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Oncolytic viruses (OVs) comprise a versatile and multi-mechanistic therapeutic platform in
the growing arsenal of anticancer biologics. These replicating therapeutics find favorable
conditions in the tumor niche, characterized among others by increased metabolism,
reduced anti-tumor/antiviral immunity, and disorganized vasculature. Through a self-
amplification that is dependent on multiple cancer-specific defects, these agents exhibit
remarkable tumor selectivity. With several OVs completing or entering Phase III clinical
evaluation, their therapeutic potential as well as the challenges ahead are increasingly clear.
One key hurdle is tumor heterogeneity, which results in variations in the ability of tumors
to support productive infection by OVs and to induce adaptive anti-tumor immunity. To this
end, mounting evidence suggests tumor epigenetics may play a key role. This review will
focus on the epigenetic landscape of tumors and how it relates to OV infection.Therapeutic
strategies aiming to exploit the epigenetic identity of tumors in order to improve OV therapy
are also discussed.
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INTRODUCTION
While genetic information establishes the primary blueprint for
cellular identity, multiple regulatory layers responsive to extra and
intra-cellular signals ultimately control the manifestation of this
blueprint. Changes in cellular state, including initiation of DNA
synthesis, activation of apoptotic programs, or triggering of antivi-
ral defense mechanisms, result from an integrated response to
stimuli received by the cell. These are controlled in large part by
gene/protein expression profiles unique to each cell. It is now well
understood that activation of transcription factors that bind in
a DNA sequence-specific manner at promoter and enhancer ele-
ments is responsible for many of the changes in gene expression
that occur in response to environmental or developmental cues.
However transcription factors and their associated gene targets are
themselves further regulated by the accessibility of DNA sequences.
Since the genome resides in the finite space provided by the
nucleus, it interacts with proteins known as histones to form chro-
matin and facilitate its compaction. The configuration of chro-
matin compaction is modulated by epigenetic modification and is
a key determinant for transcription factor-mediated activation of
gene transcription (Magnani et al., 2011).

Epigenetic modifications create a reversible imprint that may
be inherited through cell division. For example, DNA methylated
at promoter CpG islands is associated with gene silencing and can
be reversed by treatment with DNA methyltransferase inhibitors
such as 5-AZA (5-aza-2′-deoxycytidine) leading to the reactiva-
tion of silenced genes (Baylin and Jones, 2011; Krecmerova and
Otmar, 2012). Similarly, chromatin structure can alter accessibil-
ity to the DNA template and can be readily remodeled by histone
post-translational modifications (PTMs). PTMs including acety-
lation, methylation, phosphorylation, ubiquitination, and many
others can be added to numerous residues of histone proteins
(Bannister and Kouzarides, 2011). Different PTMs will favor chro-
matin compaction while others will increase its accessibility to
DNA binding proteins. Histone modifications and DNA methyla-
tion are highly interdependent processes and define the epigenetic
code (Cedar and Bergman, 2009). The epigenetic code is regulated
by a complex interplay of enzymatic erasers, readers, and writ-
ers that exhibit specificities toward different histones and residues
(Rice and Allis, 2001). For example, the level of histone acetyla-
tion is regulated by the relative activity of histone acetyltransferases
(HATs) and histone deacetylases (HDACs), proteins with opposing
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enzymatic activities that are often found in the same protein com-
plexes (Johnsson et al., 2009; Peserico and Simone, 2010). This
also applies to histone lysine methyltransferases (KMTs) and lysine
demethylases (KDMs). Consequently, modulating the activity of
histone-modifying enzymes can profoundly alter the epigenetic
profile of a cell (Egger et al., 2004; Yoo and Jones, 2006).

Given their critical role in the regulation of normal cellular
physiology, it is not surprising that aberrations in epigenetic mod-
ifications can contribute to the manifestations of human disease.
For example, a cell’s epigenetic profile can impact the progression
of acute microbial diseases (discussed in more detail below) as
well as the development and treatment of chronic diseases such
as cancer. DNA hypermethylation is often observed in cancer cells
(Patel et al., 2012). The genome-wide distribution of histone mod-
ifications can also be altered in the course of cancer development
(Akhtar-Zaidi et al., 2012; Magnani et al., 2013). As well, the activ-
ity of various histone-modifying enzymes can be altered through
mutations (Taylor et al., 2011), aberrant expression (Schildhaus
et al., 2011; Bennani-Baiti et al., 2012) and/or recruitment to tar-
get histone residues via oncogenic fusion proteins (Lubieniecka
et al., 2008). Consequently, many cancers are sensitive to epi-
genetic modulators such as 5-AZA, HDAC, or KDM inhibitors
(Hurtubise et al., 2008; Taylor et al., 2011; Schenk et al., 2012)
and epigenetic modifications have been shown to influence the
response to chemotherapy (Glasspool et al., 2006; Magnani et al.,
2013).

