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Validating statistical analysis methods for RNA sequencing (RNA-seq) experiments is a
complex task. Researchers often find themselves having to decide between competing
models or assessing the reliability of results obtained with a designated analysis program.
Computer simulation has been the most frequently used procedure to verify the adequacy
of a model. However, datasets generated by simulations depend on the parameterization
and the assumptions of the selected model. Moreover, such datasets may constitute
a partial representation of reality as the complexity or RNA-seq data is hard to mimic.
We present the use of plasmode datasets to complement the evaluation of statistical
models for RNA-seq data. A plasmode is a dataset obtained from experimental data
but for which come truth is known. Using a set of simulated scenarios of technical
and biological replicates, and public available datasets, we illustrate how to design
algorithms to construct plasmodes under different experimental conditions. We contrast
results from two types of methods for RNA-seq: (1) models based on negative binomial
distribution (edgeR and DESeq), and (2) Gaussian models applied after transformation of
data (MAANOVA). Results emphasize the fact that deciding what method to use may
be experiment-specific due to the unknown distributions of expression levels. Plasmodes
may contribute to choose which method to apply by using a similar pre-existing dataset.
The promising results obtained from this approach, emphasize the need of promoting and
improving systematic data sharing across the research community to facilitate plasmode
building. Although we illustrate the use of plasmode for comparing differential expression
analysis models, the flexibility of plasmode construction allows comparing upstream
analysis, as normalization procedures or alignment pipelines, as well.
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INTRODUCTION
RNA sequencing (RNA-seq) technology is being rapidly adopted
as the platform of choice for high-throughput gene expression
analysis (Ozsolak and Milos, 2011). Many methods have been
proposed to model relative transcript abundances obtained in
RNA-seq experiments but it is still difficult to evaluate whether
they provide accurate estimations and inferences.

Sound statistical analysis of RNA-seq data should consider
not only the factors of any basic experimental design, but also
the characteristics of “omic” studies (genomic, proteomic, tran-
scriptomic, etc.). An RNA-seq experimental design must consider
treatment and block structures, and combine them according to
the principles of a well-planned design: randomization, block-
ing, and replication (Auer and Doerge, 2010). Typically, fixed
or random effects such as library multiplexing, sequencing lane,
flow cell, individual sample, tissue, or time can be crossed or
nested with treatments or other experimental conditions. Such
a design is used to model thousands of correlated variables (i.e.,
transcripts), usually, in a context of small number of biologi-
cal replicates. Although the development of reliable models that
account for all these factors is challenging, it is even more difficult

to assess the validity of a particular analysis model (Pachter,
2011).

Validity of statistical models for differential expression anal-
yses has been evaluated by (1) applying the model to a novel
dataset, (2) deriving analytical proofs, (3) using simulations, (4)
comparing to a gold-standard measure, or (5) constructing plas-
modes. In (1) the true status of nature is unknown, therefore
this method must only be accepted as an illustration and not
as evidence to support a model. However, any of the last four
options, or a combination of them, could be used to demonstrate
adequacy of a model. Obtaining a mathematical demonstration
(2), may be impossible for some models (Gadbury et al., 2008).
Most of the models rely on assumptions that are difficult to ver-
ify and the consequences of departures from assumptions may
not be clear. Computer simulation (3) has been the most com-
monly used procedure (Anders and Huber, 2010; McCarthy et al.,
2012). This preference is due to easiness in creating datasets
under diverse scenarios by controlling the set of parameters used
in the simulation. Nevertheless, such generated data depend on
the parameterization selected and the assumptions of the sim-
ulation model. Moreover, these dataset may constitute a partial
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representation of reality as the complexity of RNA-seq data is hard
to mimic. Typical gold-standard (4) for gene expression are qPCR
data (Bullard et al., 2010; Rapaport et al., 2013). However, analy-
sis models for qPCR data should themselves be validated (Steibel
et al., 2009). The use of plasmodes (5) is another appropriate pro-
cedure that can be applied to validate a statistical method. This
approach aims at generating datasets that preserve the character-
istics of experimental data with the benefit of knowing the true
status as it happens with simulated data.

