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The copy number variation (CNV) is a type of genetic variation in the genome. It
is measured based on signal intensity measures and can be assessed repeatedly to
reduce the uncertainty in PCR-based typing. Studies have shown that CNVs may lead
to phenotypic variation and modification of disease expression. Various challenges exist,
however, in the exploration of CNV-disease association. Here we construct latent variables
to infer the discrete CNV values and to estimate the probability of mutations. In addition,
we propose to pool rare variants to increase the statistical power and we conduct family
studies to mitigate the computational burden in determining the composition of CNVs
on each chromosome. To explore in a stochastic sense the association between the
collapsing CNV variants and disease status, we utilize a Bayesian hierarchical model
incorporating the mutation parameters. This model assigns integers in a probabilistic
sense to the quantitatively measured copy numbers, and is able to test simultaneously
the association for all variants of interest in a regression framework. This integrative
model can account for the uncertainty in copy number assignment and differentiate if
the variation was de novo or inherited on the basis of posterior probabilities. For family
studies, this model can accommodate the dependence within family members and among
repeated CNV data. Moreover, the Mendelian rule can be assumed under this model
and yet the genetic variation, including de novo and inherited variation, can still be
included and quantified directly for each individual. Finally, simulation studies show that
this model has high true positive and low false positive rates in the detection of de novo
mutation.

Keywords: Bayesian model, CNV association test, de novo CNV detection, schizophrenia multiplex family, random

mutation parameter

INTRODUCTION
Genetic variation in the human genome can take many forms.
One is the abundance of submicroscopic copy number variations
(CNVs) of DNA segments ranging from a kilobase to megabases
(Iafrate et al., 2004; Sebat et al., 2004; Sharp et al., 2005; Tuzun
et al., 2005). CNVs may exist as deletions, insertions, duplica-
tions, or complex multi-site variants (Redon et al., 2006). They
may cause functional loss by means of dosage-related microdele-
tions, duplications, or altering regulatory regions of genes, and
lead to phenotypic variation and modification of disease status
(Stankiewicz and Lupski, 2002).

Two common biotechnologies, polymerase chain reaction
(PCR) based and array based technique, have been available
for CNV detection. In laboratories of PCR based detection
(Bieche et al., 1998; Ponchel et al., 2003), the values of the
threshold cycle (Ct) of the target and reference gene were

first collected and then the difference �Ct was used to infer
the true copy number. Such technology is designed for tar-
geted regions, and therefore is cost-saving and efficient, making
it the method of choice for performing the repeated assess-
ments for detecting targeted CNVs. The array-based techniques
(Dhami et al., 2005; Sharp et al., 2005) can provide a genome-
wide scan for novel CNVs. Such analysis was based on SNP
intensity measures with log R ratios followed by clustering
analysis for copy number assignment (Dellinger et al., 2010;
Pinto et al., 2011). Although array-based technologies are use-
ful in the discovery of large scale CNVs, the cost is rela-
tively larger and hence may not be efficient in the validation
of targeted CNVs. In addition to these two tools, the high
throughput sequencing has recently become popular. However,
the expense is even higher, as compared with the other two
biotechnologies.
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Because quantitative CNV values from PCR technology are
derived based on signal intensity measures, �Ct, and may be
assessed repeatedly to control typing uncertainty, challenges arise
in the exploration of CNV-disease associations. First, infer-
ence of discrete copy numbers is made based on continuous
measurements repeatedly assessed. Using the nearest integer as
the estimate may ignore systematic errors if they exist. Second,
it is not straightforward to infer the copy number on each homol-
ogous chromosome when the only information collected is the
sum of intensity measures on paired chromosomes. Information
about copy numbers located in the same chromosome may con-
tribute greatly in the investigation of Mendelian inconsistency
and the evaluation of whether the variation is de novo or inher-
ited. A further difficulty relates to the copy number assignment.
Most existing analyses ignore these two types of uncertainty and
treat the inferred integer as a constant value in later statistical tests
of association. Such analyses may inflate the precision and induce
false positives. Other challenges arise if the genetic markers are
rare variants, leading to loss of statistical power.

