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Cardiovascular diseases are a leading cause of morbidity and mortality inWestern societies.
It is now well established that microRNAs (miRNAs) are determinant regulators in various
medical conditions including cardiovascular diseases. The recent discovery that miRNAs,
while associated with different carriers, can be exported out of the cell, has triggered a
renewed interest to analyze the potential to use extracellular miRNAs as tools for diagnostic
and therapeutic studies. Circulating miRNAs in biological fluids present a technological
advantage compared to current diagnostic tools by virtue of their remarkable stability
and relative ease of detection rendering them ideal tools for non-invasive and rapid
diagnosis. Extracellular miRNAs also represent a novel form of inter-cellular communication
by transferring genetic information from a donor cell to a recipient cell. This review briefly
summarizes recent insights in the origin, function and diagnostic potential of extracellular
miRNAs by focusing on a select number of cardiovascular diseases.
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INTRODUCTION
Cardiovascular disease is a global health problem. Of all 60 million
cases of deaths from all causes worldwide in 2005, an estimated
18 million were due to cardiovascular diseases, three times more
than caused by infectious diseases including HIV/AIDS, tubercu-
losis, and malaria combined (World Health Organization, 2013).
Current clinical diagnostics fail to identify early changes of adverse
cardiac or vascular remodeling, forcing clinicians to wait for these
cardiovascular disorders to become clinically evident before ini-
tiating intervention. Additionally, treatment efficacy cannot be
reliably assessed in individual patients, in part as many interven-
tions are merely treating symptoms (e.g., diuretics). Ideally, one
would not assess intervention success based on survival or hospi-
talization, but build in intermediate end-points that can reliably
assess therapeutic benefit. Thus, for the cardiovascular field, there
is a need to identify intermediate diagnostic measures that monitor
subtle biological changes in the heart or vasculature that directly
reflect and predict adverse changes before they become clinically
apparent.

To achieve the goal of early diagnosis and treatment,
microRNAs (miRNAs) could play an unexpected role. MiRNAs are
a group of non-coding regulatory RNAs of about 22 nucleotides
that control gene expression at the post-transcriptional level (Bar-
tel, 2004) and act as crucial regulators of most physiological
and pathological processes. Indeed, dysregulation of intracellu-
lar miRNA expression has been linked to many clinically relevant
cardiovascular conditions (Small and Olson, 2011; Da Costa Mar-
tins and De Windt, 2012; Gladka et al., 2012; van Empel et al.,

2012). Unexpectedly, the recent discovery of circulating miRNAs
has opened the possibility to study this class of biologically active
agents as modes of inter-cellular information flow as well as
biomarkers of disease. Here, we present an overview of the dif-
ferent carriers associated with extracellular miRNAs that render
them stable in biological fluids, present the current level of under-
standing of their role in cell-to-cell communication and give an
overview about the clinical utility of extracellular miRNAs as
putative biomarkers for cardiovascular disease entities.

VEHICLES THAT STABILIZE EXTRACELLULAR miRNAs
The first accounts of extracellular miRNA biomarkers were
described in serum of lymphoma patients (Lawrie et al., 2008)
and in plasma and serum of prostate cancer patients (Mitchell
et al., 2008). Subsequently, it became evident that miRNAs can
be exported from cells, and found in most extracellular biological
fluids including plasma, serum, saliva, urine, tears, and breast
milk (Chim et al., 2008; Weber et al., 2010; Boon and Vickers,
2013). Extracellular miRNAs are unexpectedly stable, and must
be shielded from degradation, as naked RNA is readily targeted by
exonucleases that are abundantly present in various extracellular
fluids (Kamm and Smith, 1972). Indeed, miRNAs are packaged
in microparticles (exosomes, microvesicles, and apoptotic bodies;
Valadi et al., 2007; Hunter et al., 2008; Zernecke et al., 2009) or by
their association with RNA-binding proteins including Argonaute
2 (Ago2; Arroyo et al., 2011) or lipoprotein complexes such as
high-density lipoprotein (HDL; Kamm and Smith, 1972; Vickers
et al., 2011; Figure 1).
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FIGURE 1 | Schematic representation of cellular release (A) and

