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Whole-genome shotgun metagenomics experiments produce DNA sequence data from
entire ecosystems, and provide a huge amount of novel information. Gene discovery
projects require up-to-date information about sequence homology and domain structure
for millions of predicted proteins to be presented in a simple, easy-to-use system.There is
a lack of simple, open, flexible tools that allow the rapid sharing of metagenomics datasets
with collaborators in a format they can easily interrogate. We present Meta4, a flexible
and extensible web application that can be used to share and annotate metagenomic gene
predictions. Proteins and predicted domains are stored in a simple relational database, with
a dynamic front-end which displays the results in an internet browser. Web services are
used to provide up-to-date information about the proteins from homology searches against
public databases. Information about Meta4 can be found on the project website1, code is
available on Github2, a cloud image is available, and an example implementation can be
seen at http://www.ark-genomics.org/tools/meta4
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INTRODUCTION
Whole-genome shotgun (WGS) metagenomics can be defined
as the application of high-throughput sequencing technologies
to whole environmental samples, enabling scientists to assay
the genomes of all organisms within a particular ecosystem, be
it the human gut microbiome (Yatsunenko et al., 2012), per-
mafrost (Mackelprang et al., 2011), or the Sargasso Sea (Venter
et al., 2004). One of the aims of such endeavors is to discover
novel enzymes that may have be of use to the biotechnol-
ogy industry (Cowan et al., 2005), and metagenomics has been
identified as a major mechanism for increasing the “sequencing
space” from which to discover new biocatalysts (Cowan et al.,
2004).

Whole-genome shotgun metagenomics experiments routinely
produce hundreds of gigabases of sequencing data. A generalized
analysis pipeline for such data is to (i) assemble the genomic data
de novo; (ii) predict genes and proteins on the resulting contigs
and scaffolds; (iii) assign domains and function to those proteins;
(iv) interpret those findings within the biological context. It is
not unusual for such studies to generate several million novel
genes/proteins – Venter et al. (2004) reported over 1.2 million
novel genes, and Hess et al. (2011) reported over 2.5 million puta-
tive genes, 27755 containing a domain of interest: those relevant
to biomass degradation.

Metagenomic assembly poses specific problems over and above
those of single genome assembly. The attempt to simultaneously
assemble thousands of different genomes often results in large and

1http://www.ark-genomics.org/bioinformatics/meta4
2https://github.com/mw55309/meta4

complex assembly graphs. These require more memory to create
and query, and also often require extra information in order to find
true paths through the graphs. Ray Meta (Boisvert et al., 2012) is
a massively distributed metagenome assembler that uses message
passing, whereas Pell et al. (2012) reduce memory requirements
using a bloom filter and use kmer connectivity to improve the
assembly process. Other tools attempt to partition the assembly
graph – Meta IDBA using graph connectivity (Peng et al., 2011)
and MetaVelvet using both coverage and connectivity (Namiki
et al., 2012). Finally, MetAMOS (Treangen et al., 2013) is a metage-
nomics pipeline that combines a number of published tools for
metagenomic analysis.

Once the raw metagenomic reads have been assembled into
contigs and scaffolds, the next stage is an attempt to predict the
location of genes. Here again, metagenomics poses particular
problems when compared to single bacterial genome annotation
(recently reviewed in Richardson and Watson, 2013). Specifi-
cally, traditional bacterial gene predictors use models trained on a
single, related genome; as with metagenomics we sequence thou-
sands of genomes simultaneously, this is no longer appropriate.
A number of tools have been published for metagenomic gene
prediction, including MetaGeneAnnotator (Noguchi et al., 2008),
Orphelia (Hoff et al., 2009), FragGeneScan (Rho et al., 2010), and
Glimmer-MG (Kelley et al., 2012). Yok and Rosen (2011) propose
a combination of tools.

Once genes have been annotated, domains can be assigned
to protein-coding genes using traditional approaches, such as
HMMER (Eddy, 2009) searches of domain databases such as Pfam
(Punta et al., 2012), and the use of tools such as InterProScan
(Mulder and Apweiler, 2007).
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After raw reads from metagenomics experiments have been
assembled and annotated, researchers are left with a very large
and rich dataset which can be difficult to query and share. Tools
that allow multiple users to browse and query such datasets, either
privately within a consortium, or as part of a public collaboration,
remain under-developed. It is essential that simple, open, and
flexible tools are provided to allow scientists to easily access the
outputs of metagenomic gene discovery projects. Here we describe
Meta4, a web application that is easy to install, that should work
on any standard LAMP (Linux, Apache, MySQL, PHP) server,
and which allows users to search and browse large collections of
metagenomic gene predictions in a user-friendly web interface. In
addition, Meta4 makes use of web services to provide up-to-date
annotation.

