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In genetic association studies, unaccounted population stratification can cause spurious
associations in a discovery process of identifying disease-associated genetic markers.
In such a situation, prior information is often available for some subjects’ population
identities. To leverage the additional information, we propose a semi-supervised clustering
approach for detecting population stratification. This approach maintains the advantages
of spectral clustering, while is integrated with the additional identity information, leading
to sharper clustering performance. To demonstrate utility of our approach, we analyze
a whole-genome sequencing dataset from the 1000 Genomes Project, consisting of
the genotypes of 607 individuals sampled from three continental groups involving 10
subpopulations. This is compared against a semi-supervised spectral clustering method,
in addition to a spectral clustering method, with the known subpopulation information by
the Rand index and an adjusted Rand (ARand) index. The numerical results suggest that
the proposed method outperforms its competitors in detecting population stratification.
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1. INTRODUCTION
With the rapid advance of high-throughput technologies,
genome-wide association studies (GWAS) and whole-exome
or whole-genome sequencing studies have become popular
(International HapMap Consortium, 2003). However, in a
population-based association study, presence of undetected pop-
ulation stratification, also referred to as the population structure,
becomes a potential issue leading to false discovery (Marchini
et al., 2004). Population stratification occurs in presence of a sys-
tematic difference in allele frequencies between cases and controls
due to different ancestries. One direct consequence of ignoring
population stratification is inflated false positives and false neg-
atives (Lander and Schork, 1994; Hirschhorn and Daly, 2005;
Thomas et al., 2005).

Clustering has been an effective means to detect and describe
known or cryptic population stratification (Paschou et al., 2010).
For detecting or adjusting for population stratification, three
major methods have been proposed, including genomic control
(Devlin and Roeder, 1999; Devlin et al., 2004), structured asso-
ciation mapping and other clustering methods (Pritchard et al.,
2000; Satten et al., 2001), and principal component analysis [PCA,
(Patterson et al., 2006; Zhang et al., 2012)] and spectral methods
(Lee et al., 2009; Zhang et al., 2009). As argued in Lee et al. (2009),
different methods may be applicable in different situations, for
instance, a combination of PCA and a clustering method may
be preferable when the method is applied to preprocess in asso-
ciation studies. Despite progress, issues remain. One important
issue is how to utilize additional prior information to enhance
clustering performance to adjust for population stratification. In
a situation where some subjects’ population identities are known

priori, a semi-supervised approach is more suitable. Towards this
end, we propose two methods to detect population stratification,
that is, semi-supervised clustering methods that are integrated
with PCA and another clustering method, respectively. These
methods are developed to (1) integrate the prior information for
clustering, (2) to avoid that dense clusters are collapsed into a
single group, whereas their sparser counterparts are divided into
more multiple clusters, and (3) utilize the prior information to
separate highly overlapped subpopulations.

For (1), we incorporate prior information through constraints,
as in Grira et al. (2004). The constraints are expressed in terms
of pairwise must-links and cannot-links imposed over a subset of
the subjects with known population identities, where a must-link
connects two subjects from the same subpopulation, whereas a
cannot-link deals with different subpoluations.

For (2), we develop our semi-supervised clustering method
based on a local scale spectral clustering method (Zelnik-manor
and Perona, 2004). In some situations, subpopulations may not
be in a same scale, then we consider a spectral clustering method
involving a local scaling parameter to guard against potential dis-
ruptive influence caused by the different densities of the different
subpoluations.

For (3), we introduce a continuous parameter to adjust simi-
larities between subjects with cannot-links and those without any
cannot-link, in addition to adjusting similarities between must-
link pairs and cannot-link pairs. As indicated in the numerical
results in Section 3.1, many pairs of subjects with cannot-links
in two different subpoluations were assigned into one cluster by
an existing semi-supervised method, which is in contrast to the
proposed semi-supervised spectral clustering method.
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The paper is organized as follows. Section 2 gives a motivat-
ing data example, and introduces the proposed methods. Section
3 presents our analysis of a low-coverage whole-genome sequenc-
ing data, published on the 1000 Genomes Project website. This is
followed by a discussion in Section 4.