To resolve these issues, a number of approaches have been sug-
gested. Utilization of latent variables may help to evaluate the
discrete values of CNVs, while incorporation of family infor-
mation may reduce the uncertainty in CNV composition (Kosta
et al., 2007; Wang et al., 2008). In addition, by simultaneously
considering copy number determination and the test of associ-
ation in an integrative way, both types of uncertainty mentioned
above can be incorporated together and simultaneously addressed
(Barnes et al., 2008). Furthermore, when dealing with rare vari-
ants, analysis should focus on multiple variants instead of a single
one (Iyengar and Elston, 2007; International Schizophrenia, 2008;
Stefansson et al., 2008; Walsh et al., 2008), such as by the pooling
of rare variants with equal or unequal weights to achieve a larger
power (Li and Leal, 2008; Madsen and Browning, 2009; King et al.,
2010; Price et al., 2010).

The aim of this manuscript is to provide, via a Bayesian hierar-
chical model, a probabilistic evaluation of the strength of de novo
mutation on rare CNVs as obtained by PCR methods and an
association test in a schizophrenic family study. On the basis of
the model proposed earlier (Kosta et al., 2007), this model incor-
porates mutation parameters, and can be tested for association
in a regression framework. This model is able to accommodate
the uncertainty in CNV determination and assignment, and the
dependency among repeated CNV measurements per individual
and within family members. All rare variants are considered as
a set and the insertion and deletion can occur in offspring for
evaluation of mutation. The design of the statistical model will
be described in the following, with an illustration of a multiplex
schizophrenia family study.

MATERIALS AND METHODS
MULTIPLEX SCHIZOPHRENIA FAMILIES AND CNV
Schizophrenia, with a prevalence of 1% worldwide, is a complex
disease with strong evidence of a genetic component. In Taiwan,
the heritability has been estimated to be between 0.53 and 0.56
(Hwu et al., 2005; Tsai et al., 2010). Recently, CNVs have been
shown to play an important role in Schizophrenia (Tam et al.,
2009). For instance, CNVs in 1q21.1 were found in schizophrenic

individuals with a frequency less than 1% (Stefansson et al., 2008),
and a deletion form of CNV in 1q21.1 was observed to associate
with an increased frequency in Japanese schizophrenia suffer-
ers (Ikeda et al., 2010). These studies of CNVs in schizophrenic
individuals conform to the assumption of “common disease rare
variants” (Pritchard, 2001).

One key strategy to identify the associated rare variants is
to select an “extreme” case group such as families with more
than one affected relative (Bodmer and Bonilla, 2008; Stratton
and Rahman, 2008). Hence we considered the study conducted
by Hwu et al. (2005) who recruited schizophrenia patients and
their first-degree relatives in the national Taiwan Schizophrenia
Linkage Study (TSLS) in 1998–2002. All 2490 individuals from
607 families signed the informed consent forms. Among them,
only 2462 subjects provided DNA specimens, including 1556 sib-
lings (1242 affected, 79.8%) and 906 parents (65 affected, 7.2%).
Their TSLS study was approved by both Internal Review Boards
of Human Studies in the US Department of Health and Human
Services and the National Taiwan University Hospital.

Three targeted CNV markers in two chromosomal regions,
CNV1 and CNV2 on 2q22.1 (HNMT gene) and CNV3 on 1q21.1
(GJA8 gene), were selected for genotyping by PCR-based technol-
ogy for these schizophrenia sufferers and their families. Table 1
lists the information of the three CNV markers. The first region
in 2q22.1 has been reported to show the most significant link-
age with schizophrenia (Lien et al., 2011) and the second region
in 1q21.1 was selected because its association with schizophre-
nia has been reported in other studies (Stefansson et al., 2008).
The magnitudes of the Ct of the target and reference gene were
recorded, respectively. The �Ct was calculated as the difference
between the Ct of the target gene and the Ct of the reference.
This study adopted a two-stage qPCR procedure. In the first
stage, two replicates were administered for each subject. Next,
subjects and family members with an excessively high or low
�Ct value were selected for a second-stage genotyping consist-
ing of an additional 4 replicates. The final predicted quantitative
copy numbers (CN) were determined according to �Ct with soft-
ware CopyCaller v1.0, and the values were considered for later
association analysis.

