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Increased cellular protein production places stress on the endoplasmic reticulum (ER),
because many of the nascent proteins pass through the ER for folding and trafficking.
Accumulation of misfolded proteins in the ER triggers the activation of three well-known
pathways including IRE1 (inositol requiring kinase 1), ATF6 (activating transcription factor
6), and PERK (double stranded RNA-activated protein kinase-like ER kinase). The activity
of each sensor modulates the overall ER strategy for managing protein quality control as
cellular needs change due to growth, differentiation, infection, transformation, and host
of other possible physiological states. Here we review the role of ER stress in multiple
myeloma (MM), an incurable plasma cell neoplasm. MM is closely linked to dysregulated
unfolded protein response in the ER due to the heightened production of immunoglobulin
and the metabolic demands of malignant uncontrolled proliferation. Together, these forces
may mean that myeloma cells have an “Achilles heel” which can be exploited as a
treatment target: their ER stress response must be constitutively active at a remarkably
high level to survive their unique metabolic needs. Therefore, inhibition of the ER stress
response is likely to injure the cells, as is any further demand on an already over-worked
system. Evidence for this vulnerability is summarized here, along with an overview of how
each of the three ER stress sensors has been implicated in myeloma pathogenesis and
treatment.
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INTRODUCTION
Multiple myeloma (MM) is a cancer of plasma cells, the antibody-
producing end stage of B cell development. Plasma cells are
the originating cell for a variety of diseases, collectively known
as plasma cell dyscrasias, including systemic light-chain amy-
loidosis, monoclonal gammopathy of undermined significance
(MGUS), solitary plasmacytoma, smoldering myeloma, and MM.
In each case, the hallmark of the pathology is the overpro-
duction of a secreted protein by a diseased plasma cell pop-
ulation (Barlogie et al., 1992). In this review, we will focus
on MM, a cancer with over 20,000 new diagnoses expected
in 2013 by the National Cancer Institute in the United States
(http://www.cancer.gov/cancertopics/types/myeloma/). MM typ-
ically presents as an incurable disease, almost inevitably recurring
after therapy (Munshi and Anderson, 2013). Nonetheless, the
introduction of the proteasome inhibitor bortezomib to treat-
ment regimens represented a breakthrough for myeloma patients
by increasing survival time significantly (Moreau, 2012). The
sensitivity of myeloma cells to bortezomib may be due in
part to the specialized metabolism of plasma cells, which are
adapted to generate large volumes of secreted immunoglobulins
and operate with an elevated baseline demand on the endo-
plasmic reticulum (ER). This may be a liability for myeloma
cells, which are additionally burdened with the protein pro-
duction necessary for malignant proliferation. The resulting

vulnerability to further perturbation in protein metabolism
may offer a partial explanation for the success of bortezomib
(Landowski et al., 2005; Obeng et al., 2006; Meister et al., 2007).
Efforts to understand and target the integrated ER stress response
in myeloma will be summarized here, with a focus on the three
ER stress sensors that coordinate this response: inositol requir-
ing kinase 1 (IRE1; Sidrauski and Walter, 1997; Yoshida et al.,
2001), double stranded RNA-activated protein kinase-like ER
kinase (PERK; Harding et al., 2000), and the transcription fac-
tor activating transcription factor 6 (ATF6; Yoshida et al., 2000).
Each of these sensors is located at the apex of a pathway, and
each is capable of inducing the expression of several major ER
heat shock proteins and enhancing protein folding machinery
(Malhotra and Kaufman, 2007).

