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INTRODUCTION
Most connections between phenotype and
genetic variants detected in genome wide
association studies (GWAS) of human
longevity-related traits did not reach the
genome-wide level of statistical signifi-
cance. These estimates also suffer from
the lack of replication of research find-
ings in studies of independent populations
(Deelen et al., 2011; Nebel et al., 2011).
Critical analysis of these studies reveals
underused reserves in the data that may
improve the accuracy of genetic estimates.
One such reserve deals with the proper
use of genetic information contained in
the age structure of study participants
at the time of bio-specimen collection.
As we will see later, this information
has been ignored in genetic analyses of
follow-up data.

In this paper, we explain how such
information can be used in analyses of
follow up data and elucidate the ben-
efits of joint analyses of both types of
data. The proposed approach exploits the
fact that participants in prospective stud-
ies often have different ages at base-
line. The bio-specimen collection is often
(but not always) done at baseline. Studies
included in the CHARGE Consortium
[except for the Original cohort of the
Framingham Heart Study (FHS) where the
bio-specimen collection was done some
time after baseline] are typical exam-
ples. Since data on lifespan or other
durations are often incomplete (e.g., cen-
sored), the Cox’s type regression mod-
els is usually implemented in GWAS
of these data (where, in addition to
other covariates, conditioning on age at

baseline is used). Note that using fol-
low up data alone and conditioning on
age at baseline may be required by the
goal of the study (e.g., in the search
for genes responsible for longest sur-
vival after reaching certain age, e.g., after
95 or 100 years). However, condition-
ing on the ages at bio-specimen collec-
tion when some of these ages are high
enough may diminish or even totally
exclude a substantial part of the genetic
variation in longevity, i.e., eliminate the
effects we are looking for. This is because
the oldest old individuals participating
in bio-specimen collection are precisely
those who passed the process of mor-
tality selection in the genetically hetero-
geneous population, and, therefore, are
likely to carry genetic variants linked with
“longevity” alleles (assuming that such
alleles exist). Thus conditioning on the age
at genotyping, especially when the oldest
old study participants are in the sam-
ple, may leave little hope that associa-
tions of remaining genetic variants with
human longevity will reach genome-wide
significance.

Such conditioning, however, seems to
be a common practice in GWAS of
human longevity-related traits dealing
with prospective data. For example, a large
group of researchers performed compre-
hensive genetic analyses of human lifespan
and free of major diseases lifespan using
data from nine studies of the CHARGE
Consortium (Walter et al., 2011). The
authors “conducted a survival analysis,
adjusted for age at baseline and sex, to
model continuous time to death or end
of follow-up” [Walter et al. (2011), section

“Methods”]. The Cox proportional haz-
ards model was used to describe the
connections between genetic variants and
time to event.

Note that, in addition to eliminat-
ing useful associations, adjusting for
age at baseline may produce a bias in
the analyses if the bio-specimen col-
lection has been performed well after
the time of the first examination (base-
line). Such a situation characterizes
the FHS data, which is the part of the
CHARGE Consortium.

It turns out, however, that in cases
when the ages at bio-specimen collec-
tion include young adults and the oldest
old individuals, the additional informa-
tion about the role of genetic variants
in lifespan can be obtained from the
age patterns of genetic frequencies evalu-
ated for any genetic variant even without
using the follow up data. The approach
based on comparison of genetic frequen-
cies among individuals of different age
categories is typically used in genetic stud-
ies of centenarians (Weir, 1996; Yashin
et al., 1999, 2000; Tan et al., 2004). A
monotonic increase in genetic frequency
with age indicates that the correspond-
ing variant is associated with lifespan
increase (“longevity” allele). A monotonic
decline in such frequency indicates that
this variant contributes to shortening lifes-
pan (deleterious, or “frailty” allele). In
cases when genotyping involves individu-
als from a large spectrum of ages includ-
ing young adults, old, and oldest old
ages, there is an additional opportunity
to improve the quality of genetic analy-
ses which typically is not used in genetic
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association studies of follow up data. To
realize such potential, new methods of
association analyses are required.

