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A commentary on

Complexity of chromatin folding is
captured by the strings and binders
switch model
by Barbieri, M., Chotalia, M., Fraser,
J., Lavitas, L.-M., Dostie, J., Pombo, A.,
et al. (2012). Proc. Natl. Acad. Sci.
U.S.A. 109, 16173–16178. doi: 10.1073/
pnas.1204799109

The exploration of the spatial organiza-
tion of chromosomes in the cell nucleus
has been greatly enhanced by genome-
scale technologies such as Hi-C methods.
Polymer models are helping to understand
the new emerging complex scenarios and
here we review some recent developments.

In the cell nucleus of eukaryotes, chro-
mosomes have a complex spatial organi-
zation serving vital functional purposes,
with structural disruptions being linked
to disease (Fraser and Bickmore, 2007;
Lanctot et al., 2007; Misteli, 2007; Pombo
and Branco, 2007). The development of
technologies such as Hi-C (Lieberman-
Aiden et al., 2009) has opened the way
to mapping chromatin interactions at
a genomic scale. It is emerging that
chromosomes tend to form 1Mb sized
domains with increased levels of intra-
interactions (known, e.g., as Topological
Domains, TDs) (Dixon et al., 2012; Nora
et al., 2012), but contacts extend across
entire chromosomes (Branco and Pombo,
2006; Shopland et al., 2006; Fraser and
Bickmore, 2007; Kalhor et al., 2011;
Sexton et al., 2012), as highlighted by
the average contact probability of two
sites, Pc(s), which is non-zero also for
large genomic separations, s. In partic-
ular, in the 0.5–7 Mb range, Pc(s) is
found to decrease roughly as a power
law with s (Fraser and Bickmore, 2007),
Pc(s) ∼1/sα. Relevant inter-chromosomal

contacts also exist (Branco and Pombo,
2006; Shopland et al., 2006; Lieberman-
Aiden et al., 2009; Kalhor et al., 2011;
Dixon et al., 2012; Nora et al., 2012; Sexton
et al., 2012). Interestingly, while the map of
genomic contacts has a stochastic compo-
nent, a clear non-random organization is
observed, which is cell-type and chromo-
some specific.

Discoveries as those listed above have
raised fundamental questions on how such
complex patterns self-organize, how func-
tional, distal contacts can be reliably estab-
lished, and how specific structures, like
TDs, are assembled. Polymer physics has
been employed to try to clarify some
of those questions with models aiming
at identifying the key physical elements
involved. Here we do not attempt to
cover the broad literature on the topic,
which is summarized in previous reviews
(Langowski, 2006; Marenduzzo et al.,
2006; Emanuel et al., 2009; Tark-Dame
et al., 2011), but we focus on a few recent
developments triggered by the new experi-
mental data.

The average contact probability, Pc(s),
was originally reported for a single human
cell line to have an exponent α = 1.08
(Lieberman-Aiden et al., 2009), which
is not found in usual equilibrium poly-
mer systems [see (Langowski, 2006;
Marenduzzo et al., 2006; Emanuel et al.,
2009; Tark-Dame et al., 2011) and ref-
erences therein]. That led to the idea
that chromosomes are in a far-from-
equilibrium state and, more precisely,
in a specific transient state of ideal poly-
mer chains, named the Fractal Globule
(FG) state (Lieberman-Aiden et al., 2009),
known to have an exponent α = 1. As the
FG state is free of knots, it would allow
a better control of chromosome confor-
mations. However, if the effects of DNA
cutting enzymes, such as topoisomerase,

are considered in the model the FG state is
not formed at all (Mirny, 2011).