There are a few existing tools for organizing and analyzing
metagenomic data on the web; however, despite being feature-rich,
many are closed systems. The integrated microbial genomes and
metagenomes (IMG/M) system (Markowitz et al., 2012) allows
comprehensive analysis of genomes and metagenomes sequenced
at the Joint Genome Institute (JGI). However, the system is not
open-source, it is not possible to download the code and create
a local installation, the software is only extensible by the authors
and it is not easy to integrate your own data – one must e-mail
the authors and request integration. Similarly, the Community
cyberinfrastructure for Advanced Microbial Ecology Research and
Analysis (CAMERA; Sun et al., 2011) is a workflow-based, feature-
rich website for metagenomic analysis; however, the same issues
remain in that it is not open-source, it is only extensible by
the authors, it is not possible to create a local installation, and
users must e-mail the authors to request integration of their data.
Luckily, the metagenomics RAST server (MG-RAST; Meyer et al.,
2008), a very popular and comprehensive tool for metagenomic
data analysis, is far more open, with users encouraged to submit
their own data, and the code is available on github3. However,
even the authors admit, local installations of the tool are difficult,
they advise against it, and no support for such an undertaking is
available4.

All three tools are feature- and function-rich, and aim to be
complete systems for the assembly, annotation, and comparison
of multiple metagenomic samples. One problem with systems such
as IMG/M and CAMERA is an inability for users to maintain data
privacy; once data is uploaded to these systems, it is available for
the public to see. MG-RAST does have the option to submit to a
private queue, but this is a low priority queue. As such, these tools
are not designed for the simple task of sharing large amounts of
data quickly and simply. Meta4 is not designed to compete with
these tools in terms of functionality; rather, it is a simple tool
allowing the rapid sharing of metagenomic results that is easily
extensible by the addition of web services. It is possible to set up
a Meta4 database in less than 30 min on a simple Linux server
such as an Amazon EC2 micro instance. Meta4 is a lightweight
tool, completely open-source, easy to install locally and easy to
add additional functionality through web services.

3https://github.com/MG-RAST/
4http://blog.metagenomics.anl.gov/mg-rast-v3-2-faq/#local_install

Meta4 was developed on an Amazon EC2 micro instance
using a CloudBioLinux (Afgan et al., 2012) image. All code
is available via Github. An example Meta4 database can be
queried at http://www.ark-genomics.org/tools/meta4 containing
an assembly of the Hess et al. (2011) data.

MATERIALS AND METHODS
The overall structure of Meta4 is shown in Figure 1. Central to the
system is the Meta4 MySQL database, which stores information
on samples, assemblies, gene predictions, and protein domain
information. The choice to store some basic annotation in the
database itself allows users to query the available gene predictions
on domains of interest. Without such annotation, it would be very
difficult for users to filter the large numbers of gene predictions
in metagenomic datasets. We have chosen to store information
on protein domains, rather than the results of homology searches
(e.g., BLAST), as often domain searches are more sensitive to dis-
tant homology. Information can be loaded into the database from
common formats using the database loading scripts, including
GFF3 (gene predictions) and fasta (contigs and scaffolds). A web
form is provided that allows users to query the database and infor-
mation is presented in two ways: firstly, data extracted directly
from the Meta4 database is presented in the browser; secondly,
data extracted from the Meta4 database is provided to a range of
web services, and the results of those web services presented in
the browser. This allows for the latest, live, up-to-date annotation
to be displayed for each gene prediction, and is a key feature of
Meta4.

INTERFACE AND WEB SERVICES
The dynamic web interface is written in Perl/CGI and should run
on any apache web-server with minimal setup. The user is pre-
sented with a form including several parameters for search and
retrieval of genes/proteins within the database. The results are

FIGURE 1 |The overall structure of Meta4, which shows the

relationship between the MySQL database, the data loading scripts,

the web interface, external web services, and the users.
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returned as an HTML table, and consist of two parts – those that
return information stored in the database, and those returned
from web services.

We have implemented three web services in Meta4. The first
uses the EBI’s SOAP wublast interface (McWilliam et al., 2009),
querying Uniprot (Magrane and Consortium, 2011) with a pro-
tein sequence retrieved from the database. The top 10 results
are returned and these represent the most up-to-date homology
information for that protein within Uniprot.

