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Whereas many cases of neurodegenerative disease feature the abnormal accumulation
of protein, an abundance of recent literature highlights loss of RNA homeostasis as
a ubiquitous and central feature of pathological states. In some diseases expanded
repeats have been identified in non-coding regions of disease-associated transcripts,
calling into question the relevance of protein in the disease mechanism. We review the
literature in support of a hypothesis that intrinsically disordered proteins (proteins that
lack a stable three dimensional conformation) are particularly sensitive to an age-related
decline in maintenance of protein homeostasis.The potential consequences for structurally
disordered RNA-binding proteins are explored, including their aggregation into complexes
that could be transmitted through a prion-like mechanism. We propose that the spread
of ribonucleoprotein complexes through the nervous system could propagate a neuronal
error catastrophe at the level of RNA metabolism.
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INTRODUCTION
Being comprised largely of postmitotic neurons that must persist
for a lifetime, the central nervous system is at risk for dam-
age that would be less dire in tissues wherein stem cells can be
effectively mobilized. The accumulation of damage has important
implications for neurodegenerative disease pathogenesis and may
be responsible for features of the aged brain below the level of
overt pathology. A hallmark of aged and diseased neurons is the
aggregation of damaged or misfolded proteins, and it has long
been thought that loss of protein homeostasis plays an impor-
tant role in neurodegenerative disease (Gray et al., 2003). Recent
literature highlights the loss of RNA homeostasis as a recurrent
theme in neurodegenerative disease and while it is possible to
imagine how the failure of regulation at either the RNA or pro-
tein level could be catastrophic for neurons, a better course might
be to consider how these failures may be related mechanistically.
RNA and protein have linkages beyond the directional flow of
information from DNA to RNA to protein (the “central dogma”
of biology). Indeed we will argue that complexes of RNA and
protein mediate all aspects of RNA metabolism (including splic-
ing, stability, transport, and translation) and are the weak link
in the maintenance of neuronal homeostasis. Crucial to these
interactions are intrinsically disordered proteins. With age-related
decline in proteolytic efficiency the turnover and regulation of
ribonucleoprotein complexes may become increasingly dysfunc-
tional, and what ensues may be an“error catastrophe”of a type not

Abbreviations: ALS, amyotrophic lateral sclerosis; ATP, adenosine triphosphate;
CDK, cyclin-dependent kinase; CNS, central nervous system; DM, myotonic dys-
trophy; FXTAS, fragile X-associated tremor ataxia syndrome; IDP, intrinsically
disordered protein; MB, Marinesco body; RNP, ribonucleoprotein; RRM, RNA
recognition motif; UPS, ubiquitin/proteasome system; UTR, unstranslated region.

anticipated by Orgel when he first coined the term (Orgel, 1963).
There is already substantial evidence for this model in a subset of
neurodegenerative disorders, and we postulate that this may serve
as a template to explain certain aspects of “non-pathological”brain
aging as well.

THE PROMINENCE OF RNA-BINDING PROTEINS IN
AGE-RELATED NEURODEGENERATIVE DISEASES
Over the preceding several years RNA dysregulation has taken
center stage in the pathophysiology of neurodegenerative dis-
eases, most notably amyotrophic lateral sclerosis (ALS; Ugras and
Shorter, 2012). With the exception of the roughly 20% of familial
cases and less than 10% of sporadic cases of ALS attributable to
mutations in the superoxide dismutase 1 (SOD1) gene (Andersen
and Al-Chalabi, 2011) both sporadic and inherited forms of ALS
are characterized by the aggregation of the nuclear proteins tar
DNA binding protein 43 (TDP-43) or fused in sarcoma (FUS).
TDP-43 and FUS are RNA-binding proteins critically involved in
RNA splicing and transport. Loss of these functions is considered
to be central to ALS pathogenesis. Moreover, the most common
genetic basis of ALS is a hexanucleotide repeat expansion in the
c9orf72 gene on chromosome 9 (Dejesus-Hernandez et al., 2011;
Renton et al., 2011). The causative mutation in this form of ALS
resides in an intron, resulting in the generation of an elongated
RNA with pernicious properties including the ability to sequester
essential RNA-binding proteins (Mori et al., 2013a). The potential
also exists for protein-mediated mayhem from the intronic repeat,
which can be translated through a non-ATG initiated mecha-
nism to generate potentially toxic dipeptide repeat proteins (Mori
et al., 2013b). The situation bears some similarity to that of the
expanded CAG repeat in the huntingtin gene (the genetic basis
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of Huntington’s disease) where an RNA-mediated mechanism has
only recently been revealed. Binding of the expanded CAG repeat
to a translational regulatory complex containing the MID1 protein
was found to enhance the translation of mRNAs containing such
repeats, promoting the accumulation and aggregation of abnor-
mal protein (Krauss et al., 2013). In both cases further work will
be required to establish the relative contributions of RNA and
protein-mediated mechanisms.