A plasmode is a dataset obtained from experimental data but
for which some truth is known (Mehta et al., 2004). Plasmodes
have been applied in microarrays (Gadbury et al., 2008), admix-
ture estimation methodologies (Vaughan et al., 2009) and qPCR
(Steibel et al., 2009). This procedure has not been extensively
applied in RNA-seq since it requires large sets of raw data with an
accurate description of the experimental conditions under which
they were obtained. This information is essential to accurately
develop plasmodes under null and alternative hypotheses. Only
recently, an initiative has provided a repository with ready-to-use
databases from RNA-seq studies (Frazee et al., 2011).

Processed data obtained from RNA-seq experiments are essen-
tially counts that in the simplest model represent total number of
reads mapping to a region in a reference genome or transcrip-
tome. A comprehensive comparison of stochastic models that
have been proposed is presented in Pachter (2011). Although
different discrete distributions such as binomial, multinomial,
beta-binomial, Poisson, and negative binomial, have been pro-
posed to model RNA-seq data, Poisson and negative binomial
are the most implemented ones in RNA-seq analysis software. A
simple Poisson model seems appropriate when the experiment
includes only technical replicates from a single source of RNA
(Marioni et al., 2008). In practice, however, due to extra sources of
variation, the observed dispersion is larger than the expected for
a simple Poisson distribution and to correctly account for over-
dispersion, generalized Poisson (GPseq) (Srivastava and Chen,
2010), mixed Poisson (TSPM) (Auer and Doerge, 2011), Poisson
log-linear (PoissonSeq) (Li et al., 2012) and negative binomial
(edgeR, DESeq, baySeq, NBPSeq) (Anders and Huber, 2010;
Hardcastle and Kelly, 2010; Robinson et al., 2010; Di et al., 2011)
are used instead. Regardless of the model, calculating dispersion
parameters requires special statistical and numerical approaches
due to the small sample sizes and large number of responses
used in RNA-seq studies. In particular, borrowing information
across transcripts when estimating model parameters, as used
in microarrays (Smyth, 2004; Cui et al., 2005), has been also
proposed for RNA-seq (Robinson and Smyth, 2008; Anders and
Huber, 2010; Zhou et al., 2011). Another challenging issue for
these statistical analysis models, is the ability to handle differ-
ent experimental sources of variation. Most of the models allow
fitting simple effect models and pair-wise comparison between
treatments but only a few allow multiple factors (McCarthy et al.,
2012). Currently, to the best of our knowledge, there is only
one available model that can fit random effects (Van De Wiel
et al., 2013). Methods that can accommodate complex hierarchi-
cal designs and provide more powerful tests to detect differentially
expressed transcripts are under actively research. On the other
hand, microarray analysis models and software usually assume

a Gaussian distribution for response variables, but they accom-
modate fixed and random effects in a straightforward manner
(Cui et al., 2005; Rosa et al., 2005). Consequently, an alternative
to model counts in RNA-seq experiments is to transform counts
and use Gaussian models (Langmead et al., 2010; Smyth et al.,
2012).

In any case, given the multitude of available statistical models
and the complexity of experimental design of many gene expres-
sion studies, researchers often find themselves having to decide
between competing models and analysis program. In other cases,
although a researcher may have an a priori designated software
and model for RNA-seq data analysis, the question is if the fitted
model is producing sound inferences.

In this paper, we present and apply a methodology for evalu-
ating statistical methods for RNA-seq experiments by combining
results from computer simulations and plasmodes. We follow the
epistemological guidelines stated in Mehta et al. (2006) for high-
dimensional biology and provide a general framework that can be
adapted to different experimental conditions.