More recent Hi-C data (Shopland et al.,
2006; Kalhor et al., 2011; Dixon et al.,
2012; Nora et al., 2012; Sexton et al.,
2012) have clarified that the shape of
Pc(s), as much as its exponent, α, are
system-dependent. We highlighted in a
recent paper (Barbieri et al., 2012) that in
human cell lines (Lieberman-Aiden et al.,
2009; Kalhor et al., 2011; Dixon et al.,
2012), for instance, α ranges roughly from
0.9 to 1.7, with different chromosomes in
a given system having different exponents.
The exponent α also changes across dif-
ferent organisms: in Drosophila (Sexton
et al., 2012) α = 0.85 (with α = 0.7 in
closed genomic regions). These experi-
mental results have raised additional ques-
tions on how different conformations can
be established and controlled according to
the different circumstances.

To describe such a range of archi-
tectures, it was considered that chro-
mosome 3D conformations are shaped
by the interactions of chromatin with
the nuclear envelope, with nuclear bod-
ies and with DNA binding molecular
factors. The latter case was explored
within a schematic polymer model, the
Strings and Binders Switch (SBS) model
where chromatin is represented as a Self-
Avoiding-Walk (SAW) chain having bind-
ing sites for diffusing molecules (Nicodemi
et al., 2008; Nicodemi and Prisco, 2009;
Barbieri et al., 2012). A similar scenario
was also discussed in another polymer
model, the Dynamic Loop Model (Bohn
and Heermann, 2010), where the beads
of the polymer have a probability to stick
together when they randomly collide by
diffusion.

The SBS model has revealed that the
values of α reported in Hi-C experiments
reflect genome-wide averages over
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heterogeneous, differently folded regions,
organized in architectural classes, which
can be well described by usual poly-
mer physics (de Gennes, 1979; Doi and
Edwards, 1984) as thermodynamic phases.
A variety of off-equilibrium conforma-
tions also exists, which include the FG
scenario. The SBS model (Barbieri et al.,
2012) helped to reconcile in a unifying
framework other experimental results
such as single cell FISH data on the
mean square spatial distance of pairs of
loci, < R2 >, and their moment ratio
< R4 >/< R2 >2, in agreement with
available data (Mateos-Langerak et al.,
2009; Barbieri et al., 2012). It clari-
fied how polymer architectural patterns
can be established by randomly diffus-
ing binding molecules, how different
stable conformations can be produced,
and how architectural changes can be
reliably regulated by usual cell strate-
gies, such as protein up-regulation or
epigenetic chromatin modification, by
exploiting fundamental thermodynamic
mechanisms. Within the SBS model the
formation of TDs domains, or the looping
out of specific loci, can be rationalized by
specialization of polymer binding sites and
binding molecules (Barbieri et al., 2012).
The SBS model has been criticized for the
use of limited length polymer sizes (in the
original version it was 512 bead long), but
it was tested up to sizes of the same order
of magnitude of those considered for the
FG model without finding relevant dif-
ferences. This is expected, in fact, for the
scaling properties of polymer physics (de
Gennes, 1979; Doi and Edwards, 1984).

In brief, the emerging picture is that
chromatin is a complex, heterogeneous
mixture of differently folded regions, self-
organized across spatial scales by fun-
damental thermodynamics mechanisms.
Models like those mentioned represent
strong simplifications of the complexities
arising in real nuclei. However, polymer
scaling theory (de Gennes, 1979; Doi and
Edwards, 1984) ensures that the general
behavior of folding is independent of the
system minute details and reflects univer-
sal properties, as those captured by the
SBS model. Other effects, such as crowding
and entanglement, should also be consid-
ered, as in the study of other complex
fluids (Cataudella et al., 1994; Coniglio
et al., 1998; Coniglio and Nicodemi, 2000;

Nicodemi and Jensen, 2001; Tarzia et al.,
2004). The SBS model has also been
employed to describe specific chromoso-
mal loci, such as the Xist locus (Nicodemi
and Prisco, 2007; Scialdone et al., 2011a,b)
or chromosome conformation at meio-
sis (Gerton and Hawley, 2005; Nicodemi
et al., 2008). In summary, while many
aspects of chromatin organization still
remain obscure, simple polymer models
are starting to clarify the fundamental
physical mechanisms underlying its com-
plex, stochastic, yet non-random patterns.
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