The second uses the Uniprot REST web service (Jain et al.,
2009). Domains associated with a particular protein are extracted
from the database and used as input to search Uniprot. In this
way, known proteins with a similar domain structure to that being
queried are returned and presented to the user. Users are then able
to see the protein name and species of similar proteins, and can
click through to the Uniprot entry.

The third uses the EBI’s InterproScan (Mulder and Apweiler,
2007) SOAP interface (McWilliam et al., 2009), querying up to
14 separate protein domain databases with a protein sequence
retrieved from the database. The image and text returned also
represent the most up-to-date information publicly available for
the domains predicted within the query protein.

DATABASE STRUCTURE
The Meta4 MySQL database models the following specific entities
and their relationships:

(i) Sample: information about a specific biological sample that
has been sequenced. In reality we imagine most researchers
will store this information in some other database [e.g., a
laboratory information management system (LIMS)], but
this table allows metagenomic data to be linked to specific
samples.

(ii) Assembly: information about a de novo assembly of data from
a biological sample. This allows for multiple different assem-
blies of the same sample. The parameters of the assembly can
be stored as tag = value pairs in an assembly_param table.

(iii) Contig: models the contigs that are output as the result of an
assembly. We do not explicitly differentiate between contigs
and scaffolds. In this instance, a contig simply describes a
single, contiguous sequence obtained from a metagenomic
assembly.

(iv) Gene prediction: information on the genes predicted on any
given contig, including the location on the contig, and the
DNA and protein sequence.

(v) Domain database: contains information on the domain
database used and allows each gene prediction to have hits
to multiple domain databases [e.g., PROSITE (Sigrist et al.,
2010) and Pfam (Punta et al., 2012)] or multiple versions of
the same domain database.

(vi) Protein domain: information on the domains within each
domain database.

(vii) Domain match: storage of the link between gene predictions
and protein domains, including location of the match, bit
score and e-value.

Crucially, this structure allows multiple assemblies of the same
biological sample, as it is common to carry out multiple genome
assemblies using different software and parameter sets (which can

be flexibly stored in the assembly_param table). Domain matches
from multiple databases may also be stored.

CODE STRUCTURE AND DEVELOPMENT
We have implemented the Meta4 data model in MySQL with an
interface written in Perl and Perl CGI. The code has been tested
on CloudBioLinux (Afgan et al., 2012) and a local Scientific Linux
server, and should work on any standard LAMP server. The github
repository contains the following folders:

(i) sql: SQL for creating the MySQL database.
(ii) examples: example files used to create a simple instance of

Meta4.
(iii) scripts: perl scripts to load information and data into a Meta4

database.
(iv) cgi_scripts: perl CGI scripts that provide an interface to query

the data within a Meta4 database.

A README file is included in the distribution which gives
accurate instructions on how to create a Meta4 database that is
accessible via a web browser. If the import scripts are run with no
parameters, simple instructions are printed to the terminal.

Meta4 is released under an open-source license and we wel-
come active participation in the project. Whilst Meta4 is suitable
for release and publication in its current form, there are many
ways in which Meta4 could be developed. For example, currently
users must import data using Linux command-line scripts, rather
than a graphical user interface (GUI); also, we present scripts to
import data from the output of pfam_scan.pl5, and we welcome
contributions that are able to import data from other software
formats.

RESULTS
EXAMPLE DATASET
We have created an example Meta4 database and the results can
be browsed at http://www.ark-genomics.org/tools/meta4. Briefly,
we downloaded data from Hess et al. (2011) (SRA accession
SRA023560) and assembled the reads using SOAPdenovo (Li
et al., 2010). Open-reading frames greater than 200 bp in length
were extracted as putative genes. Pfam-A domains were anno-
tated using pfam_scan.pl5. As the experiment was designed to
find novel biomass degrading genes, we encourage users to enter
“glyco_hydro” into the “Name” field and click “Submit.”

BROWSING GENE PREDICTIONS
Meta4 allows users to browse information on particular gene pre-
dictions. An example screenshot of such information can be seen
in Figure 2. Basic information such as the gene name, description,
and sequence lengths are extracted from the database. Protein
domains annotated within the database are also extracted, and
presented as both a table and an image. Furthermore, the actual
gene and protein sequences are presented, and formatted cor-
rectly. Afterward, live information is presented from the three
web services. Firstly, proteins with the same domain structure are
extracted from Uniprot, and presented as a table. Secondly, the top
10 BLAST hits against Uniprot/TREMBL are presented. In this
way, users are able to see similar proteins in Unprot by domain

5ftp://ftp.sanger.ac.uk/pub/databases/Pfam/Tools/PfamScan.tar.gz
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FIGURE 2 | Screenshot of the Meta4 results interface, showing information extracted from the Meta4 database, and information from web services

(marked as “live” in the table).

structure and by sequence homology, and can click through to
the relevant entries. Finally, results from the InterProScan web
service are presented, both as an image and as text. As InterProScan
searches 14 different domain databases, we are able to view more
information here than the simple domain information stored in
the Meta4 database. A key advantage of Meta4 is that informa-
tion and annotation about the protein in question is served to the
user in real time, and therefore represents the most up-to-date
information possible.

