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Challenges of satisfying parametric assumptions in genomic settings with thousands or
millions of tests have led investigators to combine powerful False Discovery Rate (FDR)
approaches with computationally expensive but exact permutation testing. We describe a
computationally efficient permutation-based approach that includes a tractable estimator
of the proportion of true null hypotheses, the variance of the log of tail-area FDR, and
a confidence interval (CI) estimator, which accounts for the number of permutations
conducted and dependencies between tests. The CI estimator applies a binomial
distribution and an overdispersion parameter to counts of positive tests. The approach
is general with regards to the distribution of the test statistic, it performs favorably in
comparison to other approaches, and reliable FDR estimates are demonstrated with as
few as 10 permutations. An application of this approach to relate sleep patterns to gene
expression patterns in mouse hypothalamus yielded a set of 11 transcripts associated
with 24 h REM sleep [FDR = 0.15 (0.08, 0.26)]. Two of the corresponding genes, Sfrp1
and Sfrp4, are involved in wnt signaling and several others, Irf7, Ifit1, Iigp2, and Ifih1, have
links to interferon signaling. These genes would have been overlooked had a typical a priori
FDR threshold such as 0.05 or 0.1 been applied. The CI provides the flexibility for choosing
a significance threshold based on tolerance for false discoveries and precision of the FDR
estimate. That is, it frees the investigator to use a more data-driven approach to define
significance, such as the minimum estimated FDR, an option that is especially useful for
weak effects, often observed in studies of complex diseases.
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INTRODUCTION
False Discovery Rates (FDR) have become a widely used multiple
testing strategy that is much less conservative than family-wise
error rate (FWER) methods such as the Bonferroni and Šidák
corrections when multiple null hypotheses are false (Benjamini
and Hochberg, 1995; Yekutieli and Benjamini, 1999; Efron and
Tibshirani, 2002; Farcomeni, 2008). Storey and Tibshirani (2003;
Storey, 2002) proposed an approach (denoted below as ST) in
which FDR is estimated for a fixed rejection region, in contrast
to the more traditional approach in which FDR is controlled that
is, the error rate is fixed and the rejection region is estimated.
Their approach incorporates an estimator of the proportion of
true null hypotheses, π0, which increases power over the origi-
nal Benjamini and Hochberg (1995) method when a substantial
proportion of null hypotheses are false.

Permutation-based testing approaches are especially impor-
tant in genomic studies because severe multiple testing conditions
require parametric tests to rely exclusively on the extreme tails
of the distribution, which are notoriously inaccurate models of
real data. Parametric FDR methods can be implemented as non-
parametric permutation-based approaches by computing empir-
ically approximated p-values in a preliminary step (Yekutieli
and Benjamini, 1999; Storey and Tibshirani, 2003; Yang and
Churchill, 2007; Efron, 2010b) assuming exchangeability across

tests under the null (Efron, 2007b). Ironically, it is often difficult
to apply permutation approaches in ultra-high dimensional test-
ing settings where they would seem to be most useful due to their
intensive computational requirements. In view of this limitation,
it is clearly important to address the question of the precision of
the FDR estimate when just a small number of permutations have
been conducted, and more generally, how precision depends on
the number of permutations.

Also, the framing of FDR as an underlying quantity that can
be estimated naturally leads to the question of the precision of the
estimate. In the case of the ST and similar estimators, there is no
explicit control of the FWER inherent in the estimate (Ge et al.,
2003), and unlike a p-value, the magnitude of the estimate does
not directly reflect the probability that the observed results are
due to chance alone. It is therefore of paramount importance to
know the precision of the FDR estimate. However, despite inter-
est in quantifying uncertainty in the FDR estimate (Yekutieli and
Benjamini, 1999; Storey, 2002; Owen, 2005; Efron, 2007b, 2010a;
Schwartzman, 2008; Schwartzman and Lin, 2011), none of this
work has resulted in a practical permutation-based CI estima-
tor for FDR under large-scale testing conditions where there are
dependencies between tests.

We propose a permutation-based tail-area FDR estimator that
incorporates a novel tractable estimator of π0, which is a simple
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function of counts of observed and permuted test outcomes.
The development of a novel FDR CI estimator is then achieved
by leveraging the tractability of the proposed point estimator,
treating positive test counts as binomial random variables, and
including a novel overdispersion parameter to account for depen-
dencies among tests. Because the CI estimator explicitly incorpo-
rates the number of permutations conducted, indirect guidance is
provided regarding whether that number is sufficient.

Evidence has been found in mice linking DNA variation to
variation in 24 h REM sleep, possibly mediated by chronic dif-
ferences in gene expression (Winrow et al., 2009; Millstein et al.,
2011). Here we report an application of the method to iden-
tify gene expression features in the hypothalamus associated with
variation in 24 h REM sleep in a segregating population of mice.
Not only is FDR estimated and uncertainty quantified using the
proposed approach, but a significance threshold is also selected a
posteriori, in a data-driven manner.