THE APPROACH TO IMPROVE THE
QUALITY OF GWAS OF HUMAN
LONGEVITY
One such method for joint analyses of the
two types of data is based on maximiz-
ing the joint likelihood function of the
combined data comprised of the cross-
sectional age patterns and follow-up data.
This method is a special case of a more
general approach (Arbeev et al., 2011)
that also includes follow-up data on non-
genotyped individuals which can also be
added to the likelihood function whenever
such information is available.

The total likelihood of the data is the
product of the two likelihood functions
representing each subset of available data.

The benefits of such analyses are that
both likelihoods are functions of the
same parameters describing the relation-
ship between genetic factors and the phe-
notype of interest. The total likelihood
is a function of the mortality rates for
carriers, μ(x|G = 1), and non-carriers,
μ(x|G = 0), and the initial proportion
of the index variant, P0 = P(G = 1) (see
Arbeev et al., 2011). By maximizing this
likelihood function, one can estimate the
respective quantities and test the null
hypothesis on coincidence of survival
functions for carriers and non-carriers of
the minor allele using the likelihood ratio
test. The nature of the effect of such genetic
variants on survival (e.g., the protective
effect so that the survival curve for carriers
is shifted to the right compared to non-
carriers, or the deleterious one so that the
curve for carriers is shifted to the left,

or the trade-off so that survival curves
intersect) can be understood by inspect-
ing the respective estimates of parameters
and/or visualizing the estimated survival
curves.

EXAMPLE
We performed a simulation study to illus-
trate how the approach combining infor-
mation on follow-up and information on
ages at biospecimen collection improves
the accuracy and power of parameter
estimates compared to the analyses that
use only data on follow-up. To make the
simulations close to reality, we generated
data structure resembling the Long Life
Family Study (LLFS) data (see description,
e.g., in Yashin et al., 2010). This study deals
with follow-up data on mortality, involves
GWAS, and has a relatively short follow-up
period.

FIGURE 1 | (A) Power in two methods described in the text (with follow-up
only, “FU,” and follow-up and ages at biospecimen collection, “FU + A”) for
different effect sizes (i.e., values of the regression parameter γ) and fixed
α = 0.05; the lines denote the fit of the empirical curves by the power curves
of a one-sample Z-test of the mean (the standard deviations that produced
the best fit are 0.056 for “FU + A” and 0.084 for “FU”). (B) The level of the
test [shown as − log10(α) for better visibility] that yields power w = 0.8, as a

function of the effect size in both methods (the curves are calculated using
the abovementioned values of standard deviations). (C) Example of
distributions of the estimates of the regression parameter (shown by
histograms) for the scenario with γ = 0.4 in both methods. The lines show
their fits by normal distributions (the Shapiro-Wilk p-values are 0.34 and 0.64
for “FU” and “FU + A,” respectively). The pentagram denotes the true value
of the regression parameter.

Frontiers in Genetics | Genetics of Aging June 2013 | Volume 4 | Article 125 | 2

http://www.frontiersin.org/Genetics_of_Aging
http://www.frontiersin.org/Genetics_of_Aging
http://www.frontiersin.org/Genetics_of_Aging/archive


Yashin et al. Improving quality of genetic analyses

We assumed that carriers and non-
carriers of some hypothetical allele in a
population have mortality rates μ(x|G) =
μ0(x) eγ G, where G = 0 for non-carriers
and G = 1 for carriers, and the baseline
mortality μ0(x) is the Gompertz function,
i.e., ln μ0(x) = ln a + bx. The Gompertz
parameters a and b correspond to the
initial mortality at birth and the rate of
exponential growth in mortality with age
in non-carriers. The regression parameter
γ modifies the initial mortality for car-
riers so that it becomes a eγ. We used
the Gompertz parameters ln a = −9.0 and
b = 0.08 to produce reasonable survival
patterns corresponding to human popu-
lations, and the proportion of carriers at
birth P0 = 0.25. The parameter γ varied
from −0.5 to 0.5 with the interval 0.05
to simulate scenarios with different effect
sizes.