MODEL FOR MUTATIONS IN MULTIPLE CNVs
Let yij stand for the disease status of the j-th member in the i-th
family with yij = 1 for affected subjects and yij = 0 for normal
subjects. This yij is assumed to follow a Bernoulli distribution
with parameter pij, the probability of disease, which is linked to

Table 1 | Information about the three CNV markers in TSLS.

CNV

marker

Region

(gene)

Assay ID Probe sequence

CNV1 2q22.1
(HNMT )

Hs01075733_cn ATACATTATTGGACTTCCATTTGGA

CNV2 2q22.1
(HNMT )

Hs00435589_cn CTCAACCATTCCACGGAACACCAGT

CNV3 1q21.1
(GJA8)

Hs02290971_cn ATCCCTCCACTCCATTGCTGTCTCC
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Cij, a function of copy number, and other explanatory variables
Xij through a logit function,

logit(pij) = α + β × Cij + γ × Xij + βi.

The magnitude of the parameter β implies the strength of associ-
ation between the probability of disease and the CNV of interest.
Its inference will be based on the posterior distribution. Note that
Cij is a function of the actual copy number, Rij, not the copy
number itself. The functional form can represent any biological
interpretation that researchers aim to study. For instance, it can be
an indicator function for “normal” alleles (when the CNV value
is 2) at the single or multiple regions of interest,

Cij = 1 − I{2}(Rij)

where the integer Rij is the true but unobserved copy number (the
actual CNV value) of the j-th member in the i-th family. The value
of the function Cij becomes 1 if insertion or deletion appears (i.e.,
when Rij is not 2); otherwise Cij is 0 (i.e., Rij is 2). When there are
L multiple regions each with a copy number Rlij (l = 1, . . . , L),
this function can be taken as

Cij = 1 −
L∏

l = 1

I{2}(Rlij)

for a pooling effect. The parameter γ is the regression coefficient
of the covariate X and βi stands for the family-specific random
effect such that all subjects in the same family share a common
baseline risk.

The true copy number, however, is not directly observable and
has to be inferred from the quantitative CNVs. Let R∗

ij (and R∗
lij)

denote the quantitative CNV observation for the latent integer
value Rij (and Rlij), where the index l is reserved for multiple
CNVs and l is suppressed if only one single CNV is investigated. In
the following, we illustrate with one CNV for simplicity of nota-
tion. Here R∗

ij is assumed to follow a normal distribution with

mean Rij and variance σ2, R∗
ij ∼ N(Rij, σ

2), where Rij depends on
paternal and maternal CNV values,

Rij = k
f
ij × min(a

f
i1, a

f
i2) + (1 − k

f
ij) × max(a

f
i1, a

f
i2)

+ km
ij × min(am

i1, am
i2) + (1 − km

ij ) × max(am
i1, am

i2) (1)

+ I{1}(θinsertion,ij) − I{1}(θdeletion,ij)

For each family i, the a
f
ip, p = 1, 2 in (a

f
i1, a

f
i2) are the two CNV

values of the father and (am
i1, am

i2) are those of the mother. These

four values (a
f
i1, a

f
i2, am

i1, am
i2) are all non-negative integers. The

k
f
ij indicates whether the offspring inherits the smaller value of

CNV from the father’s CNV (a
f
i1, a

f
i2), while km

ij indicates maternal

inheritance (am
i1, am

i2). Both k
f
ij and km

ij follow a Bernoulli dis-
tribution with parameter 0.5. In addition, parents CNV values

(a
f
i1, a

f
i2) and (am

i1, am
i2) are family-specific, and therefore the index

i is necessary and the second subscript stands for two CNV values
from paired chromosomes.

The last two indicator functions I{1}(θinsertion,ij) and
I{1}(θdeletion,ij) denote whether insertion or deletion occurs
in the j-th member of the i-th family. The mutation parameter
θinsertion,ij (or θdeletion,ij) for this individual is 1 if the locus is a
copy gain (or copy loss). The inclusion of these two parameters
can resolve Mendelian inconsistency between the CNV values
of parents and of offspring when mutation occurs. These two
parameters are assumed to follow a Bernoulli distribution with a
parameter of small value.