FDR ESTIMATORS
PERMUTATION-BASED FDR POINT ESTIMATOR
Positive FDR is the expected proportion of tests called significant
that are actually true null hypotheses given that the number of
significant tests is greater than zero,

FDR = E

[
F

S
|S > 0

]
= E

[
S − T

S
|S > 0

]
(1)

Table 1 provides a two-by-two table summary of possible test out-
comes, where m denotes the total number of tests conducted, m0

and m1 the number of true and false null hypotheses, respectively,
S the total number of tests called significant, F the number of
rejected null hypotheses that are true (false discoveries), and T
the number of rejected null hypotheses that are false (true dis-
coveries). The goal is to estimate FDR for a fixed significance
threshold, thus S, F, and T depend on that threshold. The null
distribution for a test statistic can often be approximated using a
permutation procedure where the data are permuted repeatedly,
with a set of test statistics generated for each replicate permuted
dataset. Permuted test results will be identified here with a ∗ and
a subscript, e.g., S∗

i denotes the count of positive tests for the ith
permuted dataset of B permutations. By design there are no false
null hypotheses for tests of permuted data, consequently,

E[F∗
i ]

m
= E[F∗

i ]
m∗

0

(2)

The principal assumption underlying most permutation test-
ing approaches is exchangeability of observations under the null
hypothesis, implying that the expected proportion of positive

Table 1 | Hypothesis test outcomes.

Called significant Called not significant

Null true F m0 – F m0

Null false T m1 – T m1

S m – S m

tests among true null hypotheses is the same in observed and
permuted results that is,

E[F∗
i ]

m∗
0

= E[F]
m0

(3)

By the properties of Table 1 we can express the expected propor-
tion of observed false positives among true null hypotheses as,

E[F]
m0

= E[S] − E[T]
m − E[T] − (m1 − E[T]) ≈ E[S] − E[T]

m − E[T] (4)

which introduces the term, (m1 − E[T]), corresponding to the
lower right cell of Table 1, the number of false null hypotheses
called not significant. To facilitate the construction of a tractable
estimator, we use the approximation that m1 − E[T] = 0. Below,
we show in simulated data and provide additional arguments
that this approach yields a conservative estimator relative to
the ST approach yet anti-conservative relative to Benjamini and
Hochberg (1995), and moreover, when m0/m is close to one, the
bias is extremely small.

Rearranging Equation 4, we can generate an expression for
E[T] as,

E[T] = mE[F]/m0 − E[S]
E[F]/m0 − 1

. (5)

In results from permuted data, by design, m∗
1 = 0 ⇒ T∗ =

0, m∗
0 = m, and F∗

i = S∗
i . Thus, we can express the expected num-

ber of false null hypotheses called significant as,

E[T] = E[S] − E
[
S∗

i

]
1 − E

[
S∗

i

]
/m

. (6)

Storey and Tibshirani (2003) (see Remark A) noted that E[F/S] ≈
E[F]/E[S] when m is large, where the right hand expression
has been described as the “marginal” FDR (mFDR; Tsai et al.,
2003; Storey et al., 2007). We derive the following point estima-
tor by using the mFDR expression, the fact that E[F] = E[S] −
E[T], Equation 6, substituting S as an estimator for E[S], and
substituting S̄∗ for E[S∗

i ], yielding the elegant expression,

FD̂R = S̄∗

S

1 − S/m

1 − S̄∗/m
. (7)

Equation 7, can be related to the framework described by Storey
and Tibshirani (2003) for a permutation-based FDR estimator.
Their approach was chiefly described for a set of test results
in the form of p-values, but they also proposed a permutation
testing implementation that involved empirically adjusting the p-
values using results from the permuted data prior to application
of the proposed method. By rewriting their expression in terms
of observed and permuted test results, FD̂R = π̂0S̄∗/S, where π̂0

is the estimator of the proportion of true null hypotheses, m0/m.
Equation 7 can be related to this framework by describing the fac-
tor on the far right as an estimator of the proportion of true null
hypotheses that is,

π̂0 = 1 − S/m

1 − S̄∗/m
. (8)
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A relation can also be described between the estimator of 8 and
π̂0 proposed by Storey (2002),

π̂0 = #{pi > λ}
(1 − λ)m

, (9)

where pi is a p-value for the ith test and λ is a tuning parameter
often chosen by a smoothing algorithm (Storey and Tibshirani,
2003). A similar formula and heuristic parameter for deter-
mining π̂0 were also proposed by Efron (2010b). The expres-
sions in 8 and 9 are equivalent if λ, bounded by 0 and 1,
is fixed at the empirically adjusted p-value significance thresh-
old. An important advantage of fixing lambda as proposed is
that the assumption of a uniform p-value distribution under
the global null is not required, unlike the ST approach. Storey
(2004) showed that for the estimator in 9, E[π̂0] > π0 when
p-values corresponding to true null hypotheses are uniformly
distributed and E[FD̂R] = FDR, a potentially conservative bias.
The bias occurs if there are false null hypotheses with p-values
greater than λ and this bias tends to increase as λ decreases,
though the variance of π̂0decreases as λ decreases (Storey, 2004).
Efron (2010b) proposed the equivalent of fixing λ = 0.5. The
ST smoothing algorithm also results in a choice of λ substan-
tially greater than the significance threshold, therefore the π̂0and
consequently FD̂R proposed here are more conservative yet with
smaller variance than those proposed by Storey and Tibshirani
(2003). However, the FDR estimator proposed here is less conser-
vative than the Benjamini and Hochberg (1995) approach, which
implicitly assumes π̂0 = 1 (Storey and Tibshirani, 2003). We
show in Appendix A that the proposed estimator, π̂0, is consistent
in n and m.