inter-cellular communication (B) of miRNAs. (A) In the nucleus,
miRNA genes are mainly transcribed by the RNA polymerase II (Pol II)
into primary miRNAs (pri-miRNAs) and processed to precursor miRNAs
(pre-miRNAs) by the Drosha complex. Pre-miRNAs are exported to the
cytoplasm and cleaved by Dicer to produce a double stranded miRNA
duplex. The duplex is separated and a mature miRNA is incorporated
into the RNA-induced silencing complex (RISC) while the other strand is

likely subject to degradation. Within the RISC complex, miRNAs bind to
their target messenger RNAs (mRNAs) to repress their translation or
induce their degradation. In addition, miRNAs can be exported out of
the cells and transported by various carriers, membrane-derived vesicles
(exosomes, microvesicles, apoptotic bodies), miRNA-binding protein
complexes (RBP), or high density lipoproteins (HDL). (B) Extracellular
miRNAs can be transferred to recipient cells where they alter gene
expression.

The term exosomes was used for the first time in 1981
to describe exfoliated membrane vesicles (Trams et al., 1981).
Exosomes are small (40–120 nm) extracellular microvesicles aris-
ing from multivesicular bodies (MVBs) and released by exocytosis
of these MVBs (Heijnen et al., 1999). They are produced by
a variety of cells including epithelial cells (Zhou et al., 2011),
hematopoietic cells (Laulagnier et al., 2004), endothelial cells
(Halkein et al., 2013), and tumor cells (Mitchell et al., 2008). Exo-
somes have also been identified in most circulating body fluids
such as plasma, urine, milk, saliva, and sperm (Thery et al.,
2006). The interest of exosome biology was increased following
the demonstration that exosomes can serve as carriers for miR-
NAs (Valadi et al., 2007; Gallo et al., 2012). Selection processes
must take place of miRNA uploading into exosomes, as some
miRNAs can be either more or less expressed in donor cells or
in the secreted exosomes (Valadi et al., 2007; Pigati et al., 2010),
suggesting the existence of cellular mechanisms that actively con-
centrate specific miRNA species in exosomes (Valadi et al., 2007;
Pigati et al., 2010).

Microvesicles or shedding microvesicles (SMVs) are another
form of small, defined vesicles (Pant et al., 2012) that are shed
from the plasma membrane by a wide variety of cells (Heij-
nen et al., 1999). They are larger (0.1–1 μm) than exosomes
(Heijnen et al., 1999) and their mechanism of production is also

different. While exosomes are produced by exocytic fusion of
MVBs, microvesicles are produced by budding of vesicles from
the plasma membrane (Mathivanan et al., 2010). The presence of
miRNAs in microvesicles were described for the first time in 2008
(Hunter et al., 2008).

A final vesicular form where miRNAs reside are apoptotic bod-
ies or apoptotic blebs, byproducts of apoptotic cells. Apoptotic or
dying cells release membrane vesicles into the extracellular envi-
ronment via bleeding of the plasma membrane (Mathivanan et al.,
2010). These are larger particles (1–5 μm) with heterogeneous
shape (Gyorgy et al., 2011). In atherosclerotic vascular disease,
endothelial cells can produce apoptotic bodies enriched with miR-
126. These endothelial cell-derived apoptotic bodies trigger, via
miR-126, the production of CXC chemokine CXCL12 in the recip-
ient vascular cells which limits atherosclerosis and confers plaque
stability (Zernecke et al., 2009).