All three ER stress response sensors are embedded in the ER
membrane where they are normally bound by the ER chap-
erone grp78 (alias BiP; Ma et al., 2002; Sommer and Jarosch,
2002; Kimata et al., 2004). This binding inhibits the activity of
each sensor. Grp78 releases the sensors in response to mount-
ing ER stress as its chaperone functions are required (Lee, 2005).
However, this is not a uniform method of control over the
three combined sensors; different cellular conditions result in
differing patterns of sensor activation. For example, during B
cell differentiation only two sensors, IRE1 and ATF6 are acti-
vated while the third, PERK, is not (Ma et al., 2010). Using a
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B cell line capable of induction of all three ER stress sensors
and capable of differentiation into plasma cells, Ma et al. (2010)
demonstrated that IRE1 is activated quickly upon exposure to
differentiation-inducing lipopolysaccharide (LPS) treatment, with
ATF6 activation following secondarily. In contrast, PERK activa-
tion could not be elicited from these cells upon differentiation,
even when treated with the ER stressor thapsigargin, although
this treatment could stimulate PERK activity before differentiation
(Ma et al., 2010).

Crosstalk between the sensor systems provides additional con-
trol over the cellular response. For example, one effect of IRE1
activation is the transcription of a PERK inhibitor named p58ipk
(Iwakoshi et al., 2003; Ma et al., 2010). In addition, ATF6 and

PERK appear to converge on signaling through the transcription
factor CHOP (C/EBP homologous protein; Okada et al., 2002).
Thus, both re-enforcement and antagonism exist between the sen-
sors, allowing a highly tunable response based on cellular needs
(Figure 1).

Due to the baseline ER stress present in untransformed plasma
cells, myeloma is a particularly complex disease in which to exam-
ine ER stress. Several excellent reviews have addressed ER stress
response more generally (Woehlbier and Hetz, 2011; Logue et al.,
2013; Schonthal, 2013), so here we will provide brief overviews
of the components and focus on experimental data which eluci-
dates their role in myeloma disease, including responsiveness to
chemotherapeutics.

FIGURE 1 |The progression of ER stress responses in multiple

myeloma development and treatment. (A) Schematic of B-cell ER
stress activity before differentiation. The ER stress sensors IRE1, ATF6,
and PERK are bound to ER chaperones which inhibit either homodimerization
(for IRE1 and PERK) or translocation to the nucleus (ATF6). Transcriptomes
downstream of the ER sensors are inactive. (B) Upon differentiation
into a plasma cell, protein production is increased in a regulated fashion.
Chaperones release the ER stress sensors but PERK remains inhibited
through its IRE1-controlled inhibitor p58ipk. IRE1 and ATF4 upregulate ER

chaperones to assist with the protein production involved in secreting
antibody. (C) Myeloma cells further activate the ER stress programs,
involving PERK activation. All three arms are used by myeloma cells, although
the CHOP response is limited. (D) Myeloma cells can be induced to further
increase their ER stress response, tipping the system towards cell death.
When ATF4 and ATF6 coordinate to induce transcription of CHOP, a
pro-apoptosis transcription factor, the ER stress response moves from
adaptive to destructive. This is the therapeutic goal of some drug regimens,
such as bortezomib.
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IRE1
OVERVIEW OF IRE1 FUNCTION
Inositol requiring kinase 1 is a bifunctional transmembrane kinase
and endoribonuclease. It was first identified in yeast, called Ire1p,
which is correlated with unfolded protein response (UPR; Cox
et al., 1993). Upon activation of the UPR,Ire1p oligomerizes, phos-
phorylates, and initiates splicing of homologous to ATF/CREB1
(HAC1; Shamu and Walter, 1996; Sidrauski and Walter, 1997).
IRE1 is conserved in all eukaryotic cells. In mammalian cells, there
are two forms of IRE1, IRE1α, and IRE1β. Most cells and tissues
express IRE1α, while only intestinal epithelial cells express IRE1β.
IRE1α and IRE1β have similar cleavage specificities (Tirasophon
et al., 1998; Wang et al., 1998; Patil and Walter, 2001). Previous
studies have demonstrated that X box binding protein 1 (XBP1)
mRNA is a substrate for the endoribonuclease activity of IRE1.
Upon activation of the UPR, the IRE1 RNase activity initiates and
removes a 26 nucleotide intron from XBP1 mRNA (Yoshida et al.,
2001; Calfon et al., 2002; Lee et al., 2002). This splicing form of
XBP1, denoted XBP1s, is a transcriptional activator that plays an
important role in activation of a variety of UPR target genes, which
include ERdj4, p58IPK, DnaJ/Hsp40-like genes, ER degradation
enhancer, mannosidase alpha-like (EDEM), human ER-associated
DNAJ (HEDJ), protein disulfide isomerase-P5 (PDI-P5), and
ribosome-associated membrane protein 4 (RAMP4; Lee et al.,
2003).