The quantitative CNV observations R∗
ij for parents are also

normally distributed R∗
ij ∼ N(Rij, σ

2), but the mean parameter

Rij is now Rij = a
f
i1 + a

f
i2 for father and Rij = am

i1 + am
i2 for mother

where no mutation is allowed in parents. These a
f
i1, a

f
i2, am

i2, am
i2 all

follow a Poisson distribution.
When replicates were collected, the CNV observations R∗

ij will

be written as R∗
ij,k where k = 1, . . . , nij with nij indicating the

number of replications for this individual. For this TSLS study,
i = 1, . . . , 607 for the 607 families, j = 1, . . . , ni for the size of
each family and nij is either 2 or 6.

The statistical inference is based on posterior samples from
Markov chain Monte Carlo methods (MCMC) obtained with
OpenBUGS (Lunn et al., 2009). The code is detailed in the
supporting information. The chain contains 50,000 iterations
following a burn-in of 50,000 samples to reduce the impact
from initial values and the final posterior samples were derived
at a thinning rate of 10 to reduce the dependence among
iterations.

RESULTS
Among the 607 families, 598 (98.5%) families have at least one
parent’s information available, and 605 families have at least two
children. The distribution is shown in Table 2. In the first stage,
every individual was genotyped twice for these CNV regions. Any
individual whose �Ct was beyond mean ± 3 SD was genotyped
again, along with his/her family members. A total of 31 subjects
from 8 families, 20 subjects from 5 families, and 62 subjects from
15 families were selected for the second-stage genotyping for the
CNV1 and CNV2 in the HNMT gene on 2q22.1 and CNV3 in the
GJA8 gene on 1q21.1, respectively.

Figure 1 demonstrates the variable copy number assign-
ment within a pedigree of four selected families in TSLS. In
Figure 1A, the copy numbers of parents were both assigned 2,
the nearest integer to the average of the quantitative CNV val-
ues. However, the copy numbers of their two children were 3

Table 2 | Numbers of families with different numbers of children and

parents recruited in TSLS (607 families).

No. of parents No. of children

1 2 3 ≥4 Sum

0 1 5 3 0 9

1 0 11 262 18 291

2 1 277 24 5 307

Total 2 293 289 23 607
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FIGURE 1 | (A–D) Contain CNV information for four sample families
selected from TSLS. Solid symbols indicate schizophrenia sufferers. Below
each symbol, the two numbers in parentheses show the replicate CNV
measures. Below the parentheses, there is a column of three numbers.
The first one represents the predicted value, the closest integer to the
average of the replicate CNV measures; the second represents the
posterior mean of the latent copy number under the model without
mutation parameters; and the third number in boldface represents the
posterior mean of the latent copy number under the model with mutation
parameters. (A,B) Contain the CNV1 information, and (C,D) are for CNV2.

and 2, respectively, leading to Mendelian inconsistency. With
the model introduced in the Methods section but contain-
ing no parameter for copy gain θinsertion,ij or for copy loss
θdeletion,ij, the assigned copy number was 2 for the parents and
two children. Although this result satisfies the Mendelian rule,
it does not allow the possibility of genetic variation or muta-
tion to occur in the first child, whose copy number may be 3
instead of 2.

Under the proposed model containing the mutation param-
eters, the posterior mean obtained for the latent copy num-
ber of the first child in Figure 1A was 2.3 and the mode
was 2. In other words, the posterior probability of having a
copy gain mutation for this child was 30%, which is not a
small number and hence implies mutation with some degree
of evidence. Similarly, the first child in Figure 1B, the sec-
ond child in Figure 1C, and the first child in Figure 1D
all provided evidence of mutation. Out of the 307 fami-
lies (restricted to families where both parents’ information
was available), this model detected in these four families
that a copy gain variation has occurred in either CNV1 or
CNV2. Figure 2 demonstrates the discrete posterior distribu-
tions of the latent copy numbers for these four individuals,
respectively.