Apart from packaging miRNAs in cell-derived vesicles, a sig-
nificant fraction of extracellular miRNAs is associated with RNA
binding proteins, including nucleophosmin (NPM1), that pro-
vide protection from degradation (Wang et al., 2010b). It was also
demonstrated that many extracellular miRNAs are bound to pro-
teins of the Argonaute family, primarily Ago2, although additional
members such as Ago1, Ago3, and Ago4 might be also associated
with miRNAs (Arroyo et al., 2011; Turchinovich et al., 2011). These

Frontiers in Genetics | Non-Coding RNA November 2013 | Volume 4 | Article 214 | 2

http://www.frontiersin.org/Non-Coding_RNA/
http://www.frontiersin.org/Non-Coding_RNA/archive


“fgene-04-00214” — 2013/11/9 — 19:32 — page 3 — #3

Kinet et al. Extracellular miRNAs in cardiovascular diseases

latter studies are at odds with the findings by Gallo et al. (2012).
This discrepancy may arise from the different protocols used for
microvesicle- and RNA-isolation and subsequent data normaliza-
tion, emphasizing the need for further protocol standardization
(Turchinovich et al., 2012). Finally, it was recently shown that
extracellular miRNAs can be transported by HDL (Vickers et al.,
2011; Norata et al., 2013). Whereas vesicle carriers are composed
of a bilayer of phospholipids, lipoproteins have a single layer of
lipids (Boon and Vickers, 2013).

EXTRACELLULAR miRNAs IN CELL-TO-CELL
COMMUNICATION
Interestingly, extracellular miRNAs also present a newly discovered
potential of intercellular communication. It is now established that
transfer of genetic information in the form of RNA exists (Valadi
et al., 2007) and that this form of transfer between cells is of func-
tional relevance by exerting gene silencing in the recipient cells
(Kosaka et al., 2010; Mittelbrunn et al., 2011; Halkein et al., 2013;
Figure 1). While the biological mechanisms driving the secretion
of miRNAs are still under debate (Kosaka et al., 2010), this newly
discovered manner of genetic exchange between cells opens a new
aspect of how adjacent cells within an organ may communicate
and how a miRNA can affect a cell type or a tissue where it is not
produced. Since the first discovery of the extracellular miRNAs
as intercellular communicators, this field of research is still grow-
ing. Increasing evidence suggests that this form of communication
occurs in various physiological processes such as the regulation
of the immunity (Mittelbrunn et al., 2011) or cellular migration
(Zhang et al., 2010), but also participates in pathological situations
including tumor development (Yang et al., 2011).

For cardiovascular diseases, only three examples of intercel-
lular miRNA communication have been demonstrated. The first
study presented evidence that endothelial cell-derived apoptotic
bodies are generated during atherosclerosis and lead to the induc-
tion of the expression of CXCL12 in recipient endothelial cells.
These endothelial cell-derived apoptotic bodies also induce the
recruitment of progenitor cells in mice with atherosclerosis and
reduce the extent of plaque formation. It was finally demonstrated
that the atheroprotective effects of endothelial apoptotic bodies
are mediated by miR-126 (Zernecke et al., 2009). Additionally,
shear stress as well as the shear-responsive transcription factor
Kruppel-like factor 2 (KLF2) induces the expression of the clus-
ter miR-143/145 in endothelial cells and also its enrichment in
extracellular vesicles produced by the treated-endothelial cells. It
was demonstrated that these endothelial-derived miR-143/145-
containing vesicles are transferred to smooth muscle cells and
induce an atheroprotective phenotype in recipient cells. MiR-
143/145 from endothelial cells repress target genes in recipient
smooth muscle cells such as ELK1 and KFL4 implicated in smooth
muscle cell fate and plasticity (Hergenreider et al., 2012).

More recently, it was demonstrated that the anti-angiogenic
fragment 16K prolactin (PRL) positively regulates the expression
of miR-146a in endothelial cells where it affects mainly the cell sur-
vival and proliferation by down-regulating NRAS gene expression.
Even more, the treatment of endothelial cells with 16K PRL also
increases miR-146a level in the exosomes secreted by the donor
endothelial cells. There is an uptake of the endothelial cell-derived

exosomes by cardiomyocytes and transferred miR-146a reduces
the metabolism of the recipient cells. This model was proposed to
play a central role in the development of peripartum cardiomy-
opathy since blocking miR-146a activity attenuated the disease in
mice (Halkein et al., 2013).