ONCOLYTIC VIROTHERAPY
While epigenetic modulators hold promise as anticancer agents, it
is clear that like for many other cancer therapies, tumor-specificity
is of paramount importance. Tremendous efforts have been made
over the past decades to tackle the difficult task of developing more
selective cancer therapies, aiming to exploit the sometimes-subtle
differences between normal tissues and tumors. One promising
new class of therapeutics comes to us from the field of virology.
Since the early 1900s it has been observed that cancers can be
uniquely susceptible to virus infection (Dock, 1904). While the
first clinical trials using replication-competent viruses to treat can-
cer began in the seventies (Asada, 1974; Kelly and Russell, 2007;
Pol et al., 2013), approval of the first oncolytic virus (OV) is only
now in the foreseeable future in North America (Carroll, 2011;
Galanis et al., 2012; Heo et al., 2013). The more recent clinical
success of OVs is in large part due to our more complete under-
standing of the molecular biology of both cancer cells and viruses
that allowed us to create virus strains with improved selectivity
and anti-tumor activity, and clinical safety profile (Breitbach et al.,
2011). Rapid proliferation and deregulated metabolism (Fritz and
Fajas, 2010), disorganized vasculature (Jain, 2005), and defective
antiviral innate immune responses (Dunn et al., 2006) in malig-
nant tumors are hallmarks that not only define cancer, but also
favor viral growth. Building on these observations, several OVs
have been engineered or selected to take advantage of one or more
of these features (Russell et al., 2012). A variety of OV platforms
are currently under clinical evaluation including those based on
herpes simplex virus (HSV), Reovirus, vaccinia virus (VV), Ade-
novirus, Measles virus, and vesicular stomatitis virus (VSV; U.S.
National Library of Medicine, 2013).

ONCOLYTIC VIROTHERAPY AND THE CELLULAR INNATE
ANTIVIRAL RESPONSE
It is now well established that cancer cells that evolve to frank
malignancies often acquire defects in their ability to mount a suc-
cessful antiviral response and this attribute/deficit contributes to
the selectivity of many if not all OVs (Norman and Lee, 2000; Stojdl
et al., 2000, 2003). This is often a consequence of the observation
that approximately 65–70% of tumors are unable to produce or
respond to type I interferon (IFN), a key mediator of the cellu-
lar antiviral response (Stojdl et al., 2003; Dunn et al., 2006). IFNs
are antiviral cytokines induced following recognition of viral pro-
teins and nucleic acids by cellular pattern recognition receptors
such as Toll-like receptors (TLRs) that signal through to transcrip-
tion factors such as interferon regulatory factors (IRFs). There are
many isoforms of IFN, which can be functionally sub-divided in at
least three types (types I/II/III). While type I/III IFNs (e.g., IFN-α,
IFN-β/IFN-λ) stimulate cellular antimicrobial immunity; type II
IFNs (e.g., IFN-γ) coordinate the host immune response. IFNs
elicit their transcriptional effects through autocrine and paracrine
activation of IFN receptors and signaling through the Jak/STAT
signaling pathway (Borden et al., 2007). This induces the tran-
scriptional up-regulation of interferon-stimulated genes (ISGs),
many of which have direct antiviral/pro-apoptotic activities (e.g.,
RNAseL, TNF-α, TRAIL) and/or immune-stimulatory properties
(e.g., components of major histocompatibility complex).

ONCOLYTIC VIRUSES AND THE GENERATION OF AN
ANTI-TUMOR IMMUNE RESPONSE
In addition to taking advantage of a niche provided by aberra-
tions unique to cancer and the tumor microenvironment, OVs
have been used as platforms to express a range of therapeutic
transgenes, from suicide genes to immune-stimulatory cytokines
(Merrick et al., 2009; Maldonado et al., 2010; Chai et al., 2012;
Stephenson et al., 2012; Lange et al., 2013). In this regard, it is now
well recognized that beyond simply lysing infected tumor cells,
OVs effectively “de-cloak” tumors by stimulating immune cells to
recognize cancer antigens, ultimately leading to tumor destruc-
tion and in some cases, long-term cures (Sobol et al., 2011; Huang
et al., 2012). Many tumors evade immune recognition due to a
dysfunctional antigen presentation pathway, which is under tight
multilayered transcriptional control ultimately dictated by type
I/II IFNs and the class II transactivator (CIITA). This transcrip-
tion factor controls the expression of numerous genes involved
in antigen presentation, including class I and II MHC molecules,
which display tumor or pathogen derived peptides to killer T cells
(CD4+/CD8+; LeibundGut-Landmann et al., 2004).