IRE1/XBP1 PATHWAY IS ESSENTIAL FOR PLASMA CELL
DIFFERENTIATION
Both IRE1 and XBP1 are critical for plasma cell differentia-
tion. Genetic deletion of XBP1 causes lack of plasma cells, with
concomitantly decreased baseline and antigen specific serum
level of immunoglobulin (Reimold et al., 2001; Iwakoshi et al.,
2003; Shaffer et al., 2004). In addition, IRE1α is required to
splice XBP1 for terminal differentiation of mature B cells into
antibody-secreting plasma cells as demonstrated by using an
IRE1α-deficient chimeric mouse model (Zhang et al., 2005). Fur-
thermore, in IRE1α conditional knockout mice, the serum levels
of IgM and IgG1 are reduced by half compared with the con-
trol mice. However, the IgM+, IgD+, and B220+ populations
are similar between IRE1α conditional knockout mice and con-
trol mice. This result suggests that IRE1α is required for efficient
plasma cell production of antibodies, and is critical for final B
cell differentiation into a plasma cell (Iwawaki et al., 2010). These
studies suggest that the IRE1/XBP1 pathway is required for dif-
ferentiation and survival of cell types that secrete high levels of
protein.

IRE1/XBP1 IS POTENTIAL THERAPEUTIC TARGET FOR MULTIPLE
MYELOMA
In addition to the critical roles of IRE1/XBP1 in plasma cell differ-
entiation, a picture has emerged for the roles of UPR in myeloma.
Indeed, XBP1s and downstream ER chaperones are consistently
up regulated in myeloma patients. Patients with a low XBP1
spliced/unspliced ratio (≤1.33) have a longer overall survival com-
pared with those with a higher ratio (p = 0.03, median, 56 vs
40 months; HR = 1.75; 95% CI = 1.07–2.85; Bagratuni et al.,
2010). Moreover, transgenic expression of XBP1s in mice also

leads to plasma cell dyscrasia with evidence of increased mon-
oclonal antibodies (“M-spike”), lytic bone lesions, plasmacytosis,
and kidney damage (Carrasco et al., 2007). Given this information,
IRE1/XBP1 could be a potential therapeutic target for MM.

To investigate whether blocking the IRE1/XBP1 pathway is
a therapeutic for MM, researchers performed chemical library
screening and they identified a small-molecule, STF-083010, that
specifically blocks the endonuclease activity of IRE1 without
affecting its kinase activity (Papandreou et al., 2011). Further-
more, they treated different myeloma cell lines with different
doses of STF-083010 in vitro and demonstrated that this com-
pound causes myeloma cell death. Importantly, STF-083010 is
also selectively cytotoxic to freshly isolated CD138+ plasma cells
from myeloma patients compared with CD19+ B cells, CD3+ T
cells, and CD56+ NK (natural killer) cells. Finally, treatment of
human myeloma xenografts in NSG (NOD scid gamma) mice
was performed. STF-083010 was given by intraperitoneal injec-
tion on day 1 and day 8 and this compound significantly inhibited
the growth of these tumors in vivo (Papandreou et al., 2011). In
addition, another small-molecule, MKC-3946, also blocks the
IER1α endoribonuclease domain. MKC-3946 inhibits multiple
human myeloma cell lines without toxicity to normal mononu-
clear cells. MKC-3946 also blocks ER stress induced by both
bortezomib and heat shock protein 90 inhibitor 17-AAG. In addi-
tion, MKC-3946 significantly enhanced cytotoxicity induced by
bortezomib or 17-AAG (Mimura et al., 2012). A similar result
was found by using an XBP1 inhibitor, toyocamycin, which was
identified from the culture broth of an Actinomycete strain. Toy-
ocamycin has been shown to suppress the XBP1 mRNA splicing in
HeLa cells which is induced by thapsigargin, tunicamycin, and
2-deoxyglucose. It does not, however, affect ATF6 and PERK
activation. Although toyocamycin does not inhibit IRE1α phos-
phorylation, it prevents IRE1α-induced XBP1 mRNA cleavage and
inhibits constitutive activation of XBP1 expression in myeloma
cell lines as well as in samples from myeloma patients in vitro.
Toyocamycin also induces apoptosis of myeloma cells, including
bortezomib-resistant myeloma cells in vitro, and it also inhibits
myeloma cell growth in a human myeloma xenograft model (Ri
et al., 2012). Taken together, these results demonstrate that block-
ade of IRE1/XBP1 pathway by small-molecule compounds is a
potential therapeutic for treatment of human myeloma.

