the model assumptions, e.g., non-normal trait distribution,
dependence between tests, or confounding effects such as pop-
ulation stratification (including population admixture), cryptic-
or familial-relatedness. Careful covariate selection and diagnos-
tic plots are needed to address the two first issues. For admixture
and population stratification, many methods have been proposed
to detect and adjust them (Cardon and Palmer, 2003; Rosenberg
et al., 2010).

Copy number variations-GWAs can also produce deflated QQ-
plots (Figure 5B) owing to the fact the number of tested markers
is much greater than the number of truly independent tests. Meth-
ods used in multiple-testing adjustment in SNP-GWAs (Cheverud,
2001; Nyholt, 2004; Gao et al., 2008) can be useful to identify CN
markers corresponding to independent tests and to produce the
corresponding QQ plot using those markers only. QQ-plots can
also be produced so that the expected p-value vector (P0) reflects
the fact that the number of probes (1) corresponds to a smaller
number of CNV regions (N) (see Figure 5C).

Controlling for false positives may in some cases require inves-
tigating subject-level data (profile of CN ratio and profile of allelic
ratio), CNV frequencies, and the genomic distance between the
different signals. Correlated signals from probes adjacent to each
other’s would indicate a partially detected CNV (i.e., disrupted
CNV prediction) while isolated signals located on different chro-
mosome would more likely correspond to spurious associations.
Increasing the stringency filter on very rare CNVs (e.g., removing
CNVs with frequency smaller than 1/1000) might avoid the latter
issue.

ANALYSIS OF COMMON AND RARE CNVs

Distinction should be made between analyzing common and rare
CNVs. Common CNV shared by >1% of the population are
referred to as CNPs. CNPs correspond mostly to ancestral events
and segregate in the population with different allele frequencies
[owing to the fact that many are multi-allelic (Redon et al., 2006;
McCarroll et al., 2008)]. Studies from the WTCCC (Wellcome
Trust Case Control Consortium et al., 2010) found that only very
few CNPs were likely to be associated with common diseases. It
is likely that the effect size of CNPs is modest, and that lack of
standardization between studies and small-sample size challenge
the identification of association signal. Instead of discrete (contin-
uous), CN genotypes are preferred to be tested (McCarroll, 2008).
A number of software (Wang et al., 2007a; McCarroll et al., 2008;
Greenman et al., 2010; Van Loo et al., 2010) packages exist to
compute CN genotypes rendering such analyses possible.

For rare CNV association studies, a large sample size is needed
to obtain the required statistical power. This can be achieved by
pooling data from different cohorts (Walters et al., 2010; Jacque-
mont et al., 2011). This task is challenging due to the differences
between cohorts, platform vendors (and thus genomic content),
analytical methods and even FDR. Re-analysis of these cohorts
genotyped on more homogeneous platforms would enable rare
CNV-GWAs possible (Voight et al., 2012). Also, other Illumina
chips share the vast majority of the Illumina370 probe set, which
can be a common set of probes to use. Meta-analysis of case-
control associations can be extended to rare variants. For binary
traits, collecting case and control counts for a given CNV facilitates
efficient meta-analysis. For continuous traits, however, inverse-
variance weighting meta-analysis may be sensitive to slight devi-
ations from normality of the test statistics, thus requiring robust
extensions.

TOWARD BETTER METHODS FOR CNV-GWAs
Most of the association tests rely on discrete CN classifica-
tion (hard-classification). Given the CN prediction uncertainty
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predictions]. (A) Shows a strong p-value inflation (lambda~65) that is due CNV regions (number of effective tests) and n is the total number of CNV
to the confounding factor (PC1). (B) Corresponds to results from a model probes (number of observations). (D) Shows results from association with
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and the important false-positive rate, hard-classification is no
longer sufficient (Barnes et al., 2008). We showed previously
that for SNP-based GWAs, modeling genotype uncertainty was
significantly better than using called genotypes when data
were of low quality (Kutalik et al, 2011). Specific strate-
gies have been proposed for CNV-GWAs: the case-control

framework from Barnes et al. (2008) that applies likelihood
ratio testing of CN ratio in cases and controls; the mod-
eling of CN state probabilities in logistic regression (Xu
et al., 2011) and methods that can test the CN ratio from
family-based design (Ionita-Laza et al., 2008; Murphy et al,
2010).
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Since CNVs segregate at different frequencies in different ances-
tral populations (Jakobsson et al., 2008), recent improvements in
SNP-GWAs (Kang et al., 2010) accounting for population struc-
ture via mixed-models could be readily extended to CNV-GWAs.
Burden tests designed for SN'Vs (Yang et al., 2008; Asimit and Zeg-
gini, 2010; Neale et al., 2011; Asimit et al., 2012; Kinnamon et al.,
2012; Lee et al., 2012a,b; Chen et al., 2013) could also be adopted
to combine rare aberrant CN events in a region.