WEB INTERFACE
The web interface has been tested on Firefox (Windows, Linux,
Android), Safari (Windows, Mac), Opera (Windows, Android),
Konqueror (Linux), Chrome (Windows), the Android native

browser, and Internet Explorer (Windows). All features work
on all browsers, except Internet Explorer 8 (Windows). Our
implementation of the EBI’s InterproScan web service produces
an in-line image using the data URI (uniform resource iden-
tifier) scheme, and we understand Internet Explorer 8 to have
a 32 Kb limit for these. This is fixed in Internet Explorer
version 9.

AMAZON EC2 CLOUD IMAGE
An Amazon Machine Image (AMI) is available (EU-WEST: ami-
46687f32). The AMI is based on Ubuntu Precise 12.04 (64 Bit)
with additional dependencies installed, including Meta4. We
have loaded the example data packaged with Meta4, and the
system is available from the cgi-bin of the installed Apache2
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web-server. Full instructions on how this was set up are avail-
able here: http://www.ark-genomics.org/services-bioinformatics-
meta4/creating-meta4-amazon-machine-image-ami

DISCUSSION
The role of Meta4 is to allow bioinformaticians to share the results
of metagenomic assembly and annotation with collaborators, and
to provide those collaborators with a simple web-based interface
with which to query and browse the data. It is not intended to
compete with tools that aim to assemble, annotate, and function-
ally or taxonomically compare multiple metagenomic datasets;
rather, it is a simple web application that can be used to search and
browse large amounts of information quickly, and retrieve genes
and proteins that may be of interest for further studies.

The key advantages of Meta4 are:

(i) Simplicity: Meta4 is incredibly simple and can be installed
in minutes on a standard LAMP server, either using the
git repository or by using the Amazon EC2 image. A new
Meta4 instance can be created rapidly from standard formats
using the scripts provided. In addition, Meta4 is completely
open-source.

(ii) Use of web services: by using web services, Meta4 ensures the
latest annotation results are delivered to users. In contrast,
other systems store pre-computed results which can rapidly
become out-of-date. By using web services, it is easy to extend
the functionality of Meta4.

(iii) Separation of data delivery from data analysis: existing web-
based systems combine assembly and annotation with results
presentation. By separating the search/browse function from
data analysis, Meta4 allows bioinformaticians to use an assem-
bly and annotation pipeline of their choice, and still share
their results with collaborators through a user-friendly web
interface.

(iv) Access control: often when one submits data to a public web-
server, a commitment is made to make the data publicly
available. Meta4 can be set up on a private intranet in minutes,

ensuring data privacy; alternatively, cloud Meta4 instances can
be limited to specific IP addresses. Thus Meta4 allows both
public and private sharing of data.

Managing the large amounts of data from WGS metagenomics
projects is a challenge and there is a need for simple tools that
enable scientists to access and query the results. We present Meta4,
a simple database for the storage of proteins and their domains
predicted from metagenomics experiments. Meta4 is lightweight,
easy to install and deploy, and can handle large amounts of data.
The system presents information to scientists in a format they
understand via a web interface. Meta4 is easily extensible through
the addition of web services, and despite not being as feature-
rich as some existing systems, benefits from being open-source,
lightweight and easy to install and deploy. The use of web ser-
vices means that the data served to users is as up-to-date as the
underlying primary database, which is an advantage over large
data warehouses whose data may become out-of-sync with the
primary data source. Meta4 is available under an open-source
license at http://www.ark-genomics.org/bioinformatics/meta4.

Despite the increasing number of published algorithms for
metagenomic assembly and annotation, the complexity of the
problem is such that errors are common. Attempts must be made
to assess the quality of metagenomic assemblies prior to annota-
tion, especially to ensure inappropriate joins are not made during
the contig and scaffold production steps. Metagenomic assemblies
are often highly fragmented, and this can affect gene prediction
and protein domain annotation. Once specific protein targets have
been identified from metagenomic datasets, we recommend a
manual annotation step to ensure the gene location (start and
end) and protein domain structures are correctly defined.
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