ATF6
OVERVIEW OF ATF6 FUNCTION
Among the three ER stress sensors, only ATF6 does not dimerize to
potentiate enzymatic activity. Instead, under ER stress conditions,
ATF6 translocates to the Golgi apparatus and it is processed by site
1 protease (S1P) and site 2 protease (S2P) to release an active form
of ATF6 (ATF6f). ATF6f translocates to the nucleus and activates
target genes (Chen et al., 2002). In this capacity, ATF6 works in
partnership with IRE1, as one of the target genes of ATF6 is XBP1,
the key substrate of IRE1 (Yoshida et al., 2001). In addition to
fueling the IRE1 arm of the ER stress response, ATF6 also functions
as a transcription factor for ER chaperone proteins, thereby easing
ER burden (Arai et al., 2006). These contributions to the ER stress
response complement IRE1 activation and are generally adaptive,
allowing such upregulation of protein production as is seen in
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plasma cell development. However, prolonged ATF6 activation
can also result in transcription of CHOP, another transcription
factor which enacts a largely apoptotic program of gene expression
(Matsumoto et al., 1996). This effect of ATF6 activity occurs in
conjunction with PERK activation, in contrast to the protective
program that ATF6 and IRE1 jointly support.

One group has made an attempt in HeLa cells to describe the
genetic modulation downstream of ATF6 activation and to distin-
guish it from the genetic signature of PERK activation (Okada
et al., 2002). The group examined this question by comparing
the cellular pool of mRNA in HeLa cells treated with the general
ER stress inducer tunicamycin with that of cells stably express-
ing the nuclear form of ATF6. From this experiment, the ATF6
contribution to the integrated ER stress response was extracted
for HeLa cells. The primary targets identified were the expected
ER chaperones grp78, gp96, and calreticulin (Okada et al., 2002).
In addition, proteins which directly modify disulphide bonds to
assure proper folding of nascent proteins were identified, such as
ERp62 and ERp71 (Okada et al., 2002). Unfortunately, the authors
concluded that this cell system was not conducive to the study of
XBP1 transcription, which is critical for understanding myeloma
development and progression. However, the research revealed that
ATF6 and PERK both converge on CHOP transcription, confirm-
ing this as a locus of crosstalk between the two sensors (Okada
et al., 2002).

CHOP (C/EBP homologous protein, alias GADD153) is a pro-
apoptotic transcription factor routinely used as a read-out for
activation of the ER stress response (Kawabata et al., 2012; Mimura
et al., 2012; Schonthal, 2013). The Mori group has proposed that
CHOP transcription is most efficiently activated upon binding by
both the nuclear form of ATF6 and ATF4, the transcription factor
effector of PERK activation (Okada et al., 2002). The convergence
of ER stress signals results in CHOP binding to its target genes,
with inhibitory effects on some targets and transcriptional effects
on others. CHOP activity results in the downregulation of the
anti-apoptotic Bcl2 (B-cell lymphoma 2) as well as the upregu-
lation of the ER-resident oxidase ERO1-alpha (Marciniak et al.,
2004). CHOP is also its own target, suggesting that its activation
constitutes a commitment to programmed cell death (Marciniak
et al., 2004).