MATERIALS AND METHODS
SIMULATIONS
Simulated datasets were created conditional on estimated param-
eter values and results that had been previously obtained (Ernst
et al., 2011). The data consisted on read counts from an RNA-
seq experiment based on a developmental expression study
(Sollero et al., 2011). Experimental and alignment protocols are
described in the supplemental material (Supplementary Figure
1). Estimations for parameters μi and σ2 were obtained by fit-
ting generalized linear Poisson models with log-library size as an
offset variable using function lmer (Bates et al., 2013) from R (R
Core Team, 2013).

Equation [1] represents the generalized linear model used to
generate the simulated datasets:

⎧⎨
⎩

yij ∼ Poisson
(
λij

)
log

(
λij

) = Oij + μi + eij

eij ∼ N
(
0, σ2

) (1)

where yij is the read count for a particular transcript in treatment
i and sample j, Oij is a known off-set value (in this case the total
library size), μi is the group mean, eij is a sample-specific residual.
The transcript sub-index (g) was omitted for convenience.

Given estimates of parameters from equation [1] for tran-
scripts, we simulated read counts by following the algorithm
described in Figure 1. The output from such procedure con-
sisted of a matrix of counts of size T by 2nr with a known
proportion (p0) of differentially expressed transcripts and known
group effects (μi). Treatment is represented in this matrix by
nr columns, but with only n independent (biological) replicates.
While this simulation is not based on the negative binomial dis-
tribution, it is still an over-dispersed Poisson process commonly
used to simulate RNA-seq counts (Blekhman et al., 2010; Auer
and Doerge, 2011; Hu et al., 2011). The resulting over-dispersed
Poisson counts have means, variances, and treatment effects
sampled from those estimated from experimental data. The
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procedure can be repeated K times to produce several simulated
datasets.

We set K = 1000 and T = 5000, producing 1000 simulated
datasets with 5000 transcripts each. Noteworthy, when sampling
transcripts in S, it is assumed that all transcripts are differen-
tially expressed (no significance testing is performed). But sub-
sequently, the mean treatment differences (in the log-scale) are
zeroed out if the transcripts are assigned to S0. For transcripts
assigned to S1, mean differences are kept unchanged; conse-
quently S1 includes a whole distribution of treatment effects from
very small to large according to the distribution of estimated from
the experimental data.

Replication scenarios
We simulated nine scenarios by combining three levels of biolog-
ical replication (n = 3, 5, 10) and three levels of technical repli-
cation (r = 1, 3, 5). The proportion of differentially expressed
transcripts was set to 0.1.

PLASMODES
In contrast to simulation datasets based on Equation [1], we gen-
erated plasmode datasets not based on any model. Plasmodes
were generated using data available in the online resource
ReCount (Frazee et al., 2011). From the whole collection of
analysis-ready datasets, we chose to work with two RNA-seq
experiments to illustrate the generation of (1) a null dataset,
where there are no obvious systematic effects that explain variance
in gene expression and, (2) a dataset with treatment and block
effects.

Null dataset (Cheung)
The data originated in a study of immortalized B-cells from 41
(17 females and 24 males) unrelated CEPH (Center d’ Etudes du
Polimorphisme Humain) grandparents (Cheung et al., 2010). The
samples were sequenced using the Illumina Genome Analyzer. To
generate a plasmode dataset, we selected the 21 samples from
male individuals that were represented with only one techni-
cal replicate. The resulting gene expression data exhibits exten-
sive variation that cannot be attributed to any systematic factor

FIGURE 1 | Algorithm used to simulate counts from existing estimates

of model parameters.

(Figure 3A). Any random partition of the dataset into two (or
more) categories should shield a null dataset where no differential
expression is expected beyond the normal sample-to-sample vari-
ation. Consequently this dataset lends itself to create plasmodes
to evaluate statistical properties of analysis models under the null
hypothesis.