The antigen presentation pathway is influenced by both tumori-
genesis and OV therapy. Many tumor cells including leukemias,
lymphomas, and carcinomas, avoid immune recognition due to a
dysfunctional antigen presentation pathway, largely caused by epi-
genetic silencing (e.g., histone deacetylation or DNA methylation)
of MHC2TA, the gene encoding CIITA (LeibundGut-Landmann
et al., 2004). OV therapies can enhance tumor-associated anti-
gen presentation through various mechanisms. In response to OV
infection, type I and II IFN secretion by infected cells within the
tumor environment (which also includes normal tumor infiltrat-
ing cells) leads to the up-regulation of hundreds of ISGs including
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IRF-1, which up-regulates CIITA expression (Muhlethaler-Mottet
et al., 1998). Notably, this response is dependent upon the abil-
ity to respond to IFN, which can be limited in many cancer cells
(Stojdl et al., 2003; Dunn et al., 2006).

Oncolytic virotherapy can have a positive influence on antigen
presentation and the anti-tumor response. Some OVs including
HSV, reovirus, and measles virus, induce syncytia formation in
infected and neighboring cells. These large multinucleated tumor
cells secrete an abundance of “syncytiosomes,” which are exosome-
like vesicles that present tumor-associated antigens via MHC
molecules (Bateman et al., 2000, 2002). Finally, destruction of can-
cer cells following infection by OVs provides an additional source
of tumor antigens available for capture by antigen-presenting
immune cells. The immunostimulatory nature of the virus itself,
through activation of TLRs and subsequent cellular produc-
tion of pro-inflammatory cytokines stimulates the recruitment
of antigen-presenting cells that sample tumor-derived and virus-
expressed antigens. Presentation of tumor antigens to killer T
cells (CD4+/CD8+) through MHC molecules in the presence of
inflammatory cytokines can thus lead to generation of a robust
and long-lasting immune responses directed against the tumor.

To capitalize on these beneficial immunological effects, some
groups have developed OV/vaccine hybrid strategies. These strate-
gies are designed specifically to re-educate the adaptive immune
system to recognize and respond to tumor antigens. Thus, OVs can
be engineered to express not only immune-stimulatory cytokines
but also tumor-specific antigens to further stimulate an anti-tumor
immune response following OV infection of cancer cells (Diaz
et al., 2007; Pulido et al., 2012). Indeed, several studies have shown
that this “tumor antigen vaccination” effect can be further ampli-
fied using a prime-boost strategy, by priming with an antigen then
boosting the response using an OV expressing the same antigen
(Bridle et al., 2010, 2013). As discussed below, it is possible to use
epigenetic modifiers to further fine-tune this oncolytic vaccine
approach. It is also possible to take advantage of this vaccine effect
by infecting cancer cells ex vivo and re-injecting the inactivated
“oncolysate” to generate prophylactic and even therapeutic anti-
cancer immune responses. The resulting up-regulation of MHCs
and co-regulatory factors and presentation of tumor antigens at
the surface of OV infected cells as well as the presence of immune-
stimulating virus is thought to be at the root of this effect (Lemay
et al., 2012). Overall, these studies emphasize the important role
of antigen expression/presentation in OV-stimulated anti-tumoral
responses.

TUMOR HETEROGENEITY: INHERENT BARRIER TO OV
THERAPY
Despite promising clinical data, it is clear that there is considerable
inter- (and likely intra-) tumor heterogeneity in the responsive-
ness to OV therapy in vitro as well as in vivo in both pre-clinical
and clinical settings (Breitbach et al., 2011; Sobol et al., 2011).
Because overcoming the innate cellular antiviral response and
generating a robust anti-tumor response are critical to observe
meaningful therapeutic benefits from oncolytic virotherapy, it is
important to understand what tumorigenic processes influence
these closely linked pathways in order to manipulate them to
improve therapeutic outcomes.

Given the profound epigenetic divergence that prevails in
tumor cells (Akhtar-Zaidi et al., 2012; De Carvalho et al., 2012), it is
foreseeable that tumor-specific gene expression response profiles
induced by virus infection may be altered by epigenetic modi-
fications and that this could contribute to the heterogeneity of
tumor responsiveness to OVs. As discussed previously, epigenetic
reprogramming is well known to play an important role in onco-
genic transformation and numerous reviews extensively cover the
role of epigenetics in cancer (Muntean and Hess, 2009; Baylin
and Jones, 2011; Hatziapostolou and Iliopoulos, 2011; Suva et al.,
2013). Thus, the remainder of this review aims to highlight cur-
rent knowledge of genes epigenetically regulated in cancer that are
also involved in pathways critical for OV therapy, namely the IFN-
mediated antiviral response and antigen presentation (Table 1),
and how this contributes to tumor heterogeneity (Figure 1).

