frontiers im
GENETICS

ORIGINAL RESEARCH ARTICLE
published: 31 May 2013
doi: 10.3389/fgene.2013.00097

=

Heterogeneity of expression of epithelial-mesenchymal
transition markers in melanocytes and melanoma cell lines

Ji Eun Kim?, Euphemia Leung, Bruce C. Baguley and Graeme J. Finlay*

Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand

Edited by:
Mike Eccles, University of Otago,
New Zealand

Reviewed by:

Benjamin Bonavida, University of
California at Los Angeles, USA
Donna F. Kusewitt, MD Anderson
Cancer Center, USA

*Correspondence:

Graeme J. Finlay, Auckland Cancer
Society Research Centre, Faculty of
Medical and Health Sciences, The
University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
e-mail: g.finlay@auckland.ac.nz

Present address:

Ji Eun Kim, Cancer Science Institute
of Singapore, National University of
Singapore, Singapore 117599.

INTRODUCTION

The epithelial-mesenchymal transition (EMT) describes a reversible switch from an
epithelial-like to a mesenchymal-like phenotype. It is essential for the development of the
normal epithelium and also contributes to the invasive properties of carcinomas. At the
molecular level, the EMT transition is characterized by a series of coordinated changes
including downregulation of the junctional protein E-cadherin (CDHT), up-regulation
of transcriptional repressors of E-cadherin such as Snail (SNA/T) and Slug (SNA/2),
and up-regulation of N-cadherin. We wished to determine whether cultured normal
melanocytes and melanoma cell lines, which are derived from the neural crest, showed
signs of a similarly coordinated phenotypic switch. We investigated normal melanocytes
and 25 cell lines derived from New Zealand patients with metastatic melanoma. Most
lines had been previously genotyped for common mutations such as BRAF, NRAS, PIK3CA
(phosphatidylinositol-3-kinase), TP53 (p53), and CDKN2A (p16). Expression of E-cadherin,
N-cadherin, microphthalmia-associated transcription factor (MITF), Snail, Slug, Axl, p53,
and Hdm2 was compared by western blotting. Normal melanocytes expressed each of
these proteins except for Snail, while normal melanocytes and almost every melanoma line
expressed Slug. Expression of individual markers among different melanoma lines varied
from high to low or undetectable. Quantitation of western blots showed that expression
of MITF-M, the melanocyte-specific isoform of MITF was positively related to that of
E-cadherin but inversely related to that of N-cadherin and Axl. There was also no apparent
relationship between expression of any particular marker and the presence of BRAF,
NRAS, PIK3CA, TP53, or CDKN2A mutations. The results suggest that melanomas do not
show the classical epithelial and mesenchymal phenotypes but rather display either high
E-cadherin/high MITF-M expression on one hand, or high N-cadherin/high Ax| expression
on the other. These may correspond to differentiated and invasive phenotypes in vivo.
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Melanocytes differ from epithelial cells in having their origin in

The epithelial-mesenchymal transition (EMT) describes a
reversible phenotypic change in epithelial cells that is essential
for embryogenesis and wound healing in normal tissues. It is
characterized by theloss of functional E-cadherin containing junc-
tions and loss of cell polarity, and is particularly associated with
the expression of zinc-finger transcription factors Snail (SNAII)
and Slug (SNAI2), as well as of ZEB1 (zinc-finger E-box-binding
homeobox 1), ZEB2, FoxC2 (forkhead box protein C2), and
TWIST (Lim and Thiery, 2012). Expression of the intermediate
filament protein vimentin appears to be upregulated by Slug in
cells undergoing EMT; vimentin then up-regulates the Axl tyrosine
kinase, which contributes to changes in cytoskeletal architecture
and migratory potential (Ivaska, 2011). These changes in adhe-
sion proteins cause cells to change to a morphology resembling
that of mesenchymal cells and to a functional change toward
migration, invasion, and resistance to apoptosis. Evidence for
EMT has also been found in carcinomas, leading to the pro-
posal that it is involved in both invasion and metastasis (Lim and
Thiery, 2012).