Other RNA-mediated diseases provide a paradigm for under-
standing a potential role for RNA-binding proteins in neurodegen-
erative pathogenesis. These disorders include myotonic dystrophy
(DM; types 1 and 2), fragile X-associated tremor ataxia syndrome
(FXTAS), spinocerebellar ataxia types 3, 8, 10, and 12, Hunting-
ton’s disease like 2 (reviewed in Todd and Paulson, 2010), and
chromosome 9-linked frontotemporal dementia/ALS (Todd and
Paulson, 2010; Renton et al., 2011). Unlike their counterparts
caused by coding region trinucleotide repeat expansions, they
are all caused by nucleotide repeat expansion mutations in the
5′ UTR, 3′ UTR or intronic sequences of mRNAs. The result-
ing expansion alters the RNA which forms complex secondary
structures including hairpin loops, rendering them prone to aggre-
gation. Indeed, the formation of microscopically visible “RNA
foci” represents a histomorphological hallmark of this family of
diseases (Taneja et al., 1995). These expansion-induced alterations
also confer upon the mutant RNA a “gain-of-toxic function”. This
RNA-induced toxicity is mediated in large part by the sequestra-
tion of RNA-binding proteins, most notably RNA splicing factors,
with consequent widespread mis-splicing events. DM1, charac-
terized by muscle wasting, myotonia, insulin resistance, cardiac
conduction defects, cataracts, testicular atrophy, and cognitive
dysfunction, is one of the first disorders recognized as belong-
ing to this family. It is caused by a CTG repeat expansion mutation
in the 3′ untranslated region of the DMPK gene (Mahadevan
et al., 1992). The expanded RNA sequesters RNA splicing factors
including members of the muscle-blind-like family of proteins,
MBNL 1, 2, and 3 (Miller et al., 2000), disrupting their normal
subcellular distribution, and usurping their function. In addition,
there is pathological upregulation of another RNA-binding pro-
tein and alternative splicing factor CUG-binding protein 1 (Gallo
and Spickett, 2010). These RNA splicing factors are involved in
the alternative splicing of the muscle-specific chloride channel
(Kino et al., 2009), insulin receptor (Paul et al., 2006), and car-
diac troponin-T (Warf and Berglund, 2007) transcripts; thereby
providing a unifying molecular substrate for the seemingly dis-
parate multisystemic manifestations including myopathy, insulin
resistance, cardiac conduction defects, respectively. DM1 is also
characterized by mis-splicing of neuronal transcripts including
those encoding the NMDAR1 glutamate receptor subunit, the
microtubule associated protein tau, and the amyloid precur-
sor protein (Jiang et al., 2004). Accordingly, DM1 is considered
by many to be at least partly a neurodegenerative disorder as
patients develop tau-positive neurofibrillary tangles in the brain
and cognitive dysfunction (Sergeant et al., 2001). Tau-positive
neurofibrillary pathology is not only encountered in disease states,
but is also an accompaniment of “normal” aging. Thus, the patho-
genesis of DM1 provides a salient example of how dysregulation of
RNA-binding protein function can culminate in cellular changes

with important implications for neurodegeneration as well as for
brain aging.