THE ROLE OF EPIGENETICS IN HOST SUSCEPTIBILITY TO
VIRAL INFECTION
Epigenetic regulation of innate and adaptive immune processes is
emerging as a key determinant of susceptibility to viral infection.
Several reports suggest that cell type-specific epigenetic regulation
of antiviral ISGs leads to differences in permissibility to virus infec-
tions in both normal and tumor cells (Naka et al., 2006; Nguyen
et al., 2008; Fang et al., 2012; Chen et al., 2013; Cho et al., 2013).
Recently, histone H3K9 di-methylation, a repressive heterochro-
matin mark, was found to be elevated within IFN genes and ISGs
in non-professional IFN-producing cells (e.g., fibroblasts) as com-
pared to professional IFN-producing plasmacytoid dendritic cells
(pDCs). Interestingly, inhibiting the KMT G9a by both genetic
and pharmacological means led to increased IFN production and
responsiveness in fibroblasts. In line with this, G9a-ablated fibrob-
lasts were also rendered more resistant to infection by viruses (Fang
et al., 2012; Figure 1).

Another recent study in mice harboring the murine viral sus-
ceptibility locus Tmevp3 revealed the intriguing role of NeST, a long
non-coding RNA (lncRNA) adjacent to the IFN-γ locus in both
mice and humans (Vigneau et al., 2001). NeST was found to func-
tion as an epigenetically driven enhancer element (Gomez et al.,
2013) leading to increased IFN-γ production in mouse CD8+ T
cells by directly interacting with the H3K4 histone methyltrans-
ferase complex and increasing H3K4 trimethylation, an activating
mark. This novel epigenetic modification culminated in height-
ened susceptibility to persistent viral infection in mice (Gomez
et al., 2013; Figure 1). Although the role of NeST in human
epigenetic regulation is currently unknown, it is likely lncR-
NAs contribute to epigenetic regulation and manifestation of cell
phenotypes including permissiveness to virus infection and cancer.

CANCER EPIGENETICS IMPACT THE REGULATION OF
ANTIVIRAL RESPONSE GENES
As previously discussed, the majority (but not all) of cancer cells
are dysfunctional in their ability to produce and/or respond to
IFN (Dunn et al., 2006). While crosstalk between oncogenic sig-
nals and the antiviral response pathways have been shown to play
a role (Farassati et al., 2001; Shmulevitz et al., 2005); epigenetic
events are also likely contributors to this phenotype. One indica-
tion of this comes from a series of studies on cells derived from
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Table 1 | Epigenetic control: implications in cancer and OV therapy.

Genetic target Cellular function Epigenetic

modification

Cell type Reference

ISGs (IFI27, 9–27,

LMP2, LMP7, Viperin,

IFI44, IFIT2, ISG56 )

Antiviral response DNA hypermethylation Huh-7 cells (Human

hepatoma)

Naka et al. (2006)

STAT1, ISGs (IFI27,

IRG1, Viperin, Cxcl10,

ISG15, IFI44)

Antiviral response,

anti-tumor response,

antigen presentation

Histone deacetylation Human cortical neurons Cho et al. (2013)

CREB3LI, MX1 Antiviral response DNA hypermethylation Human hepatoma Huh-7

cells

Chen et al. (2013)

IFN-β, ISGs (MX1, IFIT1,

among many)

Antiviral response H3K9 dimethylation Mouse embryonic

fibroblasts, mouse

splenic dendritic cells

Fang et al. (2012)

IFN-γ Antiviral response,

anti-tumor response

H3K4 trimethylation Mouse CD4+/CD8+ T

cells

Gomez et al. (2013)

IRF7, IFN regulated genes IFN-β induction, antiviral

response

DNA hypermethylation Li-Fraumeni immortalized

cells

Fridman et al. (2006)

IRF7, IFITM1, OAS1, OAS2,

STAT1, MX1, TIP30, IL-8,

TRAIL, HLA-F, HLA class I

locus C heavy chain,

among others

IFN-α/β induction,

antiviral response,

anti-tumor response,

antigen presentation

DNA hypermethylation Li-Fraumeni immortalized

cells

Kulaeva et al. (2003)

IRF7 IFN-α/β induction DNA hypermethylation Li-Fraumeni immortalized

cells

Li et al. (2008)