ATF6 IN MULTIPLE MYELOMA
Surprisingly little has been written about the role of ATF6 in MM,
especially considering the important role it plays in the generation
of the IRE1 substrate XBP1 (Lee et al., 2002). Indeed, the tran-
scriptome of ATF6 should itself be a discrete target of research in
the myeloma field.

One group has performed specific knockdown of ATF6 in
myeloma cells and shown that, as is also the case for the other
ER stress sensors, targeted loss resulted in significant cell death
(Michallet et al., 2011). In addition, increased baseline signal-
ing through the PERK sensor was enhanced upon knockdown of
ATF6. Thus, the three sensors appear to all be required for baseline
survival for myeloma cells, although crosstalk may allow for some
limited compensation between the sensor systems.

Certainly, the crosstalk between ATF6 and the other two ER
stress sensors suggests that ATF6 plays the role of a “swing vote.”

When activated in conjunction with IRE1, growth and adaptation
to protein production is reinforced. When linked to PERK, ATF6
activity can support a programmed cell death response. This dual-
ity indicates a potentially powerful target, identifying ATF6 as an
understudied aspect of myeloma.

PERK
OVERVIEW OF PERK FUNCTION
The pancreatic eIF2-alpha kinase (PERK, alias EIF2αK3) is the
third known sensor of ER stress and like the other two, it is embed-
ded in the ER membrane. As the only such sensor left inactivated in
the normal development of plasma cells, it has been of particular
interest in the study of myeloma (Ma et al., 2010). We will there-
fore provide a summary of its canonical function and then review
studies testing the role of PERK in baseline myeloma biology and
in response to drug treatment.

Like the other two ER stress sensors, the activation of PERK
requires its release by grp78. In addition, the chaperone gp96 (alias
grp94) has been shown to bind PERK at baseline and release it
during ER stress conditions (Ma et al., 2002). Upon release, PERK
is free to homodimerize and activate as a kinase. Active PERK
has three interacting mechanisms, allowing gradations of cellular
effects ranging from protective to destructive. These effects are
mediated by eIF2-alpha, ATF4, and CHOP. First, the direct phos-
phorylation target of PERK is eIF2-alpha, a protein needed for
ribosomal translation of mRNA (Wek and Cavener, 2007). The
phosphorylation of eIF2-alpha inhibits its activity, resulting in
global repression of protein production. This strategy of transla-
tion repression reduces the load of nascent proteins being delivered
to the ER for processing and is an effective short-term answer to the
problem of ER stress. However, the side effects of halting protein
production are myriad, and the phosphorylation of eIF2-alpha
does allow exceptions. For instance, mRNA with IRES (inter-
nal ribosome entry site) sequences can still be translated under
these conditions (Gerlitz et al., 2002). In addition, the transcrip-
tion factor ATF4 is translated and subsequently translocates to the
nucleus. The mechanism allowing such translation during eIF2α

phosphorylation has been of significant interest and research has
identified a double upstream open reading frame structure in the
ATF4 mRNA which is preferentially translated when ribosomal
processing is slowed (Lu et al., 2004; Kilberg et al., 2009). ATF4
then binds to genetic sequences with CCAAT (cytidine-cytidine-
adenosine-adenosine-thymidine) motifs, many of which can be
translated under the phosphorylated eIF2a condition which is
downstream of PERK activation, likely due to upstream ORFs
(open reading frames) that function like the ones present in ATF4
mRNA (Lu et al., 2004; Kilberg et al., 2009). This activation of the
ATF4 transcriptome is the second major arm of PERK response to
ER stress.