the neural crest, a collection of multipotent and migratory cells in
the vertebrate embryo that is also important for the development
of cartilage, bone, neurons, glia, and smooth muscle. Although
the term EMT arose from studies in epithelial tissues, it has been
applied to a variety of developmental tissues including migra-
tory neural crest cells that are the precursors of melanocytes. Slug
appears to be essential for precursor migration and melanocyte
development in mammals; Slug knockout mice exhibit some
features of the Waardenburg syndrome in humans, which is associ-
ated with hypopigmentation and hearing loss (Shirley et al., 2012),
while loss of one Slug allele in humans is associated with piebald-
ism (Sanchez-Martin etal., 2003). Expression of Slug is closely
related to that of microphthalmia-associated transcription factor
(MITF; Sanchez-Martin etal., 2002), which in turn is essential
for expression of proteins mediating the production of melanin
by mature melanocytes. Such cells also express E-cadherin, pre-
sumably allowing both functional interaction with E-cadherin
expressed on keratinocytes (Kuphal and Bosserhoff, 2012) and
transfer of melanosomes.
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Melanoma cells differ from melanocytes by acquiring inva-
sive and/or metastatic properties, depending on the state of the
melanoma (Orgaz and Sanz-Moreno, 2013). It has been sug-
gested that the invasive and metastatic potential of melanoma cells
reflects their ability to undergo EMT-like reversible phenotypic
changes (Shirley etal., 2012). Histological studies of melanoma
show frequent expression of Slug, E-cadherin, and MITF but also
considerable heterogeneity of expression of these proteins among
individual cells from the same specimen (Shirley etal., 2012). The
aim of this study was to assess the degree of coordinated expres-
sion of EMT-associated markers in a series of low passage human
melanoma cell lines, comparing expression with that of cultured
normal melanocytes. We utilized a series of melanoma lines that
were originally derived from New Zealand patients with metastatic
melanoma to assess responses to radiotherapy and chemother-
apy (Marshall etal., 1992, 1994; Kim etal., 2012). Many of these
cell lines have been characterized for genetic mutations in BRAF,
NRAS, PIK3CA (phosphatidylinositol-3-kinase), TP53 (p53), and
CDKN2A (p16) genes (Parmar etal., 2000; Charters etal., 2011).
In this study, we have grown 25 of these melanoma cell lines, char-
acterized their expression of E-cadherin, N-cadherin, Snail, Slug,
Axl, p53, Hdm2, and MITE, examining the relationship between
protein expression and common genetic aberrations.

MATERIALS AND METHODS

CULTURE OF MELANOMA CELLS AND MELANOCYTES

The 25 New Zealand melanoma (NZM) cell lines were gener-
ated from surgical samples of metastatic melanoma as previously
described (Marshall etal., 1994; Kim etal., 2012). Written con-
sent was obtained from all patients under Auckland Area Health
Board Ethics Committee guidelines. NZM cell lines were grown
under low oxygen conditions (5% O3) in order to mimic physio-
logically low oxygen levels in tumors. NZM lines were grown in
a-modified minimal essential medium («MEM; Invitrogen, USA)
supplemented with insulin (5 jLg/mL), transferrin (5 pg/mL), and
sodium selenite (5 ng/mL; Roche Applied Sciences, Germany),
100 U/mL of penicillin, 100 pg/mL of streptomycin (PS), and
5% fetal bovine serum (FBS). Human primary melanocytes were
purchased from Invitrogen and grown in light sensitive Medium
254 supplemented with human melanocyte growth supplement
(HMGS-2; Invitrogen) and PS. Human melanocytes were cultured
in an atmosphere of 5% CO; in air at 37°C. Genetic analyses of
BRAF, NRAS, TP53, CDKN2A, and PIK3CA in NZM cell lines were
carried out. Selected melanoma cell lines were sequenced for muta-
tions in BRAF, NRAS, and PIK3CA as previously described (Kim
etal., 2012). Sequencing for mutations in the TP53 and CDKN2A
genes has been previously described (Parmar etal., 2000; Charters
etal., 2011).