To generate null datasets, we proceeded as explained in
Figure 2. Using n = 21 samples from males, we generated p = 10
plasmodes each with t = 2 groups and r = 10 biological repli-
cates in each group.

Notice that not parametric model is used at any time.
Plasmodes are constructed by reshuffling data and assigning an
arbitrary treatment label. In this way overall distribution and
gene-to-gene correlations remain unchanged with respect to real
data.

DE dataset (Bottomly)
In Bottomly et al. (2011), the authors arranged 21 samples from
two inbred mouse strains (B6 and D2; n for B6 = 10, n for
D2 = 11) on 21 lanes of three Illumina GAIIx flowcells and
they analyzed the RNA-seq reads with a simple one-way clas-
sification (strain) model. We performed descriptive analysis of
gene expression data and found that not only strain but also the
experiment number (flowcell) explained a large amount of the
variation (Figure 3B). For example, the first principal dimension
clearly divides samples from each strain, but the second principal

FIGURE 2 | Algorithm used to generate plasmode datasets with no

differentially expressed transcripts under a model with one

classification variable.

FIGURE 3 | Multidimensional scaling analysis of: (A) Cheung samples:

F = Females and M = males; (B) Bottomly samples: labels correspond

to strain (treatment) B6 = C57BL/6J, D2 = DBA/2J, and colors to

flowcell number (block): red = 4, black = 6, and green = 7. In Cheung
dataset there is not clear distinction between females and males while in
Bottomly samples are first grouped in two large groups corresponding to
strain B6 and D2 and then in subgroups consistent with flowcell number.
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dimension shows substantial variation between flowcells, espe-
cially flowcell 4 (red) vs. the other two.

Consequently, we blocked by experiment and used edgeR to
fit a model with strain and experiment as fixed effect, result-
ing in a large number of putatively differentially expressed genes
(Supplementary Figure 2). Due to a strong experiment effect,
we decided to conduct randomization for plasmode construction
within experiment number as detailed in Figure 4.

We generated 10 plasmodes executing step 4–7 with p = 10
and π = 0.20. Notice that in step 3, we used edgeR to obtain
a list of DE genes (set G) to build a plasmode with some genes
under alternative hypothesis but any other statistical software can
be used with the only requirement of defining a sufficient small
q-value threshold. After genes are selected no model is used at any
time. Similar to the previous section plasmodes are constructed
reshuffling data, but in this case and effect estimated from real
data is added to selected genes. Again, we expect that this pro-
cedure yields plasmodes with identical distribution to real data
for non-differentially expressed genes and with comparable effect
sizes for differentially expressed genes.

COMPARISON OF ALTERNATIVE ANALYSIS TOOLS FOR EVALUATING
DIFFERENTIAL EXPRESSION
To illustrate the use of simulated datasets and plasmodes we com-
pared three R (R Core Team, 2013) packages from Bioconductor
(Gentleman et al., 2004). Two of them, edgeR and DESeq, were
designed specifically for statistical analyses of RNA-seq experi-
ments while the third one, MAANOVA (Cui et al., 2005), was
originally conceived for analyzing microarray experiments. As
mentioned before, MAANOVA has the ability of fitting hierar-
chical models that can better accommodate complex experimen-
tal design assumptions. However, such flexibility comes at the
price of assuming a Gaussian distribution. Data transformation
and use of permutation to set significance thresholds can help
alleviate these limitations, but its performance may still be con-
tingent upon sample size and total read counts per transcript.

FIGURE 4 | Algorithm used to generate plasmode datasets with

differentially expressed transcripts under a model with two

classification variables (block + treatment).

Consequently, we included MAANOVA in this study and compare
it to two well-established packages for RNA-seq analysis.

Filtering and normalization
A double filtering criterion was applied to all datasets previous
to normalization and statistical analysis. Transcripts with 2 or
more reads per million in at least as many libraries as num-
ber or biological replicates were kept in the analysis. In the
simulation study, technical replicates were summed up before fil-
tering. Consequently, the technical replicate level only represents
increased sequencing depth.