The factors underlying the particular vulnerability of the cen-
tral nervous system (CNS) to RNA-mediated toxicity remain to
be defined. Indeed, the majority of RNA-mediated diseases affect
predominantly or even exclusively the CNS in an age-dependent
manner. For example, FXTAS is manifest clinically as late adult
onset ataxia and cognitive decline (Jacquemont et al., 2003). It
is caused by an expanded (permutation) CGG repeat (50–200;
“pre-mutation”) in the 5′ untranslated region of the FMR-1
gene (Hagerman and Hagerman, 2004). Pathologically, there is
neuronal loss with widespread glial and neuronal ubiquitinated
intranuclear inclusions (Greco et al., 2002). The mutant expanded
RNA sequesters at least two RNA-binding proteins, hnRNA2/B1
and Pur alpha and causes their dysfunction (Jin et al., 2007; Sofola
et al., 2007). Interestingly, MBNL-1 has also been described in
FXTAS inclusions (Iwahashi et al., 2006). The concept of selec-
tive vulnerability of the CNS to RNA-mediated pathology can
be extended even further to cell populations within the CNS.
For example, returning to ALS, why motor neurons appear to
be particularly susceptible to the pathogenic consequences of
RNA dysregulation is an area of active investigation. Whether
the demonstration that the novel RNA-binding protein RBM45, is
sequestered by the neuronal inclusions in this disease has relevance
for the vulnerability of motor neurons remains to be determined
(Collins et al., 2012).

RNA-BINDING PROTEINS ARE INTRINSICALLY DISORDERED
PROTEINS, AND SERVE AS CRITICAL HUBS
The conventional manner of conceptualizing the operation of pro-
teins within cells is in terms of structure-function relationships.
In other words, it is generally imagined that upon translation a
protein will adopt some stable structure, which will allow it to
carry out its function as an enzyme or structural component.
The “lock and key” metaphor is frequently invoked to describe
the interaction of an enzyme with its substrate (or an antibody
with its antigen), though it is recognized that the metaphor
is inadequate in terms of the flexibility of proteins and their
propensity to undergo structural changes in response to substrate
binding and/or post-translational modifications. This textbook
notion of the structure/function relationship is challenged by the
growing catalog of proteins that are intrinsically disordered, in
whole or in part. If the definition of an intrinsically disordered
protein (IDP) restricts inclusion to those proteins containing dis-
ordered segments of 30 or more residues, roughly a third of
eukaryotic proteins would qualify (Ward et al., 2004). Importantly,
IDPs are over-represented among the family of aggregation-prone
proteins implicated in neurodegenerative diseases. Disordered seg-
ments can be predicted with increasing accuracy by web-based
algorithms such as PONDR-Fit (Xue et al., 2010), DISOPRED2
(Ward et al., 2004), and FoldIndex (Prilusky et al., 2005). These
predictions are supported by abundant in vitro evidence from
structural analytic methodologies such as circular dichroism, solu-
tion state NMR, and small angle X-ray scattering (Kriwacki et al.,
1997; Dyson and Wright, 2004; Li and Song, 2007; Binolfi et al.,
2012; Tamiola and Mulder, 2012). A recurrent feature of disor-
dered segments that can be exploited in search algorithms is the
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distortion of amino acid frequencies in favor of hydrophilic and
charged residues (at the expense of bulky hydrophobic residues)
relative to the entire proteome. It is unlikely that a stably folded
structure can form in the absence of a hydrophobic core, and
charged side groups will work against the compaction of protein
structure.

Whereas some IDPs appear to execute their function in the
unstructured state (for example the nuclear pore complex proteins
that form an unstructured “gel” to preclude the unassisted passage
of other proteins through the pore; Alber et al., 2007; Meinema
et al., 2011) others undergo a transition to a folded state upon
binding of specific substrates. A well characterized example of this
is the p27 (Kip1) protein, whose function is to inactivate a number
of cyclin-dependent kinases (CDKs) under conditions where cell
growth and division are undesirable. The p27 protein adopts a
stable structure upon CDK binding, but that structure is dictated
by the particular CDK that is bound (Galea et al., 2008). One CDK
inhibitor is thereby able to interfere with the activity of a number of
substrates of differing topology (Yoon et al., 2012). The p53 protein
provides another remarkable example of substrate-induced struc-
tural pleiotropy – depending on its interaction partner the same
intrinsically disordered segment of p53 can adopt the structure of
an alpha helix, a beta sheet, or of various stable folds (Uversky
et al., 2008).