2. MATERIALS AND METHODS
2.1. DATA
In this study, we used a low-coverage whole-genome sequenc-
ing dataset to evaluate the performance of our semi-supervised
spectral clustering algorithm. The processed data were down-
loaded from the 1000 Genomes Project (1000 Genomes
Project Consortium 2010) web site http://www.sph.umich.edu
/csg/abecasis/MACH/download/1000G-2010-08.html. The pha-
sed data contain the DNA sequences of n = 607 individuals of
three continental groups: Africans (AFR), Europeans (EUR) and
Asians (ASN); there are 3, 4, and 3 subgroups in the three con-
tinental groups respectively (Table 1) after we removed three
subgroups (2 PUR and 1 MXL) from the downloaded data due
to their small sample sizes.

We used all the p = 7, 459, 664 SNVs appearing in all the three
continental groups on chromosomes 1 to 22. In the 7,456,664
SNVs, there are 343,782 rare variants (RVs, with minor allele
frequencies, MAFs < 1%), 1,189,061 low frequency variants
(LFVs, 1%≤ MAFs < 5%) and 5,926,821 common variants
(CVs, MAFs ≥ 5%). There are 132,742, 525,440 and 1,107,080
monomorphic variants in each of the three continental groups:
AFR, EUR and ASN, respectively, and there are 18,559 vari-
ants that are monomorphic in all the three continental groups.
Furthermore, there are 101,279 variants that are monomorphic
in AFR but polymorphic in EUR, and 67,661 variants that are
monomorphic in AFR but polymorphic in ASN; there are 493,977
variants that are monomorphic in EUR but polymorphic in AFR,
and 133,388 variants that are monomorphic in EUR but polymor-
phic in ASN; there are 1,041,999 variants that are monomorphic
in ASN but polymorphic in AFR, and 715,028 variants that are
monomorphic in ASN but polymorphic in EUR.

Denote the data by an n × p matrix Z, with rows indexing
n individuals, and columns indexing p SNVs. For each SNV, we
chose the minor allele as the reference allele. Let Zij ∈ {0, 1, 2} be
the number of minor alleles for SNV j of individual i. We cen-
tered each column (SNV) to have mean 0; denote the centered

Table 1 | 10 subgroups of 607 individuals.

AFR: YRI LWK ASW

# Samples 78 67 24

label 1 2 3

EUR: GBR FIN CEU TSI

# Samples 43 36 90 92
label 4 5 6 7

ASN: CHS CHB JPT

# Samples 25 68 84
label 8 9 a

data matrix Zc = AZ, where A = I − 1
n 11t is an n × n center-

ing matrix, I denotes the n × n identity matrix and 1 denotes
the length-n vector with each entry equal to 1. Then, we used
PCA for dimension reduction (Menozzi et al., 1978; Cavalli-
Sforza et al., 1994): we computed the n × n sample covariance
matrix H = ZcZt

c , and then used the re-scaled eigenvectors of
H as coordinates for subject i, xi = (

√
λ1u1(i), . . . ,

√
λJuJ(i)),

where λ1 ≥ λ2 ≥ · · · ≥ λJ ≥ 0 are the M largest eigenvalues of H
and uj = (uj(1), . . . , uj(n))t , j ∈ {1, . . . , J}, are the correspond-
ing eigenvectors. Typically, eigenvectors that correspond to large
eigenvalues reveal important ancestry axes.

2.2. SEMI-SUPERVISED SPECTRAL CLUSTERING
Existing semi-supervised clustering methods can be categorized
into two: search-based and similarity-based. The former is a
modified clustering method in that the prior constraints are used
to yield appropriate partitions (Demiriz et al., 1999; Wagstaff
et al., 2001; Basu et al., 2002). The latter is a clustering method
based on a modified similarity metric (Bilenko and Mooney,
2003; Xing et al., 2003; Yang et al., 2008). We think that the
latter may be more efficient, since it embeds prior constraints
only by simply modifying the similarity metric, while the former
may use prior constraints to yield appropriate partitions in each
iteration.

With this in mind, in this paper we developed a semi-
supervised spectral clustering method to infer population struc-
ture. Before proposing this method in detail, we first review some
spectral clustering algorithms, which were developed from the
studies of weighted graph partitioning problems (Shi and Malik,
2000; Meila and Shi, 2001