IRF8 IFN signaling,

differentiation, apoptosis,

tumor suppression

DNA hypermethylation Nasopharyngeal,

esophageal, breast, and

cervical primary

carcinomas

Lee et al. (2008)

IRF4, IRF5, IRF8 IFN signaling,

differentiation, apoptosis

signaling, tumor

suppression

DNA hypermethylation Gastric carcinoma Yamashita et al. (2010)

STAT1, STAT2, and STAT3 Antiviral response,

antigen presentation,

anti-tumor response

DNA hypermethylation Colon carcinoma Karpf et al. (1999)

JAK1 kinase Antiviral response,

antigen presentation,

anti-tumor response

DNA hypermethylation,

histone deacetylation

Prostate

adenocarcinoma

Dunn et al. (2005)

Apo2L/TRAIL receptor 1

(DR4), RASSFIA, XAF1,

TRAIL

TRAIL-mediated

apoptosis

DNA hypermethylation Melanoma cell lines,

renal carcinoma,

experimentally

transformed human cell

lines

Reu et al. (2006a,b), Bae

et al. (2008), Lund et al.

(2011)

unknown TRAIL-mediated

apoptosis

Histone deacetylation Medulloblastoma Hacker et al. (2009)

(Continued)
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Table 1 | Continued

Genetic target Cellular function Epigenetic

modification

Cell type Reference

IFITM1 Antiviral response DNA hypermethylation Gastric carcinoma Lee et al. (2012)

ISGs (Global regulation) Antiviral response,

Anti-tumor response

Histone deacetylation U2OS (osteosarcoma),

HeLa (cervical

carcinoma)

Chang et al. (2004)

ISGs under ISRE control Antiviral response,

Anti-tumor response

Histone deacetylation Human foreskin

fibroblasts

Sakamoto et al. (2004)

IFN-β, FGF2, VEGFC,

CASP1, CASP9, ISGs

(OAS2, MyD88, IFIT1,

ISG15, TGFB1, IRF7, IL-8,

among others)

Antiviral response,

Angiogenesis, Apoptosis

Histone deacetylation Human fetal microglia,

astrocytes

Suh et al. (2010)

STAT-1 dependent genes,

ISGs

Antiviral response,

apoptosis, anti-tumor

response

Histone deacetylation Colorectal carcinoma

cells; L929 cells (mouse

fibroblasts)

Génin et al. (2003),

Klampfer et al. (2004)

2′–5′ OAS, ISG54, IFITM3,

IP-10

Antiviral response Histone deacetylation 2fTGH (sarcoma) cells Nusinzon and Horvath

(2003)

CIITA Antigen presentation Histone deacetylation Mouse plasmacytoma

cells; squamous cell

carcinoma;

rhabdomyosarcomas

Kanaseki et al. (2003),

Chou (2005), Londhe

et al. (2012)

unknown Antigen presentation Histone deacetylation Mouse plasmacytomas Khan et al. (2004)

CIITA Antigen presentation H3K27 trimethylation Uveal melanoma cells,

breast cancer cells

Holling et al. (2007), Truax

et al. (2012)

CIITA Antigen presentation DNA hypermethylation Head and neck cancer

cells, choriocarcinoma

cells, uveal melanoma,

colorectal and gastric

carcinomas

Morris et al. (2000),

Satoh et al. (2004),

Radosevich et al. (2007),

Meissner et al. (2008)

CIITA Antigen presentation Histone deacetylation,

DNA hypermethylation

Myeloid leukemia Morimoto et al. (2004)

TAP-1 Antigen presentation Histone H3 acetylation Carcinomas Setiadi et al. (2007)

Numerous reports have cited instances of epigenetic modulation affecting permissibility to virus infection, many of which occur in tumor cells. Here we present a
summary of these reports, listing the genetic target and its cellular function, the epigenetic modification, and the cell type involved. IFN, interferon; ISG, interferon
stimulated gene; IFI, IFN alpha inducible protein; LMP, low molecular weight polypeptide; STAT, signal transducer and activator of transcription; CXCL1, C-X-C motif
ligand 1; CREB3L1, cAMP responsive element binding protein 3 like-1; MX1, myxovirus resistance 1; IFIT1, interferon-induced protein with tetratricopeptide repeats
1; IRF, IFN regulatory factor; OAS, 2′–5′ oligoadenylate synthetase; TIP30, TAT-interacting protein 30; IL, interleukin; TRAIL, tumor necrosis factor- related apoptosis-
inducing ligand; HLA, human leukocyte antigen; JAK1, janus kinase 1; DR4, Apo2/TRAIL receptor 4; XAF1, x-linked inhibitor of apoptosis-associated factor 1; ISRE,
IFN sensitive response element; FGF2, fibroblast growth factor 2; VEGFC, vascular endothelial growth factor C; CASP, caspase; TGFB1, transforming growth factor
beta 1; CIITA, Class II MHC transactivator; TAP-1, transporter 1, ATP-binding cassette, sub-family B.