FDR CONFIDENCE INTERVAL ESTIMATOR
The variance of FD̂R depends not only on its magnitude but also
on other factors such as the number of positive tests. Unlike a
p-value, the magnitude of FD̂R does not necessarily correspond
closely to the likelihood that an observed result, i.e., an obser-
vation of FD̂R that is less than one, is due to chance alone, and
the CI estimate can be informative in this way. The FDR CI esti-
mator is especially useful when there is substantial uncertainty in
the precision of the point estimate. For instance, suppose hypo-
thetically that a specific high-throughput experiment yielded a
minimum FD̂R = 0.5, corresponding to a set of 100 potential
gene targets. It is possible that the observed value is due to chance
alone (no false null hypotheses), however, if it is known that
the FDR estimate is reasonably precise and follow-up validation
experiments are not prohibitively expensive, then despite the high
FDR these results could be quite valuable, implying that ∼50 of
the 100 tests are true discoveries (false null hypotheses). The CI
estimator could be used to distinguish between the two scenarios,
potentially salvaging useful results from a study that might other-
wise be dismissed as not significant. That is, an investigator may
occasionally be willing to tolerate a relatively large proportion of
false discoveries if the estimated proportion of true discoveries is
known to be reasonably precise.

The closed-form structure of FD̂R (Equation 7) permits the
development of a CI estimator by treating positive test counts as

binomial random variables (Appendix B) and applying the delta
method after a log transformation (Appendix C). The resulting
estimator has the simple form,

Var
[

log
(

FD̂R
)]

= σ2
FDR = m(∑

i
S∗

i

)
(m−S̄∗)

+ m
S(m−S)

or equivalently, σ2
FDR = 1(∑

i
S∗

i

) + 1
mB −∑

i
S∗

i
+ 1

S + 1
m − S .

(10)

The expression for FD̂R in 7 can be recognized as having the sim-
ple form of an odds ratio between the observed and permuted
test results (Appendix C), and the second form of the expression
for the variance in 10 can likewise be recognized as analogous to
the well-known variance estimator for the log odds ratio (Woolf,
1955). Interestingly, under conditions that will often hold in
large-scale testing paradigms, a small number of positive tests
relative to the total number of tests, expression 10 simplifies to,

lim
m

m − S̄∗ →1, m
m − S →1

σ2
FDR = 1(∑

i
S∗

i

) + 1

S
. (11)

Though we recommend using expression 10 for practical applica-
tions, 11 provides some useful insight. By increasing the number
of permutations, the contribution from the term on the left can
be reduced, however, if it is already small relative to the term
on the right, then the benefits of additional permutations will
be minimal. Also, it becomes clear that when the total num-
ber of tests conducted is large relative to the number of positive
tests, the variance in FD̂R is almost strictly a function of posi-
tive test counts and not dependent on the total number of tests
conducted.

A confidence interval (CI) estimator for FDR can be developed
in a manner analogous to the approach commonly used for the
odds ratio that is, an exponential back-transform with a normal
approximation,

CIFDR = exp
{

log
(

FD̂R
)

± zα/2σFDR

}
. (12)

It is important to note that the variance and thus the CI is unde-
fined when the number positive test results in the permuted data
is zero. When this occurs we take the conservative approach of
setting this number to one for estimation of the CI.

The development of the variance estimator relies on the
assumption that the positive test counts follow a binomial dis-
tribution. Thus, tests are assumed to be i.i.d. Bernoulli variables.
This assumption has two parts, (1) the tests are independent and
(2) identically distributed that is, the probability of a positive
result is the same for all tests.

The second property can be described as exchangeability
across tests in the sense that each test is assumed to yield a
positive outcome with the same probability p. In theorem 1
of Appendix B, “variance inequality of a binomial sum,” we
show that a cryptic binomial mixture may cause an upward
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but not a downward bias in the variance estimate, implying
that a departure from exchangeability across tests could cause
the variance estimator to be more conservative but not more
anti-conservative. We also found in simulations that the bino-
mial variance estimator is highly robust to departures, and
that in extreme cases where substantial departures do occur,
the estimator does indeed become more conservative (data not
shown).

On the other hand, the independence assumption (1) does
present a major concern and is addressed here by modifying the
variance estimator with an over-dispersion parameter to account
for dependencies. This parameter can be estimated directly from
counts of positive tests and thus does not require an additional
analysis of the raw data or even the full set of test results. In
contrast, Efron (2007a, 2010a) proposed a correction based on
an estimator of root mean squared correlation in an underly-
ing dataset. However, there is the requirement that dependencies
among tests are represented by pairwise correlations between
variables represented in a dataset, which is often not the case, e.g.,
eQTL analysis. Also, an additional analysis must be conducted
using the primary data. Our approach is more general, does not
require revisiting the primary data, and is more efficient in terms
of data storage requirements because it uses positive test counts
only.

OVER-DISPERSION ESTIMATOR
In practice, most genomic datasets include dependencies between
features that ultimately result in dependencies between tests,
although the correspondence can be quite complex. For typi-
cal hypothesis tests that evaluate associations between molecular
and phenotypic traits, positive or negative correlations between
traits lead to positive correlations between tests causing over-
dispersion in the variance of positive test counts (Edwards, 1960),
which in turn causes over-dispersion in the variance of FD̂R.
We introduce an over-dispersion parameter to account for these
dependencies.

The over-dispersion parameter is used to scale the variance
estimate for log(FD̂R) and is not needed (fixed at 1) if tests
are known to be independent. Replicate positive test counts in
the permuted data provide a convenient opportunity to assess
dependence-induced over-dispersion without the necessity of
revisiting the raw data or additional computationally expensive
resampling procedures as proposed by Storey (2002) for FDR
CI estimation. Each term in the expression for the variance of
log(FD̂R) includes a component factor, which is a variance esti-
mate for positive test counts (Appendix B), thus an estimate of
over-dispersion of positive test counts could be used as a scalar
parameter for the variance of log(FD̂R). The concept is to use
permuted datasets to construct a ratio of the sample variance of
positive test counts to the estimated variance based on the sample
mean,

φ̂ =
(∑(

S∗
i − S̄∗)2

)
/(B − 1)

mp̂
(
1 − p̂

) , p̂ = S̄∗

m
, σ2

FDR(a) = φ̂σ2
FDR

(13)
where “a” indicates adjustment for dependencies.