The use of exosomes as therapeutic vehicles should now also be
considered. In the field of cardiovascular diseases, a first study
has presented the potential of cardiomyocyte progenitor cells-
derived exosomes to stimulate endothelial cell migration in the
treatment of myocardial infarction (MI) (Vrijsen et al., 2010).
More recently, in vivo delivery of cardiac progenitor-derived exo-
somes has been shown to inhibit cardiomyocyte apoptosis in a
mouse acute ischemia/reperfusion model (Chen et al., 2013). In
the context of therapeutics, the first report is now also available
demonstrating that cells can be engineering to express specific lig-
ands at the surface of the exosomes and load these carriers with
therapeutic siRNA species (Alvarez-Erviti et al., 2011). Additional
efforts for a better understanding of the mechanisms of extra-
cellular miRNA secretion and the targeting of recipient cells by
microvesicles are expected in the future.

CIRCULATING miRNAs AS BIOMARKERS OF CARDIOVASCULAR
DISEASES
Circulating B-type natriuretic peptide (BNP) and its amino-
terminal fragment, N-terminal pro-brain natriuretic peptide
(NT-proBNP) are clinically established as diagnostic biomark-
ers for heart failure (Januzzi et al., 2006). For patients with
acute myocardial infarction (AMI), circulating levels of cardiac
troponins (cTns) are considered a gold standard for the early
diagnosis of this disease (Jaffe et al., 2000). Unfortunately, ele-
vated levels of cTn concentrations have also been reported in
patients with end-stage renal disease (Collinson et al., 1998), which
indicates that this marker lacks specificity for AMI. For atheroscle-
rosis, many biomarkers have been proposed, such as C-reactive
protein, interleukins IL-1 and IL-6, apolipoproteins apoA-I and
apoB, and fibrinogen (Kampoli et al., 2009). It is not clear whether
these new biomarkers are useful predictors of future cardiovascu-
lar events. Therefore, it remains essential to continue to explore
new biomarkers with even greater discriminatory power for the
various subtypes of heart disease. In recent years, several studies
have reported on the use of miRNAs as circulating biomarkers
for diagnosis or prognosis of various human diseases including
cardiovascular diseases (Salic and De Windt, 2012; Table 1).

CIRCULATING miRNAs IN HEART FAILURE
The first putative miRNA biomarkers in heart failure were dis-
covered in a miRNA array on plasma of 12 healthy controls and
12 heart failure patients (Tijsen et al., 2010). From this array, 16
miRNAs were selected for a second clinical study in 39 healthy
controls and in 50 cases with reports of dyspnea, of whom 30
were diagnosed with heart failure and 20 were diagnosed with
dyspnea attributable to non-heart failure-related causes. In this
study, 6 miRNAs (miR-423-5p, miR-18b-3p, miR-129-5p, miR-
1254, miR-675, and miR-622) were elevated in patients with heart
failure, with miR-423-5p positively correlated with NT-proBNP
levels and most strongly related to the clinical diagnosis of heart
failure. The increase of circulating levels of miR-423-5p could
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Table 1 | Extracellular miRNAs as biomarkers in cardiovascular diseases.

miRNA biomarkers Diseases Source Regulation Correlation Design of study Reference

miR-423-5p HF Plasma Up proBNP 30 HF; 20 non-HF with dyspnea; 39 healthy

subjects

Tijsen et al. (2010)

miR-18b-3p

miR-129-5p

miR-1254

miR-675

miR-622

miR-126 HF Plasma Down BNP 10 HF; 17 asymptomatic control Fukushima et al. (2011)

miR-208b AMI Plasma Up 32 AMI; 36 non-AMI with AP Corsten et al. (2010)

miR-499

miR-1 AMI Plasma Up QRS widening 93 AMI; 66 healthy subjects Ai et al. (2010)

miR-1 AMI Serum Up CK-MB 31 AMI; 20 healthy subjects Chen et al. (2013)

miR-133a STEMI Serum Up 216 STEMI Eitel et al. (2012)

miR-499 AMI Plasma Up 14 AMI; 15 congestive HF; 10 healthy

subjects

Adachi et al. (2010)

miR-1 AMI Plasma Up 33 AMI; 33 non-AMI with other cardiac

diseases; 10 healthy subjects

Wang et al. (2010a)