cancer-prone Li-Fraumeni syndrome patients. Cells from these
patients spontaneously immortalize when serially passaged in tis-
sue culture due to mutations in the tumor suppressor p53, however
transformation is inhibited upon treatment with 5-AZA (Kulaeva
et al., 2003; Fridman et al., 2006). DNA methylation profiling of
these immortalized cells revealed hypermethylation at the pro-
moters of numerous genes involved in the type I IFN pathway,
including IRF7 (Kulaeva et al., 2003; Fridman et al., 2006; Li et al.,

2008). Interestingly, these immortalized Li-Fraumeni patient-
derived cells were inherently more sensitive to VSV infection
(Fridman et al., 2006; Figure 1).

Indeed, epigenetic repression of IFN and associated genes cor-
relates with IFN insensitivity in many cancers. IRFs 4, 5, 7, and
8 are the target of DNA methylation, leading to dysfunctional
responsiveness to type I and II IFNs in gastric cancer (Yamashita
et al., 2010), while IRF8 is silenced by the same mechanism in
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FIGURE 1 | Impact of cancer epigenetics on oncolytic virotherapy.

The integration of repressive epigenetic marks such as DNA CpG methylation
(Me, circle flags) and histone H3K9 methylation (Me, square flags), and
activating epigenetic marks such as histone H3K4 methylation and histone
H3K27 acetylation (Ac, square flags) lead to higher-order nucleosome
packaging and repression (red flags) or open chromatin and gene expression
(green flags). In cancer cells, dysregulation of epigenetic processes leads to

various possible epigenetic states with respect to genes involved in the
antiviral response (e.g., type I IFN, interferon stimulated genes or ISGs) as
well as those involved in antigen presentation (e.g., MHC I/II expression,
represented by a semi-circle at the end of a stick). This ultimately leads to a
variety of cancer cell phenotypes (A–D) and subsequently, a variety of
potential therapeutic responses to oncolytic viruses (OVs, represented by
spiked green circles).

several carcinomas (Lee et al., 2008). Similarly, IFN responsiveness
was found to be suppressed in colon carcinoma cells due to DNA
methylation at STAT1, STAT2, and STAT3, which can be restored
following 5-AZA treatment (Karpf et al.,1999; Figure 1). Along the
same signaling axis, epigenetic silencing of JAK1 in prostate ade-
nocarcinoma cells was associated with unresponsiveness to both
type I and type II IFNs (Dunn et al., 2005).

IFN-induced apoptosis is mediated by ISGs including
Apo2L/TRAIL, which are also often dysfunctional in cancers (Reu
et al., 2006b; Borden, 2007; Bae et al., 2008; Burton et al., 2013).
Genes involved in Apo2L/TRAIL signaling, including TRAIL,
the TRAIL receptor DR4, RASSF1A, and XAF1 are epigeneti-
cally silenced in melanomas (Reu et al., 2006a,b; Bae et al., 2008),
leukemia (Soncini et al., 2013), renal carcinoma (Reu et al., 2006a)
and experimentally transformed cells (Lund et al., 2011). Inter-
estingly, 5-AZA treatment can restore TRAIL-mediated apoptosis
induced by type I and II IFN (Reu et al., 2006a,b; Bae et al., 2008;
Lund et al., 2011; Soncini et al., 2013; Figure 1). However, this cell
death pathway is likely also epigenetically silenced through histone

PTMs given that in medulloblastoma, IFN-γ could induce apop-
tosis via TRAIL only following treatment with the HDAC inhibitor
valproic acid (Hacker et al., 2009).

Overall, these studies highlight multiple epigenetic mechanisms
that transcriptionally repress IFN-associated genes, culminating
in dysfunctional and non-responsive IFN signaling across various
cancer subtypes. However, in some instances alterations to epige-
netic modifications in cancer lead to the up-regulation of antiviral
factors. In both gastric tumors and gliomas, overexpression of the
ISG IFITM1 promotes cancer cell migration and invasion, and its
elevated expression is linked to reduced CpG methylation levels
(Yu et al., 2011; Lee et al., 2012). Alongside its oncogenic proper-
ties, IFITM1 has antiviral properties, through its ability to inhibit
viral membrane fusion (Li et al., 2013; Figure 1).