DATA ANALYSIS
BIAS AND VARIANCE OF THE PROPOSED POINT ESTIMATOR
We compared the proposed estimator with the ST and Efron
(2010a) approaches to characterize differences in bias and vari-
ance over a range of conditions. Case-control data were simulated
with dependences by fixing the root mean squared correlation at
three levels according to the R function “simz” (Efron, 2010b).
Z-scores were simulated for 100 cases and 100 controls at 2000
“genes” with false null hypotheses created by adding a constant
to case observations, as described by Efron (2010b). The constant
was fixed at 0.15 and 0.3 to reflect weak vs. strong effects, which
yield differing numbers of false null hypotheses with test statistics
below the detection threshold, m1 − T > 0. P-values were gener-
ated using t-tests, and for the ST and Efron (BE) estimators, they
were adjusted using 10 or 100 permuted datasets.

As expected, all methods were conservatively biased in all sce-
narios across a range of significance thresholds (Figure 1). Also,
results were very similar overall between 10 and 100 permutations
(B), implying that under these conditions little improvement is

FIGURE 1 | Performance of the proposed FDR point estimator (JM;

implemented in the “fdrci” R package) as compared to the Storey and

Tibshirani approach (ST) as implemented in the “q-value” R package

and the Efron approach (BE) as implemented in the “locfdr” R

package. Each plot was based on 200 replicate datasets independently
simulated under identical conditions using the simz software (Efron,
2010a,b), where dependencies are determined by fixing the root mean
squared correlation, denoted by α, of the raw data to 0.05. From each
dataset, 2000 t-tests of 100 “cases” and 100 “controls” were generated,
where false null hypotheses were defined by adding a constant to the raw
simulated z-scores of “cases,” as described by Efron (2010b) and
π0 = 0.75. Data were simulated with 40 blocks of correlated z-scores
according to α. Case-control labels were randomly permuted 10 or 100
times (B) for each scenario. Differing values of “true FDR” reflected a
series of increasing significance thresholds. True FDR was computed from
the simulated data as mean F /S. Bias was computed as the mean
FD̂R—true FDR.
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achieved by the order-of-magnitude increase in B. This result is
consistent with Equation 11 that shows a small contribution in
the variance due to permutations when the number of positive
tests in permuted data is substantial.

When the effects were weak (constant = 0.15) the ST esti-
mator was more conservatively biased than the others between
approximately FDR = 0.1–0.2, and this divergence increased with
the increased number of permutations (Figure 1). Also, vari-
ance of the ST was greater over this range. However, it was
less biased than the proposed (JM) and BE estimators above
this range while maintaining a similar variance. The JM and
BE performed similarly under these conditions with neither
out-performing the other in bias or variance across the entire
range.

In contrast, when the effects were stronger (constant = 0.30),
the ST was less biased than the others across the entire range
but the variance was greater over most of the range. This bias-
variance tradeoff is also apparent in the difference between the JM
and EB estimators with the JM substantially less biased over the
approximate range FDR > 0.1 but with greater variance. From
FDR = 0–0.1, JM and BE performed quite similarly, but ST bias
was smaller and the variance was comparable.

PERFORMANCE OF FDR VARIANCE AND CI ESTIMATORS
We compared our proposed variance estimator for log(FD̂R)
to the estimator proposed by Efron (2010a) both under inde-
pendence between tests and when dependencies were present
(Figure 2). Simulations were performed as described above except

FIGURE 2 | Comparison of the Bradley Efron (2010a,b) estimator for

variance of log(FDR) to the proposed estimator (JM) under

independence among tests (α = 0) and dependence (α = 0.1). Coverage
of derived 95% CI’s were also compared in the bottom plots according to
Equation 12.

that 4000 “genes” were tested for each replicate, 400 of which
corresponded to false null hypotheses, with constant = 0.3.

From Figure 2 it is clear that when tests were independent
(α = 0), estimates for both estimators were close to observed val-
ues both for 10 and 100 permutations. However, when dependen-
cies were simulated (α = 0.1), both methods were conservatively
biased over most of the range. Below FDR ≈ 0.3 the JM estimator
was more conservative than the BE and above 0.3 it was less con-
servative. The EB estimator was anti-conservative for FDR < 0.07
when 10 permutations were conducted but not when the number
of permutations was increased to 100.

Using the BE variance estimator, we constructed CIs as pro-
posed in Equation 12 to compare this approach to the proposed
JM CI estimator. The JM 95 percent CI estimator outperformed
the BE estimator in both the independent and dependent test-
ing scenarios (Figure 2). The poor coverage of the BE estimator
under independence is mostly due to upward bias that results in
the lower bound exceeding the true FDR. Coverage of the JM esti-
mator is slightly below the 95 percent target for the same reason,
an upward bias. It’s important to note that exact coverage is not
as important when the CI width is small, as is the case in the
independent scenario. The coverage problem for the BE estima-
tor is not as severe in the dependent testing scenario, however, it is
still well-below 95% and the mean CI width is substantially larger
than the proposed estimator over most of the range. The coverage
of the JM CI estimator is better than that of the BE estimator in
the dependent scenario as well, meeting or exceeding 95% over
most of the domain even though the mean JM width tends to be
smaller.