Normalization aimed at accounting for differences in library
size and composition not attributable to treatments. To conduct
the analysis with edgeR, data were normalized using the scaling
method proposed by Robinson and Oshlack (2010) and the loga-
rithm of the resulting effective library size were used by default as
offsets in the model.

Analyses with DESeq were performed on counts previously
normalized by function estimateSizeFactors. According to Anders
and Huber (2010), this normalization method is similar to the
one proposed by Robinson and Oshlack (Robinson and Oshlack,
2010) in edgeR, and it is the recommended procedure by the
authors of DESeq.

Normalized values to use in MAANOVA were obtained with
function voom() of the limma package (Smyth, 2005). The pro-
cess, analogous to the one proposed in (Smyth et al., 2012),
included adjustment for compositional structure using function
calcNormFactors() of edgeR and transformation to log2-counts
per million.

Differential expression analysis
edgeR. Differential expression was tested by likelihood ratio tests
using the generalized linear model functionality and estimating
tagwise dispersions.

DESeq. To look for differentially expressed genes, function nbi-
nomGLMTest was applied using the dispersion estimates gener-
ated by function estimateDispersions.

MAANOVA. In the linear model fit by MAANOVA lane was
treated as a fixed array effect of a single-color microarray.
Differential expression analysis was performed using both, mod-
erated F-test (Fs) and transcript by transcript F-test (F1).
Significance was assessed using 100 sample permutations (Yang
and Churchill, 2007).

Multiple comparisons. It is recognized that correction of p-
values when making multiple comparisons is essential in
high throughput differential expression analyses (Storey and
Tibshirani, 2003). The most common procedure used is the
computation of the false discovery rate or FDR (Benjamini
and Hochberg, 1995). Properties of methods to estimate FDR
rely heavily on the distribution of p-values (Li et al., 2012).
In this case we did not aim at selecting individual differen-
tially expressed genes or gene sets but we aimed at studying
the properties of tests in terms of type I and type II error
rates. Consequently, we concentrate on comparison of nominal
and empirical type I and type II error rates without applying
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multiple correction and we discuss how departures of assumed
values can further affect decisions when applying p-value
corrections.

Evaluating and comparing results from alternative analysis
packages
To compare performances of derived tests in terms of power
and type I error rates, we generated receiver operator character-
istic (ROC) curves by computing true positive rate (TPR) and
false positive rate (FPR) at given significance thresholds. The
TPR was calculated as the proportion of true positives (TP) over
the total number of simulated differentially expressed transcripts
(S1), while the FPR was calculated as the proportion of false pos-
itives (FP) over the total number of transcripts simulated with no
differential expression (S0). See Table 1 for details.

Finally, distributions of p-values were compared by quantile-
to-quantile plots and histograms.

Analyses were performed at the Michigan State University
High Performance Computing Center facilities using R (version
2.15.1), edgeR (version 3.0.8.4.6), limma (version 3.14.4), DESeq
(version 1.10.1) and MAANOVA (version 1.28.0).

Table 1 | Classification rule to compute false and true positive rates.

Transcripts

simulated with

not differential

expression

Transcripts

simulated with

differential

expression

Total

Transcripts
not declared
significant

TN FN R0

Transcripts
declared
significant

FP TP R1

Total #S0 #S1 G

FP, number of false positives (transcripts in S0 set declared differentially

expressed); TP, number of true positives (transcripts in S1 declared differentially

expressed); FPR, false positive rate = FP/#S0; TPR, true positive rate = TP/#S1.

RESULTS
SIMULATIONS
Figure 5 shows results obtained for a simulation with 3 biological
replicates and 1 technical replicate. Similar results were found in
other simulated scenarios (data not shown).