WESTERN BLOTTING

After NZM cells were grown to about 80% confluence, they
were washed in ice-cold phosphate buffered saline (PBS), lysed in
radioimmunoprecipitation assay buffer and prepared for western
blotting as previously described (Kim et al.,2009). Antibodies used
were specific for the following epitopes: E-cadherin, N-Cadherin,
Snail, Slug, and Axl were from Cell Signaling Technology; MITF
was from Abcam; and p53, HDM2, and p-actin were from Santa

Cruz. Western blots were quantified using Image J software and
expressed as a ratio to B-actin.

STATISTICAL ANALYSIS

Spearman’s rank correlation coefficient (rg) and statistical sig-
nificance (p) were calculated using standard methods (SPSS).
Values of p < 0.05 were considered to be statistically significant.
Correlation plots were also fitted with best-fit hyperbolae.

RESULTS

EXPRESSION OF E-CADHERIN, N-CADHERIN, Snail, and Slug

Since EMT is normally associated with loss of E-cadherin expres-
sion and gain of N-cadherin, we first measured cadherin expres-
sion. Normal melanocytes expressed both proteins and about half
of the lines (NZM11, NZM85, NZM86, NZM9, NZM17, NZM26,
NZM40, NZM50, NZM59, NZM4, and NZM382) showed moder-
ate to strong N-cadherin expression but no E-cadherin expression.
The other lines all expressed E-cadherin except for NZM22, which
expressed neither (Figure 1A). When we quantified the west-
ern blots and normalized it to B-actin expression (Figure 1B),
we observed an inverse correlation between E-cadherin and N-
cadherin expression (Figure 2A). Quantification and statistical
analysis showed a significant negative correlation between E-
cadherin and N-cadherin expression (r; = —0.578; p = 0.002).
Slug, the putative transcriptional repressor for E-cadherin, was
expressed in normal melanocytes as well as in all lines with
the exception of NZM17. The relative expression of E-cadherin
and Snail suggested an inverse correlation (Figure 1A). However,
quantification (Figure 2B) showed this to be not statistically sig-
nificant (ry = —0.272; p=0.18). We also tested whether expression
of these markers was associated with any of the mutations shown
in Table 1, but no clear relationship was found.

EXPRESSION OF AxI, MITF, p53, and Hdm2

It has been previously reported that EMT is associated with
increased Axl expression (Gjerdrum etal., 2010) and reduced
MITF expression (Sensi etal., 2011). We measured Axl expres-
sion and found it only in a proportion of cell lines (Figure 3A).
Although it appeared from western blots that Ax] expression was
inversely correlated to E-cadherin expression, quantitation failed
to show significance (rs = —0.108). MITF has several isoforms
(Yasumoto etal., 1998), and the A and M isoforms are expressed
in the melanocyte lineage (Goding, 2000) with the M isoform
having differentially spliced variants (Hodgkinson et al., 1993; Ste-
ingrimsson etal., 1994; Selzer etal., 2002). Both MITF-A and
MITF-M were found in the cell lines (Figure 3), with the MITF-
M isoform appearing as two differentially spliced variants. We
quantified blots for MITF isoforms (Figure 3B) and observed a
statistically significant inverse relationship (p = 0.006) between
MITF-M expression and Axl expression (Figure 4A). Several cell
lines (NZM49, NZM22, and NZM?7), as well as melanocytes,
expressed both Axl and MITE. Interestingly, NZM49 and NZM22,
which express both MITF and Axl, expressed more MITF-A
than other cell lines. Furthermore, there was a significant neg-
ative correlation between MITF-M and N-cadherin expression
(rs = —0.562; p = 0.007; Figure 4B) and a significant positive cor-
relation between MITF-M expression and E-cadherin (rs = 0.514;
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FIGURE 2 | Relationship between expression of (A) N-cadherin and E-cadherin, and (B) E-cadherin and Snail normalized to p-actin expression. The
lines indicate best-fit hyperbolae.
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Table 1| Genetic status of the melanoma lines used in this study.