To explore the performance of the methods under a differ-
ent set of realistic genomic testing conditions, SNPs and Gaussian
traits were simulated with dependencies and then tested for asso-
ciations using linear additive models. The HAPSIM (Montana,
2005) R package was used to randomly generate haplotypes cor-
responding to specified ranges of LD, from which the SNP data
was constructed. Allele frequencies were sampled from a uniform
(0.2, 0.5) distribution. Data were simulated under two different
proportions of false null hypotheses, each employing 10 and 100
permutations (Figure 3). For each of these four scenarios, CI’s
were computed using the JM and BE variance estimators under
a range of significance thresholds. This study scenario presented
a challenge for the BE approach because there were two datasets
used for testing (SNPs and Gaussian traits), both with dependen-
cies. In contrast, the guidance given by Efron (Efron, 2010a,b)
dealt with just a single underlying dataset of correlated variables
yielding a one-to-one mapping from variables to tests. In lieu
of a formal method to compute an overall alpha (mean squared
correlation) for the multiple dataset scenario (required by the
BE method to adjust for dependencies) we used the mean alpha
across datasets. In contrast, no alteration of the JM approach
was necessary, since the over-dispersion parameter is computed
strictly from positive test counts.

Biases of the point estimators were small and the JM esti-
mator was slightly conservative where the bias was notice-
able, as expected (Figure 3). Coverages of the CI estimators
were generally conservative as well, hence the proposed over-
dispersion parameter demonstrated an adequate ability to correct
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FIGURE 3 | Performance of the JM (black) and BE (gray) 95% CI

estimators in the presence of dependent tests. Each plot represents 200
replicate datasets independently simulated under identical conditions. The
true fdr ranged along the x-axis due to applying a variety of significance
thresholds. Each dataset corresponded to 5050 tests. The number of false
null hypotheses (m1) was fixed at either 15 or 50. The thin solid black line
along the diagonal represents unbiasedness and the thicker solid lines
denote FDR point estimates. Means for upper and lower 95 percent
confidence bounds are shown as dotted lines. The target confidence
interval coverage of.95 is displayed as a solid horizontal line at 0.95 and
actual coverage by dashed lines. SNPs were generated in “LD blocks” with
5 SNPs per block and composite LD ranging from 0.4 to 0.9 within each
block, and traits were generated in “modules” of correlated traits with 5
traits per module and correlations ranging from 0.4 to 0.9 within each
module. Twenty LD blocks and 10 gene modules were included in each
replicate dataset.

for dependencies. However, mean widths of the BE CI’s were
extremely wide compared to the JM widths, implying that the
heuristic approach of taking the mean alpha across datasets was
not adequate. This problem highlights the sensitivity of the BE
variance estimator to the type of data and tests conducted due to
the computation of alpha, and in this case an appropriate method
has not yet been described.

There was one small region where coverage of the JM CI was
slightly low. The low coverage occurred where FDR was small, the
number of false null hypotheses was small (15), and the num-
ber of permutations was 100 (bottom left panel of Figure 3). The
somewhat low coverage in this region can be explained by the
conservative bias of the point estimator combined with small CI
widths, thus it is unlikely to be a problem in practice. When the
number of false null hypotheses was increased to 50, coverage was
more conservative and no longer low over this region. In general,
increasing the number of false null hypotheses had a substantial
decreasing effect on CI widths, as implied by Equation 11, but the
effect of increasing the number of permutations from 10 to 100
was very modest. It is important that FDR CI coverage is good in

the case where all null hypotheses are true, and we found that cov-
erage of the JM estimator was conservative under these conditions
(data not shown).

MOUSE GENE EXPRESSION IN HYPOTHALAMUS IS PREDICTIVE OF
REM SLEEP
We investigated the relationship between rapid eye movement
(REM) sleep and transcriptome-wide gene expression variation
in male mice from a genetically segregating back-cross popu-
lation of inbred mouse lines, C57BL/6J and BALB/cByJ, both
the breeding scheme and sleep measures described previously
(Winrow et al., 2009). These datasets were downloaded from a
public database hosted by Sage Bionetworks (www.synapse.org;
dataset IDs for the sleep phenotypes and hypothalamus gene
expression were syn113322 and syn113318, respectively). One
hundred and one mice were hand scored for sleep at 11–13 weeks
of age using electroencephalogram (EEG) and electromyogram
(EMG) data collected over a 48 h period (Winrow et al., 2009;
Brunner et al., 2011; Millstein et al., 2011; Fitzpatrick et al., 2012).
Hypothalamus tissue was collected from each mouse and pro-
filed following sleep recording (Millstein et al., 2011) to identify
chronic gene expression variation associated with variation in
24 h REM sleep. After an extensive quality control process applied
to the gene expression data that included removal of probes con-
taining SNPs and probes that were not considered to be poly-A
reliable, a total of 17,404 probes remained for analysis.

For all 17,404 probes, F-tests of coefficients from linear mod-
els were used to test for associations between gene expression and
mean 24 h REM sleep across the 48 h recording period, where
both gene expression and REM sleep duration were coded as con-
tinuous variables with a single observation per animal. None of
the resulting p-values achieved a typical Bonferroni significance
level for family-wide α = 0.05 (p < 2.87e-6) or even a BH FDR
equal 0.05 significance level. There is very little guidance in the
literature regarding what to do when this happens, publish a neg-
ative finding? The problem here is that although there may be
some evidence in the data of a true biological signal that signal
may be too weak to achieve a Bonferroni or BH 0.05 significance
level. However, using the proposed FDR CIs, the investigator is
able to relax the significance threshold if necessary to capture and
quantify evidence for relatively weak biological signals.