CNV AND BIOLOGICAL/CLINICAL INTERPRETATION

The importance of rare CNVs emerged with a few GWAs (Glessner
etal.,2010; Grozevaetal.,2010; Prakash etal.,2010) and many can-
didate studies (de Cid et al., 2009; Bochukova et al., 2010; Walters
et al., 2010; Williams et al., 2010; Jacquemont et al., 2011; Pag-
namenta et al., 2011). To date, more than 291,801 CNV regions
[from 53 studies, see release dated as November 23, 2012 from the

DGV database (Iafrate et al., 2004)] have been identified in the
general population and CNVs linked with 65 genomic syndromes
are described in DECIPHER (Firth et al., 2009) for more than
7600 patients. With the advent of NGS projects aiming at clinical
diagnosis (Vasta et al., 2009; Lupski et al., 2010; Bainbridge et al.,
2011; Bamshad et al., 2011; Isidor et al., 2011; Calvo et al., 2012;
Haack et al., 2012; Koser et al., 2012; Neveling et al., 2012), thou-
sands of variants can be expected per patient. This poses many
problems to clinical labs on how to filter, prioritize, and interpret
variants that might potentially be associated with disease suscepti-
bility, progression, and possibly response to treatment. Figure 6A
summarizes possible strategies that we discuss below.

CNV GENOMIC CHARACTERIZATION
The first step to understand the potential impact of a single CNV
is to investigate its genomic context. For e.g., if the CNV is located
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within/near a gene, the gene annotation may already provide
valuable information (Figure 6D). Vicinity of repeats [includ-
ing segmental duplications and L1 retrotransposon (Zhang et al.,
2009)] as well as specific non-B DNA conformation (Bacolla and
Wells, 2004) can be indicative about a genesis mechanism. Pres-
ence of miRNA coding sequences, DNase hypersensitive clusters
and ChIP-seq binding sites can be clues about possible tran-
scription regulation. Overlap with previously reported hits from
SNP-GWAs can also help to pinpoint a particular gene or biological
process. A number of tools allow sequence-based annotation and
to visualize large amounts of data (Fiume et al., 2012; Flicek et al.,
2012; Kuhn et al., 2013). Genome browsers of numerous large-
scale datasets such as those from the ENCODE project (ENCODE
Project Consortium et al., 2012) proved to be a great asset for CNV
annotation, in particular to offer regulatory evidence and facili-
tate explanation regarding the putative CNV impact in a large
range of tissues. These tools and datasets are now widely used by
biologists and clinicians to annotate and prioritize their variants.
A recent and noticeable addition is the variant effect predictor
(McLaren et al., 2010) (VEP, formerly known as the SNP effect
predictor). This tool allows annotating SNP, indels, and CNVs
from any species using highly curated data from Ensembl (Flicek
et al., 2012). VEP can be used directly from within the Ensembl
genome browser (usage limited to 750 variants), or remotely using
the Ensembl API, or even locally using a stand-alone script (no
limitation on the number of variants to be analyzed). Docu-
mentation and source code can be retrieved from Variant Effect
Predictor!. Currently VEP provides indication about the possi-
ble consequences as described by the Sequence Ontology (Eilbeck
et al., 2005); checks for overlap with known regulatory features
and whether the variant falls in a high information part of a
transcription factor binding site; check for previously reported
variant at the same location and report frequencies from the 1000
Genomes project for known variant. For SNPs, VEP also provides
allele/genotype frequencies, a list of tagged variants (as well as LD
calculation) and predictions from SIFT (Kumar et al., 2009) and
Polyphen (Adzhubei et al., 2010). Future development of VEP will
annotate variants with data from animal studies, human ClinVar?,
Orphanet®, LSDBs (HGVS LSDBs Listing)*, and summary-level
data from DECIPHER v5°, UK10K®, and EGA (The European
Genome-phenome Archive)”.