To examine the association between the individual CNV or the
collapsing variants and schizophrenia, Table 3 lists the posterior
means and standard deviations of the genetic effect under the
single- and multiple-marker model, respectively. Subjects with
CNV1 variant were more likely to have schizophrenia. The pos-
terior probability of such risk was as high as 86.9%. In contrast,
subjects with CNV2 or CNV3 variants were less likely to have
schizophrenia, with posterior probabilities of 20.8 and 35.9%,
respectively. When the three CNV3 were collapsed, the pooling
effect on schizophrenia was large, with odds ratio exp(0.49) =
1.63, and a posterior probability of 79.7%. Figure 3 demonstrates
the densities of β, i.e., the strength of association, under both the
single CNV and the multiple CNV model. Clearly, the model with
CNV1 and the one with collapsing variants show a larger degree of
association.

SIMULATION STUDIES
We conducted simulation studies to evaluate the performance
of this Bayesian hierarchical model in detecting de novo muta-
tion. The CNV markers of the parents were first generated,
with the frequency of insertion in this marker fixed at 0.01.
Next, the copy number of this CNV marker for the off-
spring was generated according to the basic Mendelian rule,
and the de novo mutations were assigned a 0.005 probabil-
ity of copy gain and a 0.005 probability of copy loss. The
observed quantitative CNV values were determined by the gen-
erated copy number plus an error term from a normal dis-
tribution with zero mean and a fixed standard deviation. The
number of families was fixed at 200, where the number of fam-
ily members in each family was fixed at 4. In the different
simulation settings, the standard deviation was fixed at 0.15,
0.2, or 0.25. Under each setting the number of replications
was 1000.

The true positive rates of detecting copy gain and copy
loss under various values of standard deviations are shown in
Figure 4. It is apparent that the posterior probability of correctly
detecting the mutation was very large regardless of the standard
deviation. For those offspring without de novo CNV, the pos-
terior probability of no detection was largely concentrated at 0
(Figure 5). Under different cut-off values for correct detections,
the frequencies of true positive and false positive detection are
shown in Figure 6. For a standard deviation set at 0.15 and 0.2,
the true positive rate of detection for copy gain is about 0.9
and the true positive rate of detection for copy loss is about
0.7–0.8 regardless of the cut-off points. For a standard deviation
set at 0.25, the threshold values need to be small, otherwise such
large laboratory error will dominate the precision of the current
method.

We also conducted a simulation study to compare the per-
formance of the nearest integer method in identifying fam-
ilies with de novo mutations. In other words, if the focus
is no longer in the individual who may carry the muta-
tions but in the family which may contain mutations, then
this may be indicated by the failure to satisfy the Mendelian
rule for the CNV estimates within family members. In this
case, we applied the nearest integer method first to estimate
the true CNVs, and then examine if these estimates satisfy
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FIGURE 2 | (A–D) Are the discrete posterior probabilities of the binary insertion parameter for four selected offspring in four families in Figures 1A–D.

Table 3 | The posterior mean and standard deviation of β, and the

posterior probability of (β > 0) under the three single CNV marker

models and the model with collapsing CNVs.

Mean (se) P (β > 0) (%)

CNV1 1.02 (0.90) 86.9

CNV2 −0.72 (0.98) 20.8

CNV3 −0.23 (0.82) 35.9

Collapsing 3 CNVs 0.49 (0.59) 79.7

the Mendelian rule. If not, then a mutation may occur in at
least a member of this family. However, the information of
the type of mutations, gain or loss, as well as the probabil-
ity of mutations will not be available under the non-parametric
nearest integer method. For the proposed Bayesian model,
as long as one member’s posterior probability of θinsertion,ij

or θdeletion,ij exceeds the threshold value (0.1, 0.3, 0.5, 0.7,
or 0.9), then this family is counted as a family with muta-
tions. Table 4 and Figure 7 list the true positive rates and
false positive rates of detecting de novo mutation families
under various values of standard deviations. It is obvious that
the nearest integer method has the largest true positive rates
(larger than 0.99). The proposed Bayesian model performed
better when the standard deviation was set at 0.15 or 0.20,
with a true positive rate larger than 0.93, and was not robust
for greater genotyping variation. For false positive rates, both
methods had values smaller than 0.01 but the nearest inte-
ger method clearly outperformed with values less than 0.005.
Although the nearest integer method can identify correctly which

FIGURE 3 | The posterior probabilities of β under three single-CNV

models and one multiple-CNV model.

family contains the de novo mutation, it cannot estimate the com-
position of CNVs in the paired chromosomes, and hence cannot
evaluate which member carried the mutation, or the type of
mutations.