Because IDPs have the potential to bind multiple partners with
high specificity but low affinity they are thought to be ideally
suited to serve as hub proteins in scale-free networks (the exis-
tence of hubs is the defining feature of a scale-free network). Hubs
increase the robustness of networks; random node failure is less
deleterious to highly connected networks containing hubs, a prop-
erty exploited in communications networks such as the internet.
Hubs also serve to shorten the distance between any two nodes,
increasing the efficiency of network operations (these concepts are
reviewed in a biological context in Dunker et al., 2005). Though
hubs provide these benefits, they are of disproportionate impor-
tance to networks, and in a biological system the loss of a hub
protein has the potential to be lethal [Jeong et al. (2001) provide
genetic evidence for the criticality of hub proteins in the yeast
model system]. The integration of signals and delivery of outputs
may require the assembly of multi-component complexes, and hub
proteins often serve as scaffolds for such complexes. The expecta-
tion would therefore be that there should be a correlation between
the extent of a protein’s disorder and its participation in complex
formation, a prediction borne out by computational analysis of
test proteomes (Iakoucheva et al., 2002; Hegyi et al., 2007; Sch-
lessinger et al., 2007). It is also to be expected that more elaborate
signaling networks would be required for the additional demands
of multicellularity and development in metazoans, and that with
increased requirement for hubs the level of protein disorder should
be higher in eukaryotes as a class than in prokaryotes. This pre-
diction is also supported by proteome analysis (Schad et al., 2011).
Finally, with their promiscuous binding it is reasonable to imagine
that the abundance of hub proteins should tightly regulated. Thus,
if IDPs are disproportionately represented in hubs their levels may
be lower than the remainder of the proteome, another prediction
in agreement with the available data (Gsponer et al., 2008; Vavouri
et al., 2009).

Within the cell RNA molecules exist as topologically complex
entities with extensive hairpins and loops dictated by intrastrand
base pairing (for a review see; Holbrook, 2005). RNA is subject to
many levels of metabolic regulation, influencing its splicing, sta-
bility, subcellular localization, and translational efficiency. RNA
regulation is imposed through interacting proteins, but it is incon-
ceivable that each unique RNA structure could be recognized
by a set of interacting proteins through “lock and key” mech-
anisms (this would require many more RNA-binding proteins
than there are RNA transcripts). The solution to the problem is
for RNA-binding proteins to be IDPs, typically utilizing unstruc-
tured segments for RNA recognition, and folding upon binding
to their RNA interaction partners (Battiste et al., 1996; Mogridge
et al., 1998). Indeed, an analysis of over 200,000 proteins from
the Swiss-Prot database using the PONDR VL3E predictor of long
disordered segments identified the functional category ribonu-
cleoproteins as most strongly correlated with disorder (Xie et al.,
2007). These proteins contain RNA recognition motifs (RRMs;
Query et al., 1989; Clery et al., 2008) and regions rich in the
simple sequence arginine, glycine, glycine (denoted RGG in the
single letter code; for this reason these elements are referred to
as RGG motifs; Ohno et al., 1994; Rajyaguru and Parker, 2012).
Examples of mammalian RGG motif proteins include hnRNP pro-
teins (Kiledjian and Dreyfuss, 1992; Siomi and Dreyfuss, 1995)
and the Sm (Brahms et al., 2001; Friesen et al., 2001) proteins
involved in mRNA splicing. In the context of neurodegenera-
tive disease, the prominent examples are the TDP-43 (Dammer
et al., 2012) and FUS/TLS (Sun et al., 2011) proteins, implicated
in ALS and in frontotemporal dementia in a mutually exclusive
fashion.

It is beyond the scope of the current discussion to elaborate
upon all of the ways in which disordered RNA-binding pro-
teins can serve as critical network nodes, but as an illustrative
example consider the case of FUS/TLS (hereafter simply FUS).
FUS is a conserved protein whose orthologs have been identified
in the fruit fly (designated cabeza, or caz; Stolow and Haynes,
1995) and nematode FUST-1 (accession number NP_495483).
The largest human isoform of FUS is a ubiquitously expressed
526 amino acid protein whose primary sequence is obviously
unusual (Figure 1A). The protein is predicted to be almost entirely
disordered by the available algorithms (Figure 1B), with the excep-
tion of a small central domain. The central segment of FUS is
thought to mediate binding to nucleic acids (Figure 1C); one of
the known functions of FUS is as a DNA binding transcription
factor (Uranishi et al., 2001; Tan et al., 2012). The organization
of FUS with a structured central domain and flanking unstruc-
tured regions resembles that of p53 (Uversky and Dunker, 2010),
whose repertoire of functions includes transcription factor activity
(Beckerman and Prives, 2010). The preponderance of FUS pub-
lications, however, relate to its various roles in RNA metabolism.
FUS is a nuclear/cytoplasmic shuttling protein (Dormann et al.,
2010), with established roles in both subcellular compartments. In
the nucleus (where the bulk of FUS protein normally resides; Dor-
mann et al., 2010) FUS associates with the spliceosomal complex
(Meissner et al., 2003) and is required for the correct process-
ing of mRNAs such as that encoding Tau (Orozco et al., 2012).
In the brain FUS associates with nascent RNA transcripts and
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FIGURE 1 | Fused in sarcoma as an intrinsically disordered RNA-