NZM BRAF NRAS TP53 CDKN2A PIK3CA

3 VB600E Deletion
4 VB00E 241S/P

7 VB00E 241S/P/WT

9 179C/T Deletion
1 V600E Deletion
12 V600E

13 Deletion
15 Q61K

17 Q61K 241S/T

20 V600E Deletion
22 241S/T/IW

23

26 VB600E 136A/G

28 241S/T/WT + 1569a/v

39 213A/G Deletion
40 Q61H Del 249-253 H1047R
48 Q61K

49 V600E Deletion
50 R280T

59 Silent T/G Deletion
71

82

85

86

100

p = 0.007; not shown). Since it has been reported that loss of p53
expression is associated with EMT (Gadea etal., 2007), we also
measured expression of p53 and of Hdm?2, a protein closely asso-
ciated with p53 degradation (Araki etal., 2010). However, there
was no obvious relationship between expression of either p53 or
Hdm?2 and that of other EMT markers (Figure 3A). As MITF has
been noted to be one of the key molecular switches that determine
switching of different cell progeny (Cheli etal., 2011), we also
stained for MITF to observe expression in individual cells within
the same cell line. Interestingly, in NZM86 and NZM40 (two cell
lines that express very low MITF as determined by western blot-
ting) we observed individual cells that expressed detectable levels
of MITF (Figure 5) scattered amongst low MITF expressing cells.

DISCUSSION

The analysis of this series of early passage human melanoma
lines has shown them to be highly heterogeneous not only
with respect to expression of proteins directly associated with
EMT such as E-cadherin, Snail, Slug, and Axl (Figure 1) but
also with respect to expression of proteins that are more indi-
rectly associated with EMT, such as MITF and p53 (Figure 3).
Melanoma lines (with one exception) and normal melanocytes,

expressed Slug. Other markers are generally strongly expressed
in some lines but not others. Among the melanoma lines, we
found that expression of MITF-M, the melanocyte-specific iso-
form of MITF, was positively related to that of E-cadherin but
inversely related to that of N-cadherin and Axl (Figures 4A,B).
A possible interpretation of the results is that melanoma lines
show mesenchymal properties overall, but that individual lines
vary between a high E-cadherin/high MITF-M expression and a
high N-cadherin/high Axl expression phenotype. Cultured nor-
mal melanocytes show an intermediate phenotype, expressing all
markers.

The results agree with an earlier study reporting that Axl-
positive melanoma cells do not express MITF (Sensi etal.,
2011). They also support a previous study that used a series
of NZM melanoma cell lines to identify a gene expression sig-
nature that distinguished two phenotypes differing in their in
vitro invasive potential (Jeffs etal., 2009). Although the cell
lines used in that study overlap only partially with the lines
used in the present study it is evident that the six lines with
the “non-invasive” signature (NZM3, NZM4, NZM7, NZM12,
NZM15, and NZM20) expressed MITF but little or no Axl while
four with the “invasive” signature (NZM9, NZM11, NZM22,
and NZM40) expressed no MITF but often expressed Axl
(Figure 3).

One of the important questions posed in this study is whether
the pattern of expression of proteins in the EMT pathway is
related to genetic mutation. A detailed analysis of the muta-
tional status of the melanoma lines will be reported elsewhere
in this issue (Stones et al., 2013) but with the available data shown
in Table 1, we have been unable to detect any significant rela-
tionship between expression of proteins shown in Figures 1 and
3 and the mutational status of BRAF, NRAS, TP53, CDKN2A,
or PIK3CA. These results echo those obtained from a study
on the utilization of enzymes in the PI3K-PKB (phosphoinosi-
tide 3-kinase—protein kinase B), MEK-ERK (mitogen-activated
protein kinase kinase—extracellular signal-regulated kinase), and
mTOR-p70S6K (mammalian target of rapamycin—p70 ribosomal
S6 kinase) signaling pathways. As determined by phosphorylation
of signaling components, phosphorylation varied widely across a
series of cell lines but did not directly reflect the PIK3CA, PTEN,
NRAS, or BRAF mutational status of genes of these lines (Kim
etal., 2012). A feature of the results is that individual melanoma
lines vary enormously in their expression of particular proteins.
This extends a previous study showing a large amount of het-
erogeneity in expression of MITF and the melanocyte lineage
proteins PAX3 across a series of NZM lines, with cellular protein
levels varying by 15-fold and more than 100-fold, respectively (He
etal., 2011). Phenotypic switching has previously been suggested
to explain differences in transcription signatures that correspond
to different cellular phenotypes (Hoek etal., 2008; Hoek and
Goding, 2010) and could account for the differences in protein
expression.