ATF4 facilitates the transcription mRNAs coding for proteins
with functions specific to ER stress conditions. For instance, redox-
management genes are turned on, as well as additional chaperones
for the ER (Harding et al., 2003; Liu et al., 2008; Ye and Koume-
nis, 2009). Again, this strategy is adaptive for the cell and may
allow the cell to cope with short-term challenges. However, the
third arm of PERK signaling involves activation of CHOP, already
described as a target of ATF6. The CHOP promoter includes
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binding sites for both ATF4 and ATF6, which appear to syner-
gize (Okada et al., 2002). In addition, the CHOP mRNA includes
an upstream inhibitory ORF that is preferentially translated dur-
ing ER stress (Jousse et al., 2001; Lee et al., 2011). Expression of
this protein is very tightly regulated and eventual convergence on
CHOP activation signals a likely shift into macroautophagy and/or
apoptosis (Gomez-Santos et al., 2005; Kim et al., 2006; Emdad
et al., 2011). Thus, PERK has protective functions, especially when
first activated, but it can also induce cell death pathways if it is
too strongly activated or active for too long. This temporal change
in PERK effect has been described in a recent review, identifying
PERK as a protein with significant characterization left to be done
(Woehlbier and Hetz, 2011).

PERK AS PROTECTIVE MECHANISM IN MULTIPLE MYELOMA
As previously referenced, Michallet et al. (2011) used RNAi (RNA
interference) to individually knock down IRE1, ATF6, and PERK
expression. They observed that loss of any one sensor tended to
increase the activation read outs of the remaining sensors, con-
firming crosstalk between the systems. Their specific knockdown
of PERK yielded two important findings. First, this single change
resulted in an autophagic cell death response, implicating PERK
activation as a necessary part of the metabolic shift from plasma
cell to myeloma cell. Second, the loss of PERK impeded the apop-
totic response. Therefore, PERK activity was implicated in both
viability of myeloma cells and in the apoptotic potential of the
cells (Michallet et al., 2011). This complex finding may shed light
on idea of PERK activity as a potential danger to the cell, which
will be discussed in the following section.

PERK status is also a likely factor in myeloma cell response to
drug. A report last year noted that myeloma cells demonstrate a
baseline degree of UPR that, when inhibited by an HSP90 inhibitor,
could result in an apoptotic response (Patterson et al., 2008). This
dependence on UPR can therefore be considered an addiction and
inhibition of the sensors could constitute a rational drug target.
However, a larger body of work has suggested that the downstream
effects of PERK activation are identifiable as effectors of cell death
in myeloma. It may be that myeloma cells have optimized their
ER stress response to survive their unique metabolism as both
secretory and rapidly dividing cells. If so, repression of the ER
stress response could lead to cell death as surely as stimulation of
the same system.

PERK AS A CELL DEATH EFFECTOR IN MULTIPLE MYELOMA
Activation of PERK has been implicated in a wide variety of can-
cers as a mediator of response to chemotherapy (Kraus et al., 2008;
Lust et al., 2009; Yan et al., 2010; Fribley et al., 2011; Qiao et al.,
2012; Sailaja et al., 2013). Most convincingly, small interfering
RNA (siRNA) against PERK or dominant negative models can
ameliorate chemotherapy-induced death in many types of cancer
cells (Lai and Wong, 2008; Yacoub et al., 2008; Kahali et al., 2010;
Pan et al., 2012). It is therefore perhaps unsurprising that this effect
has also been seen in myeloma cells, which already have baseline ER
stress and may not be able to tolerate perturbations to the system.
In particular, researchers have been interested in the role of PERK
in myeloma cell response to the proteasome inhibitor bortezomib,
the most effective myeloma therapy. Obeng et al. (2006) have

reported that Bortezomib treatment upregulates PERK activity as
measured by ATF4 and downstream CHOP expression. Further,
they correlated ER stress to bortezomib response by measuring
the retention of immunoglobulin protein accumulating in treated
cells. Myeloma cells that retained more of their secretory pro-
tein load, one hallmark of ER stress, showed more activation of
ER stress markers and more sensitivity to the drug (Obeng et al.,
2006).