Figure 4 shows FD̂R generated according to the proposed
method plotted with CIs based on 1000 permutations over a
range of potential p-value significance thresholds. Each per-
muted dataset was created by randomly permuting the individual
labels corresponding to expression data. This approach preserves
observed dependencies between transcripts. Ultimately, an inves-
tigator often choses a single “significance” threshold (typically
a Bonferroni adjusted .05 alpha level) and reports those find-
ings that meet the criterion, considering these to be “discover-
ies” that are worth further investigation. Unlike FWER control,
where a universal threshold such as .05 can function as a single
interpretable criterion to define significant features and quantify
uncertainties, applying a FDR estimation approach may yield a
range of thresholds over which FD̂R is significantly less than one
but the number of discoveries and the magnitude of FD̂R varies.
There is a trade-off between the number of true discoveries and
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FIGURE 4 | Estimated FDR and 95% CI for a series of significance

thresholds applied to 17,404 tests of association between gene

expression features and 24 h REM sleep. A final set of “significant”
genes was identified using a threshold, shown as a vertical black dashed
line that corresponded to the minimum FD̂R and minimum upper
confidence limit. Numbers in the field denote counts of positive tests at the
specified p-value significance threshold.

the FDR, and the final choice should reflect the objectives of the
study and the costs vs. benefits of false vs. true discoveries. In
these results, a minimum FD̂R and minimum upper confidence
limit coincided approximately to define a natural threshold at p <

0.0001 [FD̂R = 0.15 (0.08,0.26)], yielding 11 transcripts. At this
FDR level we would expect roughly 2 of the 11 to be false discov-
eries. Using this threshold, the BH method also determines FDR
to be 0.15, suggesting that the parametric assumptions of the test
are likely to be justified in this application. It is interesting to note
that a consequence of choosing a minimum FD̂R is that among
tests that achieve the chosen significance threshold, there is no
evidence that smaller p-values are more likely to be true discover-
ies. In view of the small differences in FD̂R demonstrated above
between 10 and 100 permutations, we did not believe that addi-
tional permutations would substantially improve our estimate or
affect our ultimate choice of a significance threshold.

Though the 11 identified transcripts (supplementary Table S1)
do not include genes well-known to regulate sleep, what is known
about these genes does include some plausible links. For example,
the two genes with the smallest p-values are secreted Frizzled-
related proteins, Sfrp1 and Sfrp4 (p = 1.1e-5 and 3.1e-5, respec-
tively), known to be involved in wnt signaling (Bovolenta et al.,
2008) as well as dopamine neuron development (Kele et al., 2012).
Wnt signaling has been linked to pathologies, mood and men-
tal disorders, as well as neurodegenerative disease (Oliva et al.,
2013), all of which commonly include sleep indications as comor-
bidities. Also, Irf7 and Ifit1 are involved in interferon signaling, a
process found to affect both REM and non-REM sleep (Bohnet
et al., 2004). Iigp2, a member of the p47 GTPase family, may
also play a role in interferon signaling (Miyairi et al., 2007).

Interferon induced with helicase C domain 1 (Ifih1) is upreg-
ulated in response to beta-interferon, and genetic variation in
this gene has been found to be associated with type 1 diabetes
(Winkler et al., 2011), which includes sleep disturbances as part
of the long-term syndrome (Van Dijk et al., 2011).

DISCUSSION
The proposed method provides an accessible and computation-
ally efficient approach for FDR CI estimation that accounts for
dependencies among tests and the number of permutations con-
ducted. Thus, it can easily be applied to genomic data, where
dependencies are pervasive and the number of permutations
often limited by computational resources. The method presents a
major advance in addressing the oft-asked question, “how many
permutations are required?” Even if a small number of permuta-
tions have been conducted, the investigator can be confident that
this source of variance is reflected in the CI estimation, thereby
adequately quantifying uncertainty in the FDR. The ability to
apply this approach using only counts of tests that meet some
threshold of interest is an important advantage that allows the
method to be easily applied in very high dimensional testing set-
tings such as trans eQTL, where storage of all test results or an
additional analysis of raw data would be a computational bur-
den. Also, the approach can be applied directly to statistics with
uncharacterized distributions, bypassing the need for p-values
entirely. Thus, there is no assumption of uniform or unbiased p-
values. The main assumption is that permuted results accurately
reflect the null.

The appropriateness of parametric distributions becomes a
much more challenging issue in large-scale inference settings
because the investigator is forced to work in the extreme tails
to adjust for multiplicity. This problem is sometimes addressed
by severe transformations such as quantile normalization (Becker
et al., 2012), which can cause a loss in power due to a loss of
information. The use of permutations in the proposed approach
provides a flexible as well as powerful multiple-testing approach,
which does not require loss-of-information transformations.
Also, without permutations, it would be necessary to go back to
raw data to account for dependencies in the quantification of FDR
uncertainty. Thus, the method is useful even when all parametric
assumptions are completely justified.

Simulation analysis demonstrated that variance of FDR esti-
mators increased when there were dependencies between tests,
in agreement with Schwartzman and Lin (2011). However, the
proposed over-dispersion parameter adequately adjusted the CI
under the conditions explored to account for this inflation. We
showed both theoretically and via simulations that variance of the
proposed FDR point estimator was more sensitive to the num-
bers of positive tests than the numbers of permutations. Indeed,
there was little change in variance from 10 to 100 permutations.
The proposed point estimator performed well, showing moderate
and stable characteristics with regard to the bias-variance trade-
off, out-performing the BE method in bias and the ST method in
variance.