Recently, MITF has been suggested to be crucial in determining
whether melanoma cells proliferate (melanoma initiating cells)
or change to accommodate a more invasive phenotype (Carreira
etal., 2006; Hoek and Goding, 2010; Cheli etal., 2011); this has
formed the basis for the hypothesis discussed separately in this
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FIGURE 5 | Immunofluorescent images of NZM40 and NZM86 stained for MITF (green) and for DNA (diaminophenylindole: blue). Scale bars on the

issue (Eccles etal., unpublished). The mechanistic basis of such
switching has not yet been elucidated but the concept is consis-
tent with evidence that melanomas cells do not have a defined
hierarchical organization with stem cells at one end and differen-
tiated cells at the other (Quintana etal., 2008). Rather, each cell
in a population may have a certain probability of switching to or
from a phenotype with stem cell characteristics. There are specu-
lations as to what could induce or decrease MITF activity (Strub
etal.,, 2011) and determine the invasiveness or the stemness of
the melanoma cells in response to hypoxia (Cheli et al., 2012) or to
other factors in the tumor microenvironment (Li et al., 2003). One
interesting observation is that even though NZM40 and NZM86
show low MITF expression by western blotting, we clearly see
by microscopy that some cells highly express MITF (Figure 5),
which is evidence of a heterogeneous population of cells
(Quintana etal., 2010).

Histological studies on in vivo human melanoma tissue have
shown considerable heterogeneity by individual cells in expres-
sion of markers associated with EMT (Shirley et al., 2012) and this
is consistent with the in vitro histological data shown in Figure 5.
It is possible that melanoma tissue in vivo shows even greater
phenotypic diversity than the derived cell lines. Thus, as shown
diagrammatically in Figure 6, the in vivo, population develops,
by phenotypic switching, a diverse population with individual
cells exhibiting a high E-cadherin/high MITF-M expression on
one hand or a high N-cadherin/high Axl expression on the other.
Melanomas in vivo generally have cell cycle times of approximately
1 week, while derived cell lines have cell cycle times of 1-2 days
(Baguley, 2011). Development of cell lines thus exerts a strong
selective pressure for outgrowth of more rapidly cycling cells and

E-cadherin N-cadherin
MITF Axl

@@

Selection by
growth rate

E-cadherin
MITF

Cellline

FIGURE 6 | Possible model for the generation of melanoma cell lines.
Phenotypic switching in vivo generates a highly heterogeneous population
of cells that vary in expression of proteins such as E-cadherin, N-cadherin,
Axl, and M-MITF. Derivation of a cell line, by selecting for rapid proliferation,
may select for an individual phenotype.
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may tend to select one of these phenotypes. Thus, melanoma
tissue may be characterized as a mixture of phenotypes, some
expressing high MITF-M and E-cadherin with more differentiated
non-invasive behavior, and others expressing high N-cadherin,
Slug, and Axl and with a more invasive behavior.

REFERENCES
Araki, S., Eitel, J. A. Batuello,
C. N., Bijangi-Vishehsaraei, K.,

Xie, X. J., Danielpour, D., etal.
(2010). TGF-betal-induced expres-
sion of human Mdm?2 correlates with
late-stage metastatic breast cancer.
J. Clin. Invest. 120, 290-302. doi:
10.1172/JCI39194

Baguley, B. C. (2011). The paradox of
cancer cell apoptosis. Front. Biosci.
16, 1759-1767. doi: 10.2741/3819

Carreira, S., Goodall, J., Denat, L.,
Rodriguez, M., Nuciforo, P., Hoek,
K. S., etal. (2006). Mitf regulation
of Dial controls melanoma prolifer-
ation and invasiveness.
20, 3426-3439. doi:
406406