The Q-Q plot in Figure 5 allows to evaluate the fit of observed
p-values to the uniform (0,1) distribution expected under null
hypothesis (Leek and Storey, 2011). P-values corresponding to
MAANOVA showed a more characteristic pattern whereas edgeR
and DESeq presented significant departures from such distribu-
tion. Furthermore, the logarithmic scale allows to easily inspect
the behavior of very small p-values. DESeq presented larger p-
values than expected up to a cutoff of 0.001, while the opposite
pattern occur for p-values smaller than 0.001. Both MAANOVA
approaches presented a close to expected pattern with a small
deviation for p-values smaller than 0.0001. To compute the
logarithm, all p-values equal to zero were replaced by the min-
imun observed p-value and thus generated the plateau at the
end of the distributions of MAANOVA results. In addition,
quantile-to-quantile plots allowed us to select Fs and F1 tests
computed with permutation against the tabulated approach
(Figures 8A,B). An alternative representation of p-value distribu-
tion using histograms is presented in the supplemental material
(Supplementary Figure 3).

In concordance with the observed p-value distributions,
the realized type I error rates levels for DESeq and edgeR
were much different than expected in comparison with
MAANOVA approaches (Figure 5B). All the packages pre-
sented higher realized significance levels when evaluated at
nominal values bellow 0.01, with edgeR being the most
liberal, and MAANOVA the least deviated from nominal
values.

ROC curves had similar patterns for each of the nine simu-
lated scenarios. Power improved at a given FPR as the number
of technical and/or biological replicates increased. In the sce-
nario with 3 biological replicates, the enhancement in power
when adding technical replicates seems to be particularly greater
than in a scenario with 5 or 10 biological replicates (data not
shown). In the case with 3 biological replicates and 1 technical

FIGURE 5 | Simulation results from a scenario with 3 biological

replicates: (A) Q–Q uniform plot of non differentially expressed

transcripts, (B) type I error rate vs. nominal significance values, and (C)

ROC curves. Models: (1) edgeR (blue), (2) DESeq (red), (3) MAA-Fs:
MAANOVA Fs moderated test using permutation (green), and (4) MAA-F1:
MAANOVA F1 transcript by transcript test using permutation (blue).
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replicate (Figure 5C), edgeR and DEseq had similar power while
the MAANOVA analyses reported less power.

PLASMODES
Null dataset (Cheung)
Q-Q plot in Figure 6A shows the adequacy of p-values to the
uniform distribution for each of the plasmode datasets analyzed
with the different models. All the models presented large disper-
sions with some cases being close to the expected values and some
being far apart. In particular, edgeR results tend to be above the
identity line which means that observed p-values are smaller than
expected. On the contrary, DESeq and both MAANOVA tests tend
to have a more conservative behavior as they presented larger
observed p-values than expected. See also Figure 6B where edgeR
presented inflated type I error rates for nominal significance
threshold smaller than 0.01.

Bottomly
The p-value distributions (Figure 7A) presented similar
dispersion patterns to the one observed in the plasmodes
generated from Cheung dataset utilizing edgeR and DESeq.

FIGURE 6 | Plasmode results from Cheung dataset: (A) Q-Q uniform

plot of non-differentially expressed transcripts, (B) type I error rate vs.

nominal significance values. Models: (1) edgeR (blue), (2) DESeq (red), (3)
MAA-Fs: MAANOVA Fs moderated test using permutation (green), and (4)
MAA-F1: MAANOVA F1 transcript by transcript test using permutation
(blue).

However, p-value distributions for MAANOVA tests were more
homogeneous across datasets with the p-values from F1 test
tabulated approach being closer to the expected values under
uniform distribution.

ROC curves for DESeq and edgeR were analogous after adjust-
ing for type I error rates. Besides, both programs reported higher
power than analysis performed with MAANOVA (Figure 7C).

Interestingly, and opposite to previous datasets, the best F-test
to apply when using MAANOVA was F1 with tabulated F-values.
Compare the proximity to the red line in Figure 8E in contrast to
the pattern in Figure 8F.