DISCUSSION
This Bayesian hierarchical model is designed to simultaneously
detect the de novo CNV by PCR-based technology and to test
for its association with the disease of interest. This integrative
model can account for the uncertainty in copy number assign-
ment and quantify the strength of the evidence that the variation
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FIGURE 4 | True positive rates of detecting copy gain and copy loss

under various standard deviations. (A) For copy gain when SD = 0.15,
(B) for copy loss when SD = 0.15, (C) for copy gain when SD = 0.20, (D)

for copy loss when SD = 0.20, (E) for copy gain when SD = 0.25, and (F)

for copy loss when SD = 0.25.

FIGURE 5 | False positive rates of detecting copy gain and copy loss

under various standard deviations. (A) For copy gain when SD = 0.15,
(B) for copy loss when SD = 0.15, (C) for copy gain when SD = 0.20, (D)

for copy loss when SD = 0.20, (E) for copy gain when SD = 0.25, and (F)

for copy loss when SD = 0.25.

FIGURE 6 | True positive rates of detecting copy gain/loss and

false positive rates of detecting copy gain/loss with different

cut-points for determination of the de novo mutation. (A) For

true positive of copy gain, (B) for true positive of copy loss, (C) for
false positive of copy gain, and (D) for false positive of copy
loss.
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Table 4 | True positive rate and false positive rate of detecting

mutation family under various standard deviation of PCR-based

typing by the Bayesian hierarchical model and the method of nearest

integer.

Threshold Nearest

>0.1 >0.3 >0.5 >0.7 >0.9 integer

TRUE POSITIVE RATE

SD = 0.15 0.9528 0.9518 0.9513 0.9458 0.9453 1.0000

SD = 0.20 0.9593 0.9538 0.9485 0.9390 0.9273 0.9985

SD = 0.25 0.9238 0.8718 0.8155 0.7228 0.6090 0.9940

FALSE POSITIVE RATE

SD = 0.15 0.0089 0.0089 0.0089 0.0089 0.0088 0.0000

SD = 0.20 0.0093 0.0092 0.0091 0.0090 0.0089 0.0019

SD = 0.25 0.0061 0.0055 0.0050 0.0045 0.0039 0.0041

was de novo or inherited, on the basis of posterior probabili-
ties, by allowing the insertion and deletion to occur in offspring.
To test the association between CNVs and disease status, Kosta’s
Bayesian model (Kosta et al., 2007) analyzed transmissions of
variational copy numbers in affected and non-affected siblings,
without the use of parents’ disease information. The Bayesian
model proposed here can take into account the disease infor-
mation of both parents and siblings. For the TSLS study, since
schizophrenia is a complex disease with a diverse spectrum of
severity, the recruited parents may be relatively healthy as com-
pared to those not recruited. Therefore, to avoid ascertainment
bias, here we used CNV data from both parents and children to
assess chromosome inheritance, but used only the disease status
of children in the association test. When ascertainment is not
an issue, all information should be included in the model for
analysis.

In addition to the inference of true copy number assignment,
this Bayesian hierarchical model incorporates the possibility that
insertion and deletion might occur in offspring, so that varia-
tion can be differentiated as de novo or inherited. Our simulation
studies show that this Bayesian model performed with high true
positive and low false positive rates in detection of de novo muta-
tion. In addition, false positives in detecting de novo mutation
with this model were low.

When applying this model, one should be careful about the
prior specification of the mutation rate. The rule of thumb is to
specify the mutation rate following a Bernoulli distribution with
a parameter not larger than the reciprocal of sample size. This
allows for the possibility of de novo CNV occurring and reduces
the chances of a false positive. In addition, it makes possible the
assumption of different effects for de novo CNV and inherited
CNV in this model, when more prior knowledge is available.