Charters, G. A, Stones, C. J., Shelling,
A. N, Baguley, B. C., and Finlay, G.
J. (2011). Centrosomal dysregulation
in human metastatic melanoma cell
lines. Cancer Genet. 204, 477-485.
doi: 10.1016/j.cancergen.2011.07.001

Cheli, Y., Giuliano, S., Botton, T.,
Rocchi, S., Hofman, V., Hof-
man, P, etal. (2011). Mitf is
the key molecular switch between
mouse or human melanoma initi-
ating cells and their differentiated
progeny. Oncogene 30, 2307-2318.
doi: 10.1038/0nc.2010.598

Cheli, Y., Giuliano, S., Fenouille, N.,
Allegra, M., Hofman, V., Hof-
man, P, etal. (2012). Hypoxia and
MITF control metastatic behaviour
in mouse and human melanoma
cells. Oncogene 31, 2461-2470. doi:
10.1038/0nc.2011.425

Gadea, G., de Toledo, M., Anguille, C,,
and Roux, P. (2007). Loss of p53 pro-
motes RhoA-ROCK-dependent cell
migration and invasion in 3D matri-
ces. J. Cell Biol. 178, 23-30. doi:
10.1083/jcb.200701120

Gjerdrum, C., Tiron, C., Hoiby, T.,
Stefansson, I., Haugen, H., San-
dal, T, (2010). Axl is an
essential epithelial-to-mesenchymal
transition-induced  regulator  of
breast cancer metastasis and patient

Genes Dev.
10.1101/gad.

etal.

survival. Proc. Natl. Acad. Sci.
U.S.A. 107, 1124-1129. doi: 10.1073/
pnas.0909333107

Goding, C. R. (2000). Mitf from

neural crest to melanoma: sig-
nal transduction and transcription
in the melanocyte lineage. Genes
Dev. 14, 1712-1728. doi: 10.1101/
gad.14.14.1712

He, S, Li, C. G. Slobbe, L,
Glover, A., Marshall, E., Baguley,
B. C., etal. (2011). PAX3 knock-
down in metastatic melanoma cell
lines does not reduce MITF expres-
sion. Melanoma Res. 21, 24-34. doi:
10.1097/CMR.0b013e328341c7e0

Hodgkinson, C. A., Moore, K. ],
Nakayama, A., Steingrimsson, E.,
Copeland, N. G., Jenkins, N. A,
etal. (1993). Mutations at the mouse
microphthalmia locus are associated
with defects in a gene encoding
a novel basic-helix-loop-helix-zipper
protein. Cell 74, 395-404. doi:
10.1016/0092-8674(93)90429-T

Hoek, K. S., Eichhoff, O. M., Schlegel,
N. C., Dobbeling, U., Kobert, N.,
Schaerer, L., etal. (2008). In vivo
switching of human melanoma cells
between proliferative and invasive
states. Cancer Res. 68, 650—-656. doi:
10.1158/0008-5472.CAN-07-2491

Hoek, K. S., and Goding, C. R. (2010).
Cancer stem cells versus phenotype-
switching in melanoma. Pigment Cell
Melanoma Res. 23, 746-759. doi:
10.1111/j.1755-148X.2010.00757.x

Ivaska, J. (2011). Vimentin: central hub
in EMT induction?. Small GTPases 2,
51-53. doi: 10.4161/sgtp.2.1.15114

Jeffs, A. R., Glover, A. C., Slobbe, L. J.,
Wang, L., He, S., Hazlett, J. A., etal.
(2009). A gene expression signature
of invasive potential in metastatic
melanoma cells. PLoS ONE 4:e8461.
doi: 10.1371/journal.pone.0008461

Kim, J. E., Shepherd, P. R., and Chaus-
sade, C. (2009). Investigating the role
of class-IA PI 3-kinase isoforms in
adipocyte differentiation. Biochem.
Biophys. Res. Commun. 379, 830-834.
doi: 10.1016/j.bbrc.2008.12.089