INVESTIGATING THE PUTATIVE FUNCTIONAL IMPACT

Assessing the functional impact of CNVs can be achieved by assess-
ing protein levels or kinase phosphorylation status to determine
whether transduction signal in a disease-relevant pathways might
potentially be affected by the variant of interest (Dos Santos et al.,
2004); up to “engineering” the DNA variation in model organ-
isms and study the impact on development. This latter strategy

Uhttp://www.ensembl.org/info/docs/variation/vep/index.html
Zhttp://www.ncbi.nlm.nih.gov/clinvar/
Shttp://www.orpha.net/consor/cgi-bin/index.php?lng=EN
*http://www.hgvs.org/dblist/glsdb.html
Shttp://decipher.sanger.ac.uk/

Shttp://www.uk10k.org/

"https://www.ebi.ac.uk/ega/

was successfully applied in our quest of candidate genes associated
with microcephaly (Jacquemont et al., 2011) (Figure 6B).

Although such experimental analyses are best to dissect the
molecular mechanisms and consequences induced by genomic
variants; these analyses are challenging and not adapted for large
number of candidates. Since CNV can affect gene expression levels
(Stranger et al., 2007; Dimas et al., 2009; Henrichsen et al., 2009)
assessing whether a list of candidates can potentially induce dif-
ferential expression (ideally in the same patients) can help with
investigating putative CNV downstream consequences. Assessing
gene expression levels for a subset of the cohort (with microar-
rays, targeted approaches, or even RNA-seq) is currently pos-
sible with relatively affordable costs for any large-scale genetic
study. A caveat to these expression analyses is that the appro-
priate target tissue is not always available. Most frequently, such
analyses are performed on RNA derived from blood cells; e.g.,
immortalized lymphoblastoid cell lines. Although it can be a
good starting point before further investigation, in the foresee-
able future using iPS-derived specialized cells would provide better
insights.

INVESTIGATING THE PUTATIVE CLINICAL IMPACT

Assessing the clinical impact of a genetic variant is definitely not
a trivial task: it requires carefully designed studies and is gener-
ally outside of the scope of the initial study that has identified the
variant of interest. This section discusses available resources that
could help building a priori knowledge about the putative impact
of a CNV before designing subsequent studies.

Family studies can bring some evidence in support of an asso-
ciation between a CNV and a phenotype. Genetic diagnostic labs
routinely use such strategies but the interpretation of these segre-
gation analyses are often hampered by partial penetrance of the
CNV under investigation. For instance, a CNV may have been
inherited from an unaffected parent and yet be a major fac-
tor contributing to the trait in the child (Girirajan et al., 2012).
To help address this issue, in depth clinical phenotyping of the
patients (and their relatives) as well as sharing clinical case between
diagnostic labs are helpful. But ultimately, additional case-control
studies are needed.

Today, CNV:s identified by clinical labs can be shared through
the DECIPHER interface (Firth et al., 2009). DECIPHER is an
online repository of CNV and phenotype data whose goal is to
enable the clinical interpretation of CN variation (Corpas et al,,
2012). The web interface includes a number of tracks (associated
syndrome, CNV consensus track, haplo-insufficiency track) that
facilitate data interpretation. Other databases have collected CNV's
from publications. Although these databases are good resources,
they should be used with great caution in the clinical setting (Duc-
los et al., 2011) mostly because within these databases, CNVs were
detected in populations whose participants were not necessarily
ascertained clinically and because the CNV frequencies from these
studies are not comparable due to differences in design, platform,
analytical pipeline, and false-discovery rate.

PRIORITIZATION OF MANY CANDIDATE CNVs
The above approaches are useful when a limited number of can-
didates are to be investigated. To date, software such as Cartagenia
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are efficient at prioritizing large CNVs (>200kb) related to
diagnosing developmental delay in the clinic.

In the research context, when the number of CNVs is much
larger, in silico methods are needed to prioritize and filter the
calls. Although there is globally a lack of prioritization methods,
a number of existing approaches, used in gene expression and
SNP-GWAs can be useful. These approaches include text-mining
approaches, geneset enrichment analyses, and network-guided
analyses.