DISCUSSION
Validating and comparing methods to analyze RNA-seq data
is essential for providing powerful statistical packages that can
detect differentially expressed genes in downstream analyses
(Robles et al., 2012). In this paper we illustrate how to utilize
plasmode datasets in combination with simulations to evaluate
analysis methods more comprehensively.

Parametric simulations can benefit a particular model depend-
ing on the distribution and specifications used to generate
the dataset. For example, it can be argued that in our sim-
ulation study, edgeR and DESeq resulted too liberal com-
pared to MAANOVA due to the additive generalized Poisson
model that was used to simulate the dataset. However, results
from two independent plasmode datasets, generated without
using specific parametric models, confirmed the same behavior
(Figures 6B, 7B). Moreover, a common problem of parametric
simulations is that genes are simulated independently. Such mis-
specification is overcome in plasmode datasets where the residual
correlation structure among genes after adjusting for systematic
effects is preserved with respect to the original dataset.

Exploring the joint null distribution of p-values for a par-
ticular test helps to determine the adequacy of a model and
to decide the best method to correct for multiple comparisons,
and doing so requires generation of multiple accurate high-
dimensional datasets (Leek and Storey, 2011). For example, we
compared null p-value distribution obtained for the two types of
MAANOVA F-tests (Fs or F1) combined with two methods to

FIGURE 7 | Plasmode results from Bottomly dataset: (A) Q-Q uniform

plot of non-differentially expressed transcripts, (B) type I error rate vs.

nominal significance values, and (C) ROC curves. Models: (1) edgeR

(blue), (2) DESeq (red), (3) MAA-Fs: MAANOVA Fs moderated test with
permutation (green), and (4) MAA-F1: MAANOVA F1 transcript by transcript
test tabulated (blue).
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FIGURE 8 | Comparison of MAANOVA’s p-value results of

non-differentially expressed transcripts using Fs moderated test and

F1 transcript by transcript test, with a tabulated (left) or permutation

(right) approach. In the simulated dataset (A,B) the permutation approach
presented a more characteristic uniform distribution, the plateau at the end
is caused by the replacement of zeroes by the minimum observed p-value
when computing logarithm. Plasmodes generated from Cheung dataset,
presented similar patterns either using a tabulated or a permutation
approach (C,D). Plasmodes generated from Bottomly presented better
patterns for Fs with permutation and F1 with tabulated approach (E,F).

compute the p-values (tabulated F or permutation). The choice
of the best combination varies for each dataset: In the simula-
tion study, either Fs or F1 using permutation provide a p-value
distribution closed to a uniform distribution while none of the
F-tests using tabulated values provide a reasonable distribution
(Figures 8A,B). Plasmode generated from Cheung datasets pre-
sented similar patterns for all the combinations (Figures 8C,D),
then Fs and F1 using permutation were chosen as suggested by
Cui et al. (2005). Conversely, in the analysis of plasmodes gener-
ated from Bottomly datasets, F1 test using tabulated F-values was
the best approach (Figures 8E,F). According to Cui et al. (2005),
the F1-test for a fixed effect model has a standard F distribution
and critical values could be obtained from F-tables. These results
are important because typical correction by FDR as proposed by
Benjamini and Hochberg (1995) may not be appropriate if the
underlying uniform distribution is not supported. Other strate-
gies have been adapted from Storey (2002) to estimate FDR for

RNA-seq data and which correction should be applied is a topic
of research (Li et al., 2012). All in all, these results emphasize the
need to validate methods under realistic conditions and carefully
selecting a base dataset for a plasmode where total sample size and
sequencing depth (magnitude of counts) are considered.