Kim, J. E., Stones, C., Joseph, W. R.,
Leung, E., Finlay, G.]., Shelling, A. N.,
etal. (2012). Comparison of growth
factor signalling pathway utilisation
in cultured normal melanocytes and
melanoma cell lines. BMC Can-
cer 12:141. doi: 10.1186/1471-2407-
12-141

Kuphal, S., and Bosserhoff, A. K. (2012).
E-cadherin cell-cell communication
in melanogenesis and during devel-
opment of malignant melanoma.
Arch. Biochem. Biophys. 524, 43—-47.
doi: 10.1016/j.abb.2011.10.020

Li, G., Satyamoorthy, K., Meier,
E, Berking, C., Bogenrieder, T.,
and Herlyn, M. (2003). Function
and regulation of melanoma-stromal

ACKNOWLEDGMENTS

This work was supported by a Faculty of Medical and Health
Sciences Research Development Fund and by the Auckland Can-
cer Society. Imaging was carried out in the Biomedical Imaging
Research Unit, University of Auckland.

fibroblast interactions: when seeds
meet soil. Oncogene 22, 3162-3171.
doi: 10.1038/sj.0onc.1206455

Lim, J, and Thiery, J. P. (2012).
Epithelial-mesenchymal
tions: insights from development.
Development 139, 3471-3486. doi:
10.1242/dev.071209

Marshall, E. S., Finlay, G. J., Matthews,
J. H., Shaw, J. H., Nixon, J., and
Baguley, B. C. (1992). Microculture-
based chemosensitivity testing: a
feasibility study comparing freshly
explanted human melanoma cells
with human melanoma cell lines. J.
Natl. Cancer Inst. 84, 340-345. doi:
10.1093/jnci/84.5.340

Marshall, E. S., Matthews, J. H. L.,
Shaw, J. H. F,, Nixon, J., Tumewu, P,
Finlay, G.J., etal. (1994). Radiosensi-
tivity of new and established human
melanoma cell lines: comparison of
3H-thymidine incorporation and soft
agar clonogenic assays. Eur. J. Cancer
30A, 1370-1376. doi: 10.1016/0959-
8049(94)90188-0

Orgaz, J. L, and Sanz-Moreno, V.
(2013). Emerging molecular targets
in melanoma invasion and metasta-
sis. Pigment Cell Melanoma Res. 26,
39-57. doi: 10.1111/pcmr.12041

Parmar, J., Marshall, E. S., Charters, G.
A., Holdaway, K. M., Shelling, A. N.,
and Baguley, B. C. (2000). Radiation-
induced cell cycle delays and p53
status of early passage melanoma cell
lines. Oncol. Res. 12, 149-155.

Quintana, E., Shackleton, M., Foster,
H. R., Fullen, D. R, Sabel, M. S.,
Johnson, T. M., etal. (2010). Pheno-
typic heterogeneity among tumori-
genic melanoma cells from patients
that is reversible and not hierar-
chically organized. Cancer Cell 18,
510-523. doi: 10.1016/j.ccr.2010.
10.012

Quintana, E., Shackleton, M., Sabel,
M. S., Fullen, D. R., Johnson, T.
M., and Morrison, S. J. A. (2008).
Efficient tumour formation by sin-
gle human melanoma cells. Nature
456, 593-598. doi: 10.1038/nature
07567

Sanchez-Martin, M., Perez-Losada,
J., Rodriguez-Garcia, A., Gonzalez-
Sanchez, B., Korf, B. R., Kuster,
W., etal. (2003). Deletion of the
SLUG (SNAI2) gene results in human
piebaldism. Am. J. Med. Genet.
122A, 125-132. doi: 10.1002/ajmg.a.
20345

transi-

Sanchez-Martin, M., Rodriguez-Garcia,
A., Perez-Losada, J., Sagrera, A,
Read, A. P, and Sanchez-Garcia,
L (2002). SLUG (SNAL2) dele-
tions in patients with Waardenburg
disease. Hum. Mol. Genet. 11,
3231-3236. doi: 10.1093/hmg/11.25.
3231

Selzer, E., Wacheck, V., Lucas, T., Heere-
Ress, E., Wu, M., Weilbaecher, K. N.,
etal. (2002). The melanocyte-specific
isoform of the microphthalmia tran-
scription factor affects the phenotype
of human melanoma. Cancer Res. 62,
2098-2103.