This pathway has been further probed in myeloma cells by
induction of ER stress through inhibition of heat shock proteins,
the family of ER chaperones that includes both grp78 and gp96.
Most commonly, heat shock protein 90 is targeted experimen-
tally with the drug 17-AAD. A 2007 paper compared 17-AAG and
bortezomib effects on myeloma cells and found that both drugs
produced upregulation of grp78, gp96, and CHOP, all of which are
downstream effects of PERK activation (Davenport et al., 2007).
These effects were ultimately joined by an apoptotic response, sug-
gesting that PERK activation culminated in a cell death program
(Davenport et al., 2007).

The key component of apoptosis-induction by PERK was inves-
tigated to better understand the unfortunate phenomenon of
bortezomib resistance in myeloma. Schewe and Aguirre-Ghiso
(2009) demonstrated that the phosphorylation of eIF2α is an
indispensable aspect of PERK-mediated apoptosis. They stud-
ied a bortezomib-resistant subpopulation of myeloma cells and
found that resistance could be reversed by inhibition of the eIF2α

phosphatase or by competitive inhibition of the phosphatase
via overexpression of a mutant phosphorylated eIF2α. In both
conditions, cells with experimentally enhanced levels of endoge-
nous phosphorylated eIF2α regained sensitivity to bortezomib
(Schewe and Aguirre-Ghiso, 2009).

The global repression of protein translation has far-reaching
consequences, even if subsets of mRNAs are selectively processed.
For instance, the balance of proteins in the cell quickly changes
as proteins with short half-lives are degraded but not replaced.
One system affected by such a change is the anti-apoptotic net-
work, comprised of such anti-apoptotic proteins as survivin,
Mcl-1, and FLIP (FLICE-like inhibitory protein), all of which
are eliminated from the protein pool if not continuously gen-
erated (White-Gilbertson et al., 2009). This time-dependent shift
in cellular fitness may be another axis on which PERK activation is
titrated, so that short-term activation is beneficial while long-term
activation is ultimately detrimental to the cell.

CONCLUSION
The integrated ER stress response is composed of all three sensor
systems and their interplay determines the overall cellular strategy
and the outcome of stress. Myeloma cells may harbor an Achilles
heel in their baseline metabolism, as shown by varied treatments
which induce death by either inhibiting or exacerbating the ER
stress response. This metabolic addiction to pathways that prevent
UPR-induced death program may be a key to myeloma treat-
ment, and deserves more focused attention. One example of such
effort is the possibility of PERK inhibitors as cancer therapeutics
(Bi et al., 2005; Hart et al., 2012). It is also possible that a unique
adaptive UPR program is adopted by individual myeloma patients,
having diseases with different vulnerabilities. An individualized.
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strategy with an array of tools to inhibit or push ER stress
may be needed to match therapeutic response to this adaptive
disease.

In summary, the UPR mechanism can be exploited for the
treatment of MM (Figure 1). The shift from naïve B cell to plasma
cell already involves the activation of two of the three ER stress
sensors and their downstream signaling partners (Figures 1A,B).
These cells engage IRE1 and ATF6 in order to cope with regu-
lated antibody production, although PERK is inhibited. However,
upon transformation, myeloma cells require the further support
of PERK, allowing transcription of the ATF4 targets that ame-
liorate oxidative stress (Figure 1C). This is a potentially risky
strategy for the cell, because ATF4 and ATF6 can cooperate

to transcribe the pro-apoptotic CHOP (Figure 1D). Thus, if
chemotherapeutic interventions can tip the balance of the ER stress
response into supporting programmed cell death, they would be
leveraging the intrinsic weakness of the disease, to have a desired
treatment outcome for MM.
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