First, we generated a large (10,000,000
individuals) “general population” assign-
ing the genetic status (carrier/non-carrier
of a hypothetical allele) to individuals in
the general population in accordance with
the initial proportion P0. Then we gen-
erated life spans for all these individuals
from the respective probability distribu-
tions [i.e., those corresponding to the haz-
ard μ0(x) eγ G for carriers and μ0(x) for
non-carriers, with the parameters defined
above]. Then we assigned the hypotheti-
cal “age at entry” into the study to each
individual in the population generated as
a discrete random variable uniformly dis-
tributed over the interval 40–100 years.
Such “ages at entry” were assumed to
be the same as age at biospecimen col-
lection, in line with the LLFS design.
We collected a sample of 4500 individu-
als (close to the actual number of geno-
typed individuals in the LLFS data) whose
life spans exceeded their hypothetical “age
at entry.” Individuals with simulated life
spans exceeding “age at entry” plus 6 years
were considered censored at that age.

The above procedure was repeated 1000
times (in each scenario with respective
γ) to generate 1000 datasets which were
subsequently estimated using the likeli-
hood that uses only follow-up information
and the likelihood that takes into account
information on ages at biospecimen col-
lection in addition to follow-up data.

We calculated the average values
and standard deviations of parameter

estimates in 1000 simulated datasets in
both methods (i.e., with only follow-up
data and with follow-up data and infor-
mation on ages at biospecimen collection)
for each γ. The results showed that the
standard deviations of γ were smaller in
the method that takes into account ages
at biospecimen collection (0.057 vs. 0.085,
in average; a 33.2% relative decrease).
Although such a difference may look small
in absolute value and not worth men-
tioning at first sight, it corresponds to a
substantial gain in power, if we translate
these observations into power curves and
curves for the level of the test that yields
specific power as a function of the effect
size (regression parameter). Figure 1A
illustrates the empirical power in these
two methods (with follow-up only, “FU”,
and follow-up and ages at biospecimen
collection, “FU + A”) for different effect
sizes (i.e., values of the parameter γ) and
α = 0.05. We also fitted these empirical
values with the power curves of a one-
sample Z-test of the mean and found the
values of the standard deviations that
produced the best fit to the empirical
power curves for each method (0.056 for
“FU + A” and 0.084 for “FU”), see solid
and dashed lines in Figure 1A. Figure 1B
shows the level of the test [shown as
− log10(α) for better visibility] that yields
power w = 0.8, as a function of the effect
size in both methods (the curves were
calculated using the abovementioned val-
ues of standard deviations). Figure 1C
shows an example of distributions of the
estimates in simulated datasets in both
methods and their fits by normal distribu-
tions (this example corresponds to γ = 0.4
for which the standard deviations and the
relative decrease are close to the average
ones: 0.058, 0.087, and 33.6%).

DISCUSSION
The results shown in Figure 1 indicate that
the information on ages at biospecimen
collection in addition to follow-up data
gives a substantial increase in power com-
pared to the traditional approach that uses
the follow-up data only. It also follows
from Figure 1 that for the effect size equal
to 0.3 p-value reduces from 10−2 to 10−5

and for the effect size equal to 0.4 p-value
drops from 10−4 to 10−9. This means
that many genetic variants which would be
not genome-wide significant in GWAS of

follow-up data using the traditional Cox-
type approach would become highly sig-
nificant if the proposed approach is used.
Our simulations with different follow-up
periods (data not shown) reveal that this
effect diminishes with an increase of a
follow-up period. It is clear intuitively
that, in the case of a growing follow-up
period, information from this long follow-
up makes an increasing contribution
compared to information hidden in the
distributions of ages at biospecimen col-
lection. Conversely, in the case of a shorter
follow-up period, distributions of ages at
biospecimen collection play a more impor-
tant role in differentiating the allele- or
genotype-specific survival patterns from
the data. Thus our results show that the
additional use of information on ages at
biospecimen collection may have impor-
tant implications for GWA studies of
longevity especially in cases with relatively
short follow-up periods. The LLFS data
provide a good example of a study which
could potentially benefit from the addition
of information on ages at biospecimen col-
lection in its GWAS of longevity (as well
as healthspan for which similar conclu-
sions can be made). As longevity is known
to run in families, family-based genome-
wide association studies can provide addi-
tional advantages compared to analyses of
independent samples. However, perform-
ing GWAS in cohort studies that con-
tain both unrelated individuals and family
members requires a special consideration
of the analytical approach to take the full
advantage of such data (Manichaikul et al.,
2012).
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