It is also notable that while most cancers display IFN pathway
defects, approximately a third of cancer cells are fully functional
in their ability to produce and respond to IFN (Stojdl et al.,
2003; Norman and Lee, 2000). Importantly, several studies have
shown that HDAC inhibition using a variety of chemical inhibitors
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modulate IFN-induced expression of ISGs, type I IFN, and TLR3/4
(Génin et al., 2003; Nusinzon and Horvath, 2003; Chang et al.,
2004; Klampfer et al., 2004; Sakamoto et al., 2004; Suh et al., 2010),
which leads to increased OV activity in resistant cells (Nguyen
et al., 2008). This further highlights the key role of epigenetic
regulation in the generation of an antiviral response and sug-
gests that it may be possible to improve OV efficacy in resistant
tumors by manipulating the cancer epigenome as will be discussed
shortly.

CANCER CELLS EPIGENETICALLY REGULATE GENES
INVOLVED IN ANTIGEN PRESENTATION
In addition to inactivating the antiviral response to escape anti-
proliferative/pro-death signals, tumors must also evade immune
recognition and clearance. To this end, many tumor types epi-
genetically suppress CIITA expression by mechanisms including
histone deacetylation/methylation and DNA promoter methyla-
tion, resulting in suppressed IFN-γ mediated MHC-I and MHC-II
gene expression and dysfunctional antigen presentation (Morris
et al., 2000; Kanaseki et al., 2003; Morimoto et al., 2004; Satoh
et al., 2004; Chou, 2005; Holling et al., 2007; Radosevich et al.,
2007; Meissner et al., 2008; Londhe et al., 2012; Truax et al., 2012;
Figure 1). Interestingly, treatment of cancer cells with HDAC
inhibitors can promote antigen presentation and ultimately help to
induce anti-tumor immunity (Khan et al., 2004; Chou, 2005). For
example, trichostatin A (TSA)-treated irradiated B16 melanoma
cells administered prophylactically as a cancer vaccine are signifi-
cantly more effective then control irradiated B16 cells at protecting
from a subsequent challenge with live B16 tumor cells (Khan
et al., 2007). Cancer immune evasion can also be mediated by
dampened expression of the transporter associated with anti-
gen processing 1 (TAP1), a key factor for antigen presentation
by MHC molecules (Johnsen et al., 1999). In carcinoma cells,
decreased TAP1 expression was attributed to reduced levels of
histone H3 acetylation at the TAP-1 promoter (Setiadi et al., 2007;
Figure 1).

In addition to these direct epigenetic effects on components of
the antigenic response within cancer cells, the tumor microen-
vironment has also been shown to epigenetically drive tumor
infiltrating CD4+ T cells to tolerance. In colon cancer, infiltrating
CD4+ lymphocytes displayed high levels of DNA methylation at
the IFN-γ promoter, and consequently required treatment with
5-AZA to enable tumor antigen-stimulated IFN-γ production
(Janson et al., 2008; Figure 1). Overall, these studies highlight the
role of epigenetic control in conferring “stealth” status to tumor
cells such that they may evade the immune surveillance.

HDAC INHIBITORS CAN ALTER SUSCEPTIBILITY TO
ONCOLYTIC VIRUSES
As alluded to earlier, defects in the IFN pathway are common in
many malignancies but a significant proportion of tumors retain
an active antiviral response (Stojdl et al., 2003; Dunn et al., 2006).
Overcoming this antiviral response has been identified as a key bar-
rier to the success of OV therapy and is the focus of many research
groups including our own (Parato et al., 2005; Chiocca, 2008;
Diallo et al., 2010; Liikanen et al., 2011; Russell et al., 2012). To
overcome this barrier, many groups have looked at the possibility

of using HDAC inhibitors in combination with OV therapy due to
their repressive effects on the IFN-mediated antiviral response.