Both the proposed and BE estimators for log(FD̂R) performed
well when tests were independent but conservatively when depen-
dencies were present (the anti-conservative behavior of the BE
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estimator was not present when permutations were increased to
100). Coverage of the proposed CI was mostly conservative, and
it almost uniformly out-performed the CI constructed from the
BE estimators.

We showed that the precision of the proposed point esti-
mator depends primarily on the number of positive tests (and
dependencies among tests), which is not directly related to the
magnitude of FD̂R. The ability to estimate a CI for FDR allows
the investigator to identify sets of positive tests that are highly
enriched for true positives yet are characterized by what would
often be considered unreasonably high FD̂R, such as 0.2 and
above. Undoubtedly, there are many such datasets with true bio-
logical signals that have gone unpublished due to an inability to
achieve statistical significance with conventional FWER or FDR
thresholds. Conversely, results may have been published that were
not justified by the strength of the evidence. The proposed CI
estimator thus allows decoupling of “statistical significance” from
the magnitude of the FDR estimate. However, caution should
be used in treating the CI as a hypothesis test for determin-
ing whether FDR is statistically significantly smaller than one.
When an investigator uses a post-hoc strategy for identifying the
significance threshold (such as the threshold that yields the min-
imum FD̂R or minimum upper CI bound), the upper CI bound
should be substantially below one to conclude that FDR is sta-
tistically significantly below one. Based on our experience in
simulated data and permuted real data (data not shown), we
suggest a rule-of-thumb defined by an upper bound below 0.7
where there are at least 5 positive tests at the chosen signifi-
cance threshold (smaller upper bound if there are fewer) is likely
to be sufficiently conservative for most situations. However, a
thorough treatment of this important question is beyond the
scope of this report. We leave it to future studies to elucidate
just how this criterion depends on factors such as the number
of permutations, the number of positive tests, and dependencies
among tests.

Not only were suggestive links found in the literature between
REM sleep and gene expression for the set of 11 genes whose
expression was significantly associated with 24 h REM sleep, but
the signal-to-noise ratio was also quantified in the form of FDR,
along with a measure of uncertainty in the estimate. From the
sleep data analysis, it is clear that there is evidence of association
between gene expression and REM sleep, and we are able to iden-
tify many of the genes likely to be involved. If a typical FWER
approach or a BH FDR approach had been applied to these data,

the investigator would have failed to reject the global null hypoth-
esis of no association between gene expression and REM sleep.
Though 11 genes may seem like a small number, it is important
to remember that these associations reflect chronic differences
in expression and sleep between individuals (all individuals were
sacrificed at the same point in the light/dark cycle) as distinct
from detecting genes that cycle with sleep state changes. Also,
we set out to identify genes that explain normal sleep variation
in individuals who are relatively healthy, unlike many differential
expression studies that are conducted by comparing a diseased or
perturbed population, e.g., sleep deprivation, to a healthy one.

The migration to non-parametric approaches in genomic
analyses may be inevitable as investigators are faced with seem-
ingly insurmountable challenges of satisfying parametric assump-
tions in the context of many thousands of sample distributions.
In addition, the typically stringent significance thresholds used in
multiple testing on a genomic scale results in the need to draw
inferences based on the extreme tails of an assumed distribution,
which are notoriously inaccurate. Permutation-based approaches
are attractive in their flexibility and accuracy but are computa-
tionally expensive. We have described a method (with software
freely available as an R package, “fdrci”: http://cran.r-project.
org/web/packages/fdrci/index.html) where permutations can be
used to estimate FDR including CIs in a fully non-parametric
approach, which is computationally parsimonious and robust to
dependencies among tests.
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APPENDIX A
FDR CONSISTENCY
If we assume that individual hypothesis tests are consistent, then
as sample size, n, goes to infinity, power of each individual test
goes to 1, therefore,

(m1 − T)
n → ∞−→ 0 ⇒ (m − S)

n → ∞−→ (m0 − F)

By design, the permuted dataset should accurately represent a
realization from the complete null. If this is the case, then,

E
[
S̄∗]
m

= E[F]
m0

,

and assuming that π0 is fixed,

S̄∗

m
m→∞−→ F

m0
.

Due to binomial properties, the variances of the above propor-
tions go to zero as m goes to infinity. Therefore, as m and n go to
infinity,

π̂0 = 1 − S/m

1 − S̄∗/m
= m − S

m(1 − F/m0)
= m0 − F

m − Fm/m0

= m0(1 − F/m0)

m − Fm/m0
= m0(m − Fm/m0)

m(m − Fm/m0)
= m0

m
.

Thus π̂0 is a consistent estimator in m and n. Even if m does not
go to infinity, the above shows that bias in π̂0 will go to zero as n
goes to infinity.

APPENDIX B
VARIANCE OF S
The development of a variance estimator for log(FD̂R) depends
on an estimator for the variance of S. We use the approxi-
mation that S is a binomial random variable, which has an
obvious rational under the global null but is more compli-
cated under the alternative, where T > 0. In this case S can be
thought of as a sum of two binomial variables, F ∼ Bin(m0,
E[F]/m0) and T ∼ Bin(m1, E[T]/m1), where the sum, S = F + T,
is not necessarily binomially distributed. However, the pro-
posed binomial variance approximation will be a conservative
estimator.