Some limitations of this article are noted here. First, as dis-
cussed earlier, this proposed model cannot consider the case
when ascertainment occurs. In other words, when the collection
of information depends on how the subjects were ascertained,
such as an early-onset disease, then this model cannot be
applied directly. Second, if the research interests lie simply in the
CNV assignment (the Rij in the model) and families carrying

FIGURE 7 | (A) True positive rates of detecting de novo mutation families
by the proposed model and the nearest integer method (the three points in
the rightmost column). (B) False positive rates of detecting de novo
mutation families by the proposed model and the nearest integer method
(the three points in the rightmost column).

mutations, and not in the composition of CNVs (i.e., the compo-
nents in the right hand side of Equation (1) in each of the paired
chromosomes, then the existing method of nearest integer already
works well. As illustrated in the last simulation study, the CNV
estimates from the nearest integer method are accurate and thus a
logistic regression without inference on mutation can be applied
based on these CNV estimates. In this case, there would be no
need to employ the proposed Bayesian model. Third, any muta-
tion identified based on this statistical model requires further
validation in laboratory research. The results here do not imply
causality but provide possible targets of association. Fourth, since
no other research considered the probability of mutation in anal-
ysis, we did not compare this proposed approach with other
existing methods in the simulation studies. The comparison we
conducted, however, is with the method of nearest integer to
evaluate the CNV assignment and identify families with muta-
tion events. To the best of our knowledge, the proposed approach
is the first model that simultaneously considers the inference of
copy number assignment, composition of copy numbers inher-
ited from parents, and inclusion of probability of mutation in
each offspring. More studies are needed in this research topic.

This Bayesian model assumes that all rare CNVs share effects
in the same direction, and thus the collapsing approach can be
carried out for the association test. In cases where some of the rare
CNVs are risk factors while others are protective, such a pooling
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approach needs modification. Further research would be worth
pursuing.
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APPENDIX
Supporting Information: OpenBUGS code for the Bayesian model
model
{
for (i in 1:N){ #N: number of families

beta.I[i]∼dnorm(0.0,tau.I) # family-specific random effect
for (j in 1:2){ # specification for father and mother’s risk for each family

CN1[i,j] <- no11[i,j]+no12[i,j] # CNVs from paired chromosomes
no11[i,j] ∼ dpois(1)
no12[i,j] ∼ dpois(1)

disease[i,j] ∼ dbern(p[i,j])
logit(p[i,j])<-alpha+beta∗CNl[i,j]+beta.I[i]

for (k in 1:2) { # two repeated measurements for quantitative CNVs
CNVall[i,j,k] ∼ dnorm (CN1[i,j], tau.CN) # quantitative CNV

}
}

for (j in 3:4){ #2 specification for offspring’s risk
CN1[i,j]<-
equals(tau11[i,j],0)∗min(no11[i,1],no12[i,1])
+equals(tau11[i,j],1)∗max(no11[i,1],no12[i,1])
+equals(tau12[i,j],0)∗min(no11[i,2],no12[i,2])
+equals(tau12[i,j],1)∗max(no11[i,2],no12[i,2])
+equals(plus1[i,j],1)∗1-equals(minus1[i,j],1)∗1

tau11[i,j] ∼ dbern(0.5) # indicator for inherited CNV from father
tau12[i,j] ∼ dbern(0.5) # indicator for inherited CNV from mother
plus1[i,j]∼ dbern # insertion parameter, distribution needs to be specified
minus1[i,j]∼ dbern # deletion parameter, distribution needs to be specified

disease[i,j] ∼ dbern(p[i,j])
logit(p[i,j])<-alpha+beta∗CNl[i,j]+beta.I[i]

for (k in 1:2) {
CNVall[i,j,k] ∼ dnorm (CN1[i,j], tau.CN)
}

}
}
alpha∼ dnorm # regressions coefficient, distribution needs to be specified
beta∼ dnorm # regression coefficient, distribution needs to be specified
tau.CN∼ dgamma # precision in distribution of quantitative CNV, distribution needs to be specified
var.CN<-1/tau.CN
tau.I∼ dgamma # precision in family random effect, distribution needs to be specified
var.I<-1/tau.I }
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