In one of the earliest reports, the anti-tumor effect of oncolytic
adenovirus (OBP-301) in human lung cancer cells was found to
synergize with FR901228 (Romidepsin), a class I HDAC inhibitor
(Watanabe et al., 2006). However, in this report, increased activ-
ity was attributed to the upregulation of coxsackie adenovirus
receptor (CAR) expression in cancer cells as opposed to direct
effects on the antiviral response. Intriguingly, valproic acid, a
class I/II HDAC inhibitor was found by another group in par-
allel to inhibit oncolytic adenovirus through the up-regulation
of p21 (WAF1/CIP1; Hoti et al., 2006). Subsequently, TSA and
valproic acid, two pan-HDAC inhibitors were found to enhance
HSV oncolysis in squamous cell carcinoma and glioma cells
(Otsuki et al., 2008; Katsura et al., 2009). Around the same
time, Nguyen et al. (2008) showed that several HDIs could syn-
ergize with the oncolytic VSV-�51, an attenuated oncolytic
VSV-mutant that is incapable of blocking IFN production (Stojdl
et al., 2003). Combination treatment with HDIs resulted in syn-
ergistic cell killing, due to both enhanced induction of cell death
and increased viral output (typically over 100-fold). Enhanced
viral spreading of VV and semliki forest virus (SFV) was also
observed in this study. Subsequent to this, TSA was shown to
be particularly effective for improving VV-based OVs in several
resistant cancer cell lines in vitro and in subcutaneous xenograft
and syngeneic lung metastasis mouse models (MacTavish et al.,
2011). Importantly, the impacts of HDAC inhibitors on OV
spread and efficacy remain restricted to tumors and not nor-
mal cells, presumably because cancer cells exhibit a number of
additional aberrations, such as increased metabolism, that pro-
mote viral growth independent of the status of the antiviral
response.

HDAC INHIBITORS AS MODULATORS OF ONCOLYTIC
VIRUS-ASSOCIATED ANTI-TUMOR IMMUNITY
While initial experiences with HDAC inhibitors in combina-
tion with OVs exploited mainly the ability of these epigenetic
modifiers to improve the infectivity of resistant tumors, at least
in part by dampening the innate cellular antiviral response,
more recent studies have further exploited the broader immuno-
logical effects of HDAC inhibitors. For example, one report
showed that valproic acid suppresses NK cell activity by blocking
STAT5/T-BET signaling leading to enhanced oncolytic HSV activ-
ity (Alvarez-Breckenridge et al., 2012). Also of note, a recent report
by Bridle et al. (2013) demonstrated significant improvements
in the generation of an anti-tumor immune response elicited
against aggressive melanoma following a heterologous prime-
boost vaccination strategy. After the establishment of intracranial
melanomas, immune-competent mice were primed with a non-
replicating adenovirus expressing the dopachrome tautomerase
(hDCT) melanoma antigen, and then boosted with oncolytic VSV
expressing hDCT. While this prolonged survival, mice were fully
cured (64%) only when VSV-hDCT was administered in combina-
tion with the class I HDAC inhibitor MS-275. Remarkably, MS-275
reduced VSV-specific neutralizing antibodies and memory CD8+
T cells while maintaining prime-induced levels of humoral and cel-
lular immunity against the tumor antigen. Interestingly, MS-275
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also ablated autoimmune vitiligo typically observed following
immunization against the melanocyte-expressed antigen (Bridle
et al., 2013).

USE OF OTHER EPIGENETIC MODULATORS TO IMPROVE
ONCOLYTIC VIROTHERAPY?
Given the epigenetic regulation of the antiviral response and anti-
gen presentation pathways, it is tempting to speculate that other
epigenetic modulators, in addition to HDAC inhibitors, may also
be used to amplify therapeutic responses in combination with
OVs. To this end, a recent study by Okemoto et al. (2012) showed
that 5-AZA treatment could enhance HSV replication when co-
administered with IL-6 (Figure 1). However, given numerous
reports of cancers epigenetically silencing antiviral genes by DNA
methylation (Table 1), we would expect that in general 5-AZA
and other DNA methyltransferase inhibitors should be ineffec-
tive at overcoming the cellular antiviral response. On the other
hand, the advent of new pharmacological inhibitors of KMTs and
KDMs brings forth new possibilities for improving OV efficacy.
For example, given the finding that histone H3K9 dimethyla-
tion observed at ISGs correlates with repression and reduced IFN
response/expression, investigating the potential utility of H3K9-
demetylase inhibitors for enhancing OV spread in resistant tumors
seems warranted. However, it is of critical importance that, as

is observed for HDAC inhibitors, OV-enhancing effects remain
tumor-selective.

CONCLUSION
While genetic mutations are believed to be essential initiators
of carcinogenesis, it is clear that epigenetic deregulation plays
a key role in augmenting and/or maintaining the tumor phe-
notype. OVs are promising biotherapeutics that among others
take advantage of the epigenetic silencing of cellular antiviral
response genes and in many ways unmask cancer antigens as they
destroy cancer cells and promote an inflammatory response. While
additional studies on the impact of epigenetic regulation on the
antiviral and immunological responses are needed, it is already
recognized from studies using HDAC inhibitors that epigenetic
modulators can positively impact OV efficacy. Additional in vitro
and in vivo studies evaluating the effect of other epigenetic mod-
ulators are needed to determine whether these could be used in
combination with promising OV platforms anticipated to reach
the clinic in the near future, to further improve their therapeutic
impact.
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