binding protein. (A) Primary sequence of the 526 amino acid isoform
of human FUS. Relative to all predicted protein sequences (using data
from the UniProt KB/Swiss-Prot database, release 2011_09) the FUS
sequence contains an unusually high proportion of some residues,
while being deficient in others. Some examples are indicated by colored
letters: glycine (G, orange) and glutamine (Q, red) are more abundant than
expected, representing 28.7% of FUS resides as opposed to 7.1% in
database proteins in the case of glycine, and 9.9% of FUS resides as
opposed to 3.9% in database proteins in the case of glutamine. Lysine, on
the other hand, is less abundant than the average, representing only 2.7% of
FUS residues as opposed to 7.2% of proteins in the database. (B) Disorder in

the FUS protein as predicted by the FoldIndex algorithm (available at
http://bip.weizmann.ac.il/fldbin/findex). Only a central portion of approximately
50 residues (indicated in green) is predicted to have a stably folded structure.
(C) Domain organization of FUS. The folded domain corresponds to a region
with nucleic acid binding properties (designated the RRM, or RNA recognition
motif, though this region may also bind DNA). There are regions rich in the
amino acids indicated by their single letter codes, as well as domains rich in
the simple repeat arginine, glycine, glycine (RGG). ZnF indicates a putative
zinc finger motif (Iko et al., 2004). NES represents a region with nuclear
export activity, while NLS represents the nuclear localization signal. This
schematic is adapted from a similar figure in the review of Lagier-Tourenne
and Cleveland (2009).

regulates alternative splicing (Ishigaki et al., 2012; Rogelj et al.,
2012). Depletion of FUS by stereotactic delivery of antisense
oligonucleotides into the adult mouse brain has been shown to
alter the splicing of nearly 1,000 transcripts (Lagier-Tourenne et al.,
2012). Nuclear FUS also plays a role in telomere maintenance by
binding to G-quadruplexes (stacked tetrads of guanine residues)
that exist in telomeric DNA and in telomeric repeat-containing
RNAs associated with the telomerase complex (Takahama et al.,
2013). The formation of G-quadruplexes has recently been doc-
umented in the disease-associated G-rich repeats of the C9orf72
RNA, which have been shown to associate with a subset of RNA-
binding proteins (Reddy et al., 2013). It is not yet known whether
FUS is a member of this group or to what extent the quadru-
plex figures in C9orf72-mediated pathology. In the cytoplasm
of neurons FUS is involved in RNA transport to synapses (Fujii
and Takumi, 2005) and translational regulation at this site. Mice
lacking FUS have abnormal dendritic morphology and a decrease
in the number of dendritic spines (Fujii et al., 2005). FUS does

not bind all RNAs, but binds a specific subset, many of which
contain a GUGG motif (Lerga et al., 2001; Lagier-Tourenne et al.,
2012). Many of the RNAs bound by FUS encode products that are
themselves associated with transcriptional or post-transcriptional
regulation (Colombrita et al., 2012; Lagier-Tourenne et al., 2012).
Overexpression of FUS is toxic to cells in culture and to neurons
in situ (Mitchell et al., 2012), promoting excessive accumula-
tion of FUS in the cytoplasm and the formation of cytoplasmic
aggregates of characteristic appearance. The toxicity of overex-
pressed FUS has similarities to the toxicity of the mutant isoforms
of FUS identified in human ALS; pathogenic FUS mutations
typically affect the C terminal region of FUS (Mackenzie et al.,
2010), which is required for nuclear localization (Dormann et al.,
2010). There is evidence that RNA-binding is critical for FUS
toxicity: mutations affecting RNA binding eliminate FUS aggre-
gation and toxicity in a yeast model system (Sun et al., 2011)
and toxicity can be suppressed by co-expression of RNA-binding
components of mRNPs and stress granules (Ju et al., 2011; Sun
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et al., 2011). In summary then, FUS is an IDP that influences
RNA homeostasis both in the nucleus and cytoplasm through
its interactions with RNA and a large number of RNA-binding
partners. FUS has all the expected properties of a hub as out-
lined above: it is largely disordered and binds multiple partners
with high specificity, its abundance is limited, and it receives
input from multiple signaling networks. As a hub protein FUS is
indeed a critical node; dysregulation of FUS adversely affects RNA
metabolism at multiple levels and results in neurodegenerative
disease.