miR-133a

miR-499

miR-208a

miR-30a AMI Plasma Up 18 AMI; 30 healthy subjects Long et al. (2012)

miR-195

let-7b

miR-126 CAD Plasma Down 67 CAD; 31 healthy subjects Fichtlscherer et al. (2010)

miR-17/92 cluster

miR-155

miR-145

miR-135a CAD PBMC Up 25 unstable AP; 25 stable AP; 20 healthy

subjects

Hoekstra et al. (2010)

miR-147 Down

HF, heart Failure; AM, acute myocardial infarction; STEMI, ST-elevation myocardial infarction; proBNP, pro brain natriuretic peptide; BNP, B-type natriuretic peptide;
CK-MB, creatine kinase isoenzyme MB; CAD, coronary arterial disease; PBMC, peripheral blood mononuclear cell; AP, angina pectoris.

be confirmed by several other studies including hypertension-
induced heart failure patients (Dickinson et al., 2013), systolic
heart failure patients (Goren et al., 2012) and patients with dilated
cardiomyopathy (Fan et al., 2013). In contrast, in patients with a
reduced systemic right ventricular function and decreased ejection
fraction, circulating miR-423-5p concentrations were not elevated,
suggesting that miR-423-5p discriminates between sub-types of
heart failure (Tutarel et al., 2011).

In a different study, the expression of 3 miRNAs in plasma of 10
heart failure patients and 17 asymptomatic control subjects was
analyzed, demonstrating that the endothelium-derived miR-126
was negatively correlated with age, NT-proBNP, and New York
Heart Association classification. Decreased miRNA-126 was also
found in atherosclerotic coronary artery disease (CAD) and in
patients with type 2 diabetes mellitus and may reflect the condition
of vascular endothelial cells in heart failure patients (Fukushima
et al., 2011).

Also plasma levels of several other miRNAs, including the
heart-muscle enriched miRNAs miR-1, -133a, -208b, and -499;
fibrosis-associated miRNAs miR-21 and miR-29b; and leukocyte-
associated miRNAs miR-146, -155, and -223 were tested as
candidate biomarkers (Corsten et al., 2010). This study demon-
strated that in humans, diverse conditions of myocardial damage
are associated with striking perturbations of plasma levels of
cardiac specific miR-208b and miR-499 in acute heart failure
(minimal), viral myocarditis (marked), and AMI (extensive). An
intriguing observation was the correlation of miR-133a plasma
levels with NT-proBNP in asymptomatic patients with dias-
tolic dysfunction, which was not observed in acute heart failure
patients.

CIRCULATING miRNAs IN MYOCARDIAL INFARCTION
Plasma levels of miR-208b and miR-499 both have been highly
associated with AMI. Also, it was demonstrated that measuring
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miR-1 in plasma is a good approach for blood-based detection
of human AMI (Ai et al., 2010). Circulating miR-1 is significantly
increased in the blood of AMI patients compared to non-AMI sub-
jects and were positively correlated with serum CK-MB (creatine
kinase-MB; Cheng et al., 2010). In a rat model of AMI induced
by coronary ligation, serum miR-1 is increased early after AMI
with a peak at 6 h, in which an increase in miR-1 of over 200-
fold was demonstrated. Serum miR-1 returned to baseline levels
at 3 days after AMI (Cheng et al., 2010). Also, increased miR-1 is
well correlated with abnormal QRS complex widening (a reflec-
tion of abnormal electrical rhythm) in AMI, and after treatment,
plasma miR-1 recovered to normal values (Ai et al., 2010). These
data indicate that circulating miR-1 could serve as a biomarker for
diagnosis of AMI and associated ischemic arrhythmias.

Next, an array analysis of miRNA production in various human
tissues was reported, demonstrating that miR-499 was produced
almost exclusively in the heart. To determine whether this miRNA
could serve as a biomarker for cardiovascular diseases, the authors
assessed the plasma concentrations of miR-499 in 14 individuals
with acute coronary syndromes, 15 individuals with congestive
heart failure, and 10 individuals without cardiovascular diseases.
Plasma miR-499 concentrations were elevated in all AMI patients,
but were below the detection limit in the other patient groups
(Adachi et al., 2010).