Sensi, M., Catani, M., Castellano, G.,
Nicolini, G., Alciato, F, Tragni,
G., etal. (2011). Human -cuta-
neous melanomas lacking MITF
and melanocyte differentiation anti-
gens express a functional Axl recep-
tor kinase. J. Invest. Dermatol.
131, 2448-2457. doi: 10.1038/jid.
2011.218

Shirley, S. H., Greene, V. R., Dun-

can, L. M., Torres Cabala, C.
A., Grimm, E. A, and Kuse-
witt, D. E (2012). Slug expres-

sion during melanoma progression.
Am. ]. Pathol. 180, 2479-2489. doi:
10.1016/j.ajpath.2012.02.014
Steingrimsson, E., Moore, K. J., Lam-
oreux, M. L., Ferré-D’Amaré, A. R,,
Burley, S. K., Zimring, D. C,, etal.
(1994). Molecular basis of mouse
microphthalmia (mi) mutations he-
Ips explain their developmental
and phenotypic consequences. Nat.

Genet. 8, 256-263. doi: 10.1038/
ngl194-256
Stones, C. S., Kim, J. E, Leung,

E., Marshall, E. S., Joseph, W. R,
Finlay, G. J., etal. (2013). Com-
parison of responses of melanoma
cell lines to the MEK inhibitor CI-
1040 and the BRAF inhibitor vemu-
rafenib. Front. Genet. 4:66. doi:
10.3389/fgene.2013.00066

Strub, T., Giuliano, S., Ye, T., Bonet,
C., Keime, C., Kobi, D., etal
(2011). Essential role of microph-
thalmia transcription factor for DNA
replication, mitosis and genomic
stability in melanoma. Oncogene
30, 2319-2332. doi: 10.1038/onc.
2010.612

Yasumoto, K. I, Amae, S., Udono, T.,
Fuse, N., Takeda, K., and Shiba-
hara, S. (1998). A big gene linked to
small eyes encodes multiple Mitf iso-
forms: many promoters make light

www.frontiersin.org

May 2013 | Volume 4 | Article 97 | 7


http://www.frontiersin.org/
http://www.frontiersin.org/Cancer_Genetics/archive

Kim etal.

Expression of EMT markers

work. Pigment Cell Res. 11, 329—
336. doi: 10.1111/j.1600-0749.1998.
tb00491.x

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any
commercial or financial relationships

that could be construed as a potential
conflict of interest.

Received: 30 January 2013; accepted: 14
May 2013; published online: 31 May
2013.

Citation: Kim JE, Leung E, Baguley BC
and Finlay GJ (2013) Heterogeneity of
expression of epithelial-mesenchymal

transition markers in  melanocytes
and melanoma cell lines.  Front.
Genet. 4:97. doi: 10.3389/fgene.2013.
00097

This article was submitted to Frontiers in
Cancer Genetics, a specialty of Frontiers
in Genetics.

Copyright © 2013 Kim,
Baguley and Finlay.

Leung,
This is an

open-access article distributed under
the terms of the Creative Commons
Attribution License, ~ which permits
use,  distribution and reproduction
in other forums, provided the origi-
nal authors and source are credited
and subject to any copyright notices
concerning any third-party graphics
etc.

Frontiers in Genetics | Cancer Genetics

May 2013 | Volume 4 | Article 97 | 8


http://dx.doi.org/10.3389/fgene.2013.00097
http://dx.doi.org/10.3389/fgene.2013.00097
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Cancer_Genetics/
http://www.frontiersin.org/Cancer_Genetics/archive

	Heterogeneity of expression of epithelial–mesenchymal transition markers in melanocytes and melanoma cell lines
	Introduction
	Materials and methods
	Culture of melanoma cells and melanocytes
	Western blotting
	Statistical analysis

	Results
	Expression of e-cadherin, n-cadherin, snail, and slug
	Expression of axl, mitf, p53, and hdm2

	Discussion
	Acknowledgments
	References