IDPs ARE PROTEASOME SUBSTRATES, AND ARE
VULNERABLE TO AGE-RELATED PROTEOLYTIC DEFICIENCY
Eukaryotic cells possess two major proteolytic systems, both of
which are essential for neuronal homeostasis (Rubinsztein, 2006).
The autophagic system utilizes membrane-delimited vesicles to
recycle cell constituents into their component parts (Harris and
Rubinsztein, 2012), but does so relatively slowly (it may take
hours to engulf and disassemble a complex structure such as
a mitochondrion). Because its substrates must be enclosed in
membranes autophagic degradation is restricted to cytoplasmic
constituents. The ubiquitin/proteasome system (UPS) operates
in the nucleus and cytoplasm, and is responsible for the rapid
degradation of individual proteins rather than more complex
assemblages (Schwartz and Ciechanover, 2009). The UPS can
display a high degree of specificity, which is attributable to
the large number of enzymes dedicated to substrate recognition
(including hundreds of ubiquitin ligases acting in concert with
a much smaller number of ubiquitin conjugating enzymes to
build ubiquitin chains on substrates). This elaborate enzymol-
ogy orchestrates the delivery of specific substrates to the 26S
proteasome, a complex molecular machine capable of unfold-
ing incoming substrates and cleaving them into short peptides.
Ubiquitin chain recognition and adenosine triphosphate (ATP)-
dependent unfolding activity reside within the 19S lid structures
of the 26S proteasome (Gallastegui and Groll, 2010). The active
proteases reside within the interior of the 20S core protea-
some, a barrel-shaped structure with narrow portals at each
end. These entry pores can be gated by the disordered tails
of subunit proteins (Groll et al., 2000). Folded proteins can-
not pass through these pores, which can only accommodate a
linear polypeptide chain. The cell contains an appreciable num-
ber of 20S core proteasomes, whose only substrates can be
disordered proteins, or disordered segments of proteins. Such
substrates could be degraded without prior ubiquitination (an
energy-dependent activity that directs substrates to the 26S, not
the 20S proteasome) and without unfolding; degradation of
IDPs would therefore occur without any cost in ATP hydroly-
sis. It is therefore very straightforward to assay for this form
of degradation in vitro – it will occur when substrates are
mixed with purified 20S proteasomes. Testing of specific sub-
strates predicted to be IDPs (the p21 protein, or α-synuclein,
for example) has confirmed that they are efficiently degraded in
this fashion (Sheaff et al., 2000; Tofaris et al., 2001; Baugh et al.,
2009). Susceptibility to degradation by the 20S proteasome has
been proposed as the operational definition of an IDP (Tsvetkov
et al., 2008), an experimental approach to complement physical

and computational methodologies. Thermal stability is a second
easily measured parameter which correlates well with suscepti-
bility to 20S proteasomal degradation in vitro (Tsvetkov et al.,
2012).