Another miRNA microarray study demonstrated that miR-1,
miR-133a, miR-499, and miR-208a were elevated in plasma from
33 AMI patients compared to as well as healthy subjects, patients
with non-AMI coronary heart disease, or patients with other car-
diovascular diseases. Notably, within 4 h of the onset of symptoms
of the disease, miR-208a was easily detectable in AMI patients, but
remained undetectable in non-AMI patients (Wang et al., 2010a).
Also, circulating miR-133a levels were increased in 216 patients
with ST-elevation myocardial infarction (STEMI), and associated
with decreased myocardial salvage, larger infarcts, and more pro-
nounced reperfusion injury (Eitel et al., 2012). In contrast, it has
been reported that miR-133a levels were not associated with left
ventricular remodeling or function after myocardial infarction,
nor with BNP, excluding miR-133a as a useful biomarker for left
ventricular remodeling after MI (Bauters et al., 2013).

Furthermore, it was reported that miR-30a, miR-195, and let-
7b could be used as potential biomarkers for AMI (Long et al.,
2012). The authors analyzed plasma samples from 18 patients
with AMI and 30 healthy adults, and demonstrated that all 3 miR-
NAs reached their expression peak 8 h after the onset of AMI and
these miRNAs showed significant diagnostic value for AMI using
receiver operating characteristic curve analyses.

CIRCULATING miRNAs IN ATHEROSCLEROSIS
Coronary artery disease is characterized by plaque formation
along the inner wall of coronary arteries, which narrows the
arterial wall and gradually restricts blood flow to the heart
(Libby et al., 2011). In one study, circulating miRNA profiles

in plasma from eight CAD patients and eight healthy sub-
jects were assessed by a microarray approach. Validation of the
obtained results in a larger patient cohort by qPCR revealed that
circulating endothelial-associated miR-126, the miR-17/92 clus-
ter, inflammation-associated miR-155 and smooth muscle cell-
associated miR-145 were significantly reduced in CAD patients
(Fichtlscherer et al., 2010).

Another study using real-time PCR-based profiling showed
that among 157 miRNAs expressed in peripheral blood mononu-
clear cells of CAD patients, miR-135a and miR-147 were fivefold
overexpressed and fourfold decreased, respectively. This study
also indicated the possibility to discern unstable pectoris angina
patients from stable patients due to their relatively high expression
of circulating miR-134, miR-198, and miR-370, opening the possi-
bility of a miRNA signature for patients at risk for acute coronary
syndromes (Hoekstra et al., 2010).

The potential of circulating miRNAs as biomarkers for car-
diovascular diseases is promising. Indeed extracellular miRNAs
present many properties of ideal biomarkers, including their detec-
tion in many biological fluids, their stability in RNAse-rich body
fluids, and their tissue-specific expression patterns. More efforts
on much larger cohorts of patients with various cardiovascu-
lar diseases are needed to reach sub-stratification of patients.
Another appealing outlook of extending available biomarkers is
the possibility to perform network analyses and multi-marker
biomarker panels for individual patients, allowing increased sen-
sitivity in diagnostics or prognostics than can be expected from
the assessment of a single biomarker (Eurlings et al., 2012), as
evidenced by the analysis of distinct clusters of miRNAs asso-
ciated with myocardial infarction in a large study of patients
(Zampetaki et al., 2012). Next-generation sequencing is an oppor-
tunity for miRNA profiling efforts and for further discovery of
new miRNAs in a determined biological or pathological situa-
tion (Lee et al., 2010; Lawless et al., 2013). Nevertheless, there
are still technical limitations in studying extracellular miRNAs
as biomarkers. No consensus has been obtained in terms of nor-
malization methods nor the use of equal amounts of serum or
plasma, or the use of spike-in controls or the use of housekeeping
miRNAs yield wide-spread consensus (Kroh et al., 2010; Qi et al.,
2012).
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