Text-mining approaches

Text-mining is a powerful way to mine the scientific literature and
identify links between a concept term (such as a disease name
or a MeSH term) and a given gene (Rebholz-Schuhmann et al.,
2012). A number of tools already exist (Tranchevent et al., 2008,
2011; Liekens et al., 2011) and are useful to rank a list of genes
in the vicinity of candidate CNVs or simply to identify new con-
cepts/genes that link a gene of interest to a disease (Figure 6C). An
inherent limitation is that genes that have been extensively studied
can influence the ranking. Depending on the statistical framework
of the method, genes listed in many publications might be better
ranked than genes described with fewer reports. Figure 6C shows
that although KCTD13 was involved in microcephaly in zebrafish,
it only ranked 13th out of the 29 genes involved in the 16p11.2
CNV while the MAPK3 gene ranked first. Nevertheless using mul-
tiple algorithms/ontologies (Malik et al., 2006; Yu et al., 2008)
and/or using a training set of genes for a biological process of
interest (Tranchevent et al., 2008) are simple ways to improve the
prediction performance.

Geneset enrichment analyses

Geneset enrichment analyses are very popular in gene expression
studies and test the overlap with a given biological annotation
(molecular pathway, ontology). Several resources are available
such as DAVID (Huang et al., 2009), GSEA (Subramanian et al,,
2005), and GOstat (Beissbarth and Speed, 2004). These methods
have a number of caveats (Pavlidis et al., 2012; Tamayo et al., 2012)
and the results require critical interpretation. Therefore combin-
ing several recent methods (Richards et al., 2010; Geistlinger et al.,
2011) as well as thorough (expert) biological interpretation (to
check consistency and relevance of the final annotation) is needed
to avoid story-telling (Pavlidis et al., 2012).

Network-based analyses

A number of studies (Cancer Genome Atlas Research Network,
2008; Berger et al., 2010; Cerami et al., 2010; Lango Allen
et al., 2010; Millstein et al., 2011; Valsesia et al., 2011; Lee
et al., 2012¢) have been successful by integrating both genomic
variants and gene expression, into networks of protein—protein
interactions and by identifying sub-networks made of proteins
significantly connected to each other, and corresponding to
genes/transcripts affected with structural variations and/or dif-
ferential gene expressions. Such clustering analyses allow restrict-
ing a list of candidate genes to those whose products are
known (or predicted) to interact with each other, thereby enrich-
ing for genes potentially participating to a same biological
process.

Furthermore these network-guided analyses allow flexibility
in that genes apparently “unaffected” in the dataset but signifi-
cantly linking other “affected genes” can be identified. Indeed this
strategy was successfully applied to glioblastoma (GBM) (Cerami
etal.,2010) and identified relevant candidate genes linking known
GBM’s genes.

Today, researchers can construct their own network of interac-
tions from gene expression data and text-mining approaches. Such
networks are referred as prior knowledge networks (PKNs). Using
disease-relevant PKNs (from focused literature and/or relevant
gene expression datasets) provides a powerful strategy to connect
genes affected by CNVs. Many methods have been proposed to
identify SNPs associated with clinical trait using network-guided
analyses (Wang et al., 2007b; Raychaudhuri et al., 2009; Lango
Allen et al., 2010; Kasarskis et al., 2011; Lee et al., 2011; Mill-
stein et al., 2011; Rossin et al., 2011; Glaab et al., 2012). In fact,
these methods are often used in SNP-GWAs and in drug discovery
projects. Applying those methods on CNVs and in combination
with relevant PKNs is very appealing for the detection and clinical
interpretation of CNV sub-networks.

DISCUSSION

Numerous studies have documented CNVs in a genome-wide
fashion and their impact on disease and evolution is clearly estab-
lished. Yet the detection of CNVs and subsequent association with
clinical and functional phenotypes remains very challenging.

Remarkable improvements have been made to call CNVs from
recent platforms, yet older generation arrays have not been mined
extensively due to a lack of standards (Valsesia et al., 2012). Today,
tremendous efforts are invested in NGS projects. Although meth-
ods to detect indels and CNVss are still being developed, thousands
of structural variants are expected for a single individual. The lack
of gold standard, the heterogeneity across platforms and meth-
ods, as well as the massive amount of data generated constitute a
great challenge for result interpretations. These issues have been
known for several years (Pinto et al., 2011), yet the CNV com-
munity has not agreed on any standards. Such standards could
potentially be set by large genomic projects like the 1000 Genome
project (The 1000 Genomes Project Consortium, 2012) or large
biomedical projects like DDD (Firth et al., 2011) (deciphering
developmental disorders), a DECIPHER initiative.