The vulnerability of IDPs to proteasomal degradation is such
that in uncomplexed form they may be rapidly eliminated within
cells; association with molecular “nannies” has been hypothesized
as a protective mechanism (Tsvetkov et al., 2009). As mentioned
previously the abundance of IDPs is typically low (a desirable
state for proteins acting as hubs in regulatory networks), and
20S proteasomal degradation may be one mechanism that lim-
its the abundance of uncomplexed IDPs. If so, any decline in
the abundance or enzymatic efficiency of 20S proteasomes would
lead to accumulation of uncomplexed IDPs, with two potentially
deleterious consequences. First, one would expect perturbations
in the stoichiometry of complex formation. For a single RNA-
binding protein such as FUS the consequences of decreased
proteasomal degradation might include alterations in transcrip-
tional elongation, mRNA splicing, mRNA stability, mRNA export,
mRNA transport, and mRNA translation! Though little is cur-
rently known about the regulation of the FUS RNA itself it is
known to be a binding partner of the TDP-43 protein (Seph-
ton et al., 2011), and it is conceivable that abnormalities in one
RNA-binding protein could affect the other with more global
consequences. Indeed it is easy to imagine how perturbation of
FUS levels could generate a vicious cycle of RNA dysregulation.
Inefficient turnover of FUS by the proteasome may also promote
the formation of FUS aggregates. Molecular crowding of a pro-
tein like FUS may be sufficient to promote its aggregation (though
aggregation is also influenced by post-translational modification
of FUS including arginine methylation; Dormann et al., 2012).
Once formed, aggregates of RNA-binding IDPs may be difficult for
the proteasome to disassemble and degrade; autophagy may be the
only option for clearance of aggregated IDPs (Figure 3B). There
is evidence that pharmacological enhancement of autophagy
reduces the number of inclusions and corresponding loss of
motor function in a transgenic model of TDP-43 proteinopathy
(Wang et al., 2012).

The event that could trigger these proposed molecular cat-
aclysms may be nothing more than an age-related decline in
proteasomal activity. Indeed the conditional knockout of a pro-
teasome subunit in motor neurons effectively phenocopies ALS
in mice, with aggregation of TDP-43 and FUS positive inclu-
sions in spinal motor neurons (Tashiro et al., 2012). Knockout
of an autophagic component did not have this effect. The age-
related decline of ubiquitin-mediated proteolysis has been well
documented in the mammalian brain (reviewed in Gray et al.,
2003). Even in the “healthy” aging brain (in individuals not
diagnosed with neurodegenerative disease) there are indications
of pathologic change. Of particular relevance to the ubiquitin-
proteasome system is the age-related accumulation of ubiquitin-
immunoreactive neuronal inclusion bodies which share features
with their counterparts in neurodegenerative disorders (Dickson
et al., 1990; Gray et al., 2003). Marinesco bodies (MBs) provide a
morphological metaphor for the blurred interface between nor-
mal and pathological brain aging. MBs are spherical intranuclear
inclusions (Figure 2) found in the catecholaminergic neurons of
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FIGURE 2 | Pigmented dopaminergic neurons in the substantia nigra from aged, non-diseases subjects containing intranuclear MBs (arrows)

immunoreactive for promyelocytic leukemia protein (PML; A) and ubiquitin (B).

FIGURE 3 | RNA-binding IDPs as a weak in link in age-related

neurodegeneration. In healthy neurons (A) the abundance of IDPs
is limited by the 20S proteasome, which can mediate proteolytic
degradation in a ubiquitin-independent manner. With the decline of
proteolytic efficiency in the aged brain (B) there is accumulation of

RNA-binding IDPs, which can promote aggregation and/or abnormalities in
RNA metabolism. The potential exists for feedback loops of escalating
dysfunction as abnormal IDPs are produced. If aggregates are not cleared by
autophagy the potential also exists for the spread of dysfunction to other
neurons through prion-like mechanisms.

the substantia nigra and locus coeruleus of the non-diseased pri-
mate brain (Yuen and Baxter, 1963). Their frequency increases
significantly with age. In addition to ubiquitin, these structures
contain a variety of additional UPS-related proteins including p62,
EDD1, NEDD8, NUB1, SUMO-1, and SUMO-2 (Odagiri et al.,

2012). Despite their morphological and biochemical similarity
to the intranuclear inclusion bodies that characterize some
neurodegenerative disorders, including the polyglutamine repeat
disorders and neuronal intranuclear inclusion body disease, they
have long been considered inert, non-pathological entities. More
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recent studies, however, have demonstrated that their appear-
ance correlates with age-associated dopaminergic denervation
of the striatum (Beach et al., 2004) and nigral neuronal degen-
eration (Kanaan et al., 2007). Thus, MBs may either directly
impose, or alternatively represent markers of, pernicious cel-
lular events related to proteolytic failure in the aging CNS.
Whether the same holds true for the numerous other types of
ubiquitin-positive inclusions that have been described in the
aging non-diseased human brain (Gray et al., 2003) is unknown.
Moreover, whether MBs sequester RNA-binding proteins has not
been studied. However, studies have demonstrated a significant
increase in their frequency in the RNA-mediated disorder DM
(Ono et al., 1987). The apparent stochasticity of this process may
reflect the fact that in the otherwise healthy aging brain individ-
ual neurons may reach the “tipping point” for the RNA crisis at
different times.