In addition to the base dataset used to build a plasmode, the
specific algorithm for plasmode generation should vary accord-
ing to the objective of the study. Gadbury et al. (2008) presented
an algorithm that generates the partition of the samples in two
groups and repeatedly samples different effect sets to be added
to that unique partition. In this work, we propose to make sev-
eral partitions from the original set of samples and add a set of
effect in each case (Figure 4). This approach constitutes a way
to incorporate valuable information on biological variation. For
example, one can easily study the dispersion of patterns in the Q-
Q plots or ROC curves. Alternatively, both approaches, Gadbury
et al. (2008) and the one presented in this paper, can be combined
to study the influence of different sets of genes as well as sample
variability.

Moreover, the construction of a plasmode must consider all
the experimental conditions under which the base data were col-
lected. Treatment and block effects may be easily identified from
the experimental design but further restrictions in randomization
(flowcell, lane, time) or technical issues (operator, use of techni-
cal replicates) may arise only from inspecting protocol details and
applying explorative statistical analyses. For instance, descriptive
analysis of the Cheung dataset and visualization of samples using
multidimensional scaling analysis (Figure 3A) suggested that no
specific effects were present in the data structure; therefore we
used it as an example to build a null plasmode. However, the
same procedure applied to the Bottomly dataset indicated that not
only the main strain, but also a characteristic effect due to flow-
cell number was an important source of variation (Figure 3B).
Consequently, strain and block (flowcell) were considered in two
parts of the plasmode generation algorithm: firstly, when defining
the model to select the effects (step 2 in Figure 4), and sec-
ondly, when partitioning samples within each flowcell (step 5
in Figure 4). These considerations allowed us to generate appro-
priate null and alternative datasets. A similar process should be
followed with any new dataset plausible of being used as a base
for plasmode generation.

We used the plasmodes and simulated data to illustrate the
selection of optimal differential expression analysis strategies. To
this end, we focused in comparing true and false positive rates
of tests to assess type I error rates and power. While it was not
our objective to perform a comprehensive evaluation of analysis
protocols for RNA-seq data analysis, we did want to include two
broad types of methods: (1) those directly tailored to count data
by using negative binomial distributions (DESeq, EdgeR) or (2)
a Gaussian model after transformation (MAANOVA). We found
that edgeR and DESeq incur in inflated type I error rates for
small significance levels (Figures 5B, 6B, 7B) while MAANOVA’s
p-values tend to be closer to the nominal significance levels.
Admittedly, after adjusting for type I error rates, power was sim-
ilar for edgeR and DESeq and higher than that from MAANOVA
(Figure 7C). However, in a real data scenario, adjusting is not
possible because the true status is unknown.
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These results emphasize the fact that RNA-seq data are com-
plex and to decide what method to use may be experiment-
specific due to the unknown distributions of expression levels.
Plasmode may contribute to decide which method to choose
by using a similar pre-existing dataset and comparing results.
It is critical to select a dataset that has a complete descrip-
tion of the experimental design and detailed protocols of how
the data were obtained. Using this information, it is possible
to design proper null and alternative datasets. For example, it
was easy to find a set of differentially expressed genes in the
mouse dataset that studied two inbred lines. Contrarily, in the
human dataset, it was not possible to explain the variation in
expression only as a consequence of gender effects. The human
subjects came from an outbred population and factors such as
age, weight, or other characteristics could have explained differ-
ences in gene expression. Granted, any of the mentioned effects
could have been included in the model if the information was

available. The promising results obtained from this approach,
emphasize the need of promoting and improving systematic data
sharing across the research community to facilitate plasmode
building.

Finally, the flexibility of plasmode construction allows com-
paring model tuning selection for downstream analysis but also
upstream analysis, as normalization procedures or alignment
pipelines, could be contrasted. Future uses of plasmodes could be:
comparison of alignment programs for a given statistical analysis
model or even exploring interaction of statistical model and read
processing protocols to find optimal combined pipelines for data
processing “from reads-to-p-values.”

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/Statistical_Genetics_and_Methodo
logy/10.3389/fgene.2013.00178/abstract
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