Thelargest study to date has revealed very few examples of asso-
ciations between common CNVs (CNPs) and common disease
(Wellcome Trust Case Control Consortium et al., 2010). More-
over, all of the CNPs involved in these associations are well tagged
by SNPs. Association between rare CNVs and common/complex
disease has been demonstrated with several candidate approaches
(McCarthy et al., 2009; Walters et al., 2010; Jacquemont et al.,
2011) and several large CNVs (>100Kb) from genome-wide
analyses have been found associated with schizophrenia as well as
other neuro-developmental disorders (International Schizophre-
nia Consortium, 2008; Stefansson et al., 2008; Walsh et al., 2008;
Xu et al., 2008; Kirov et al., 2009; Williams et al., 2010; Cooper
et al., 2011; Grozeva et al., 2012; Malhotra and Sebat, 2012). Yet
the literature remains sparse regarding successful genome-wide
investigations for other traits/diseases or regarding smaller CNVs.
This highlights the need (1) for new methods for CNV-GWAs,
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(2) to re-investigate study design with family-based design instead
of case-control design with unrelated controls (from the general
population), and (3) for thorough clinical phenotyping.

Many visualization platforms and analytical methods are avail-
able for understanding the impact of (coding) SNPs and somatic
mutations. Yet little (almost nothing) is available for clinical inter-
pretation of indels and CNVs. Presently a few companies develop
and sell software to research and clinical labs. Beside the cost of
these tools, these are often regarded as black boxes. The under-
lying algorithms and code are not made available thus the user
cannot check whether state-of-art methods are used and cannot
understand in finer details how the result was obtained. The func-
tionalities are often limited to data management and visualization.
Only a few basic analyses are provided for clinical interpretation
and there is very little flexibility to expand the existing function-
alities or even to integrate new ones. In this review, we have
highlighted a number of strategies for CNV clinical interpreta-
tion. Although those methodologies are not necessarily available
within a single software, there are numerous individual and freely
available tools that can be used.

With the rapid evolution of the different platforms and analyt-
ical methods there are knowledge gaps to be filled. These gaps can
range from the appropriate design of a large-scale genetic study, to
the different steps from data generation to computational analy-
ses, results validation, and interpretation. Today, there is a need
for computer-literate biologists and clinicians, as well as bioinfor-
maticians embedded within wet-labs and clinical diagnostic labs.
To improve the communication between the different actors, there
is a strong need for developing cross-competencies and to use a
common vocabulary. Most clinicians have access to continuous
education; similarly biologists and bioinformaticians can benefit
from various university formations/seminars. Continuing these
efforts is worthwhile and additional formations focused onto the
interpretation of omics-data in a clinical setting are needed. These
synergies and complementarities between the different parties, as
well as a shared common knowledge are critical components to
progress toward a better data interpretation and hopefully toward
personalized medicine.

Finally, extensive and accurate phenotyping, as well as data
sharing using centralized and secure databases like DECIPHER,
are essential to speed-up the CNV clinical interpretation and to
bridge between research and diagnostic labs.

PERSPECTIVES

Today the pathogenic contribution of CNVs to rare inherited dis-
eases is well established, yet the contribution to complex traits
remains unclear. In addition, most genotyping assays rely on
markers that do not violate Mendelian inheritance principles and
that are in good Hardy—Weinberg equilibrium in the general pop-
ulation (HapMap). This excludes genomic regions that are highly
dynamic (like segmental duplications or low-complexity regions)
and that are subject to recurrent CN changes. With the recent
improvements in the NGS field (longer reads, higher sequenc-
ing depth, newer mapping methods), analysis of these regions
becomes possible (although very challenging). Careful investiga-
tion of these regions, using existing data from sequencing projects
and future sequencing data generated in clinical labs, might reveal
interesting insights regarding the CNV aspect of the so-called
missing heritability.

In the near future, the CNV field would benefit from (1) ongo-
ing large sequencing projects like the 1000 Genomes to learn more
about genome plasticity; (2) access to newer genotyping arrays
that cover previously untagged SNPs; (3) developing open-access
bioinformatics solution to facilitate and support clinical diagno-
sis; (4) establishing standards for clinical diagnosis and provide
appropriate training to all the different players including physi-
cians, biologists, and data analysts, and (5) further encouraging
efforts on extensive phenotyping and data sharing between clinical
and research labs.
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