PERTURBATION OF RNA HOMEOSTASIS MAY SPREAD
THROUGH PRION-LIKE MECHANISMS
Age-related decline in protein degradation may contribute to
an RNA homeostatic crisis by promoting the accumulation of
RNA-binding IDPs as described above, but recent speculation on
mechanisms by which the pathology of neurodegenerative dis-
eases may spread within an individual has increased the potential
for IDP-mediated devastation. It has long been known that patho-
logical changes in the nervous system follow anatomical patterns
of spread that are stereotypic for each disease. In the case of spo-
radic Parkinson’s disease, for example, Braak et al. (2002) have
proposed a staging system wherein alpha-synuclein aggregates in
the olfactory neurons and brainstem are detected at an early stage.
Only at later stages is there detection of Lewy bodies in the sub-
stantia nigra (the hallmark of PD). Braak has proposed that the
initial insult may occur at distant sites in the gut or olfactory
epithelium, and may spread via long unmyelinated axons to the
brain (Hawkes et al., 2007). Although this mechanism is still very
controversial, similar mechanisms have been proposed to explain
temporal changes in cortex and striatum that are characteristic
of Huntington’s disease and the spread of neurofibrillary tangles
from hippocampus and associated structures to the neocortex in
Alzheimer’s disease (Brundin et al., 2010; Cushman et al., 2010;
Guest et al., 2011; Walker and Levine, 2012). The hypothesized
mechanism of spread in all cases is cell to cell transmission of
a prion-like entity: a small aggregate that would be released by
exocytosis on exosomes, cell lysis or transmitted by other means
(for example direct transfer through nanotubes; Gousset et al.,
2009). There is accumulating evidence that protein aggregates

can be taken up by cells (Lee et al., 2008; Angot et al., 2012),
and once this occurs it is plausible that the incoming aggregate
would seed further aggregation in the recipient cell. Could the
intrinsically disordered, aggregation-prone RNA-binding proteins
be transmitted in this fashion? Already there is both computa-
tional and experimental evidence in favor of this idea. A hidden
Markov model algorithm has been developed based on known
yeast prion sequences (Alberti et al., 2009). When applied to the
human proteome this algorithm ranked FUS protein 15th in its
list of predicted prions (Cushman et al., 2010). The TDP-43 pro-
tein has been shown to template prion-like self-assembly in vitro
(Furukawa et al., 2011). It remains to be demonstrated that RNA
dysregulation can be transmitted from cell to cell through aggre-
gated RNA-binding IDPs, but this would provide a route through
which a rare stochastic calamity in one cell could be propagated
to adjacent (and perhaps distant) bystanders (Figure 3). It may
be that age-related decline in proteolytic capacity could trigger
the initial aggregation of the IDP, even in the absence of somatic
mutations.

CONCLUSION
Based on the current literature we suggest that RNA homeostasis
is a weak link in the aging brain, and the loss of RNA homeostasis
underlies much neurodegenerative pathology. The precipitating
event for an ensuing catastrophe may be the well-documented
decline in proteolytic efficiency which would have immediate
and deleterious effects on substrates such as the RNA-binding
IDPs. In such a scenario the initiation of an “error catastrophe”
in which aggregation of RNA-binding proteins promotes dysreg-
ulation of RNA splicing, RNA stability, RNA export, transport
and translation would have knock-on effects on protein struc-
ture and function. The added burden to the proteasome and
compromised function of proteolytic components would result
in further perturbation of RNA homeostasis in a self-amplifying
cycle. This catastrophe may be exported to neighboring cells
through the prion-like spread of ribonucleoprotein complexes.
We believe that the hypothesized mechanism of age-related neu-
rodegeneration is experimentally tractable, and critical aspects
of the hypothesis can be tested using mouse models and cell
culture systems.
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