THEOREM 1
Variance inequality of a binomial sum
Suppose the sum, Z, of two independent binomial random vari-
ables, X ∼ B(m0, p0) and Y ∼ B(m1, p1), Z = X + Y . Then
the variance of Z is less then or equal to its variance under
a binomial distribution that is, Var(Z) <= E[Z] (1 − E[Z]/
(m0 + m1)).

Proof. The random variables X and Y are independent; there-
fore the variance of the sum is the sum of the variances,
Var(Z) = E[X](1 − E[X]/m0) + E[Y](1 − E[Y]/m1). Thus, we

need to show that, E[X](1 − E[X]/m0) + E[Y](1 − E[Y]/m1) ≤
E[Z](1 − E[Z]/(m1 + m0)). Simplifying this inequality yields,

E[X](1 − E[X]/m0) + E[Y](1 − E[Y]/m1)

≤ (E[X] + E[Y])(1 − (E[X] + E[Y])/(m0 + m1))

E[X] − E[X]2/m0 + E[Y] − E[Y]2/m1

≤ E[X] + E[Y] − (E[X] + E[Y])2/(m0 + m1)

E[X]2/m0 + E[Y]2/m1 ≥ (E[X] + E[Y])2/(m0 + m1)

m1(m0 + m1)E[X]2

m0m1(m0 + m1)
+ m0(m0 + m1)E[Y]2

m0m1(m0 + m1)

≥ m0m1(E[X] + E[Y])2

m0m1(m0 + m1)

m1(m0 + m1)E[X]2 + m0(m0 + m1)E[Y]2

≥ m0m1(E[X]2 + 2E[X]E[Y] + E[Y]2)

m2
1E[X]2 + m2

0E[Y]2 + m0m1E[X]2 + m0m1E[Y]2

≥ m0m1E[X]2 + 2m0m1E[X]E[Y] + m0m1E[Y]2

m2
1E[X]2 + m2

0E[Y]2 ≥ 2m0m1E[X]E[Y]
m2

1E[X]2 − 2m0m1E[X]E[Y] + m2
0E[Y]2 ≥ 0

(m1E[X] − m0E[Y])2 ≥ 0

which clearly is true for all independent binomial dis-
tributions of X and Y. Though theorem 1 was devel-
oped for the sum of two variables, it easily generalizes
to k > 2.

APPENDIX C
VARIANCE OF LOG(FD̂R)
The variance of the log FDR estimate can be described
as the variance of the sum of two independent quantities
that is,

Var
(

log
(

FD̂R
))

= Var

(
log

(
S̄∗

1 − S̄∗/m
× 1 − S/m

S

))

= Var

(
log

(
(1/B)

∑
S∗

i

1 −∑
S∗

i /mB
× 1 − S/m

S

))

= Var

(
log

( ∑
S∗

i

mB −∑
S∗

i

))
+ Var

(
log

(
m − S

S

))

thus due to independence between S and S∗, the variance of the
sum is the sum of the variances.

Using the Delta method and the normal approximation to
the binomial, we know that each term and the sum of terms
converge to a normal distribution. It is true that S is actu-
ally a mixture distribution from true and false null hypothe-
ses, but to the extent that this fact biases the variance, it will
be a conservative bias. This follows from theorem 1 (above)
and the resulting expression from the Taylor approximations
(below).
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With a first order Taylor approximation, we can approximate
the variance of the first term as,

Var

(
log

( ∑
S∗

i

mB −∑
S∗

i

))
≈
[

g′(∑ S∗
i

)]
× Var

(∑
S∗

i

)
,

where

g′(∑ S∗
i

)
= ∂

∂
∑

S∗
i

log

( ∑
S∗

i

mB −∑
S∗

i

)
.

By the chain rule,

∂

∂
∑

S∗
i

∑
S∗

i

mB −∑
S∗

i

= mB(
mB −∑

S∗
i

)2

and

g′(∑ S∗
i

)
= mB −∑

S∗
i∑

S∗
i

× mB(
mB −∑

S∗
i

)2

= mB∑
S∗

i

(
mB −∑

S∗
i

) .
Thus, for the first term,

Var

(
log

( ∑
S∗

i

mB −∑
S∗

i

))
=
(

mB∑
S∗

i

(
mB −∑

S∗
i

)
)2

×
∑

S∗
i

(
1 −

∑
S∗

i

mB

)
= mB∑

S∗
i

(
mB −∑

S∗
i

) .

Taking a similar approach for the second term, ∂
∂S log

(m − S
S

) =
S

m − S × −m
S2 = m

S(S − m)
, and with a first order Taylor approxima-

tion, Var
(
log

(m − S
S

)) ≈ [
g′(∑ S∗

i

)]× Var
(∑

S∗
i

) = m
S(m − S)

. In
summary, the variance of the log of is the sum of variances,

Var
(

log
(

FD̂R
))

= σ̂2
FDR = mB∑

S∗
i (mB −∑ S∗

i )
+ m

S(m − S)
.

The same result can be arrived at by conceptualizing the
FDR estimate as an odds ratio between results in observed vs.
permuted data. That is, we can construct the following 2 × 2
table:

Positive test?

Yes No

Permuted data? Yes
∑

S*
i mB −∑

S*
i mB

No S m − S m

Seen in this context, it is clear that the proposed FDR point
estimator takes the simple form of the odds ratio of test
results in the observed and permuted data. It is then also
clear that the proposed variance expression, which can be
written,

σ2
FDR = 1(∑

i S∗
i

) + 1

mB −∑
i S∗

i

+ 1

S
+ 1

m − S
,

takes the form of the well-known expression proposed by Woolf
(1955) for variance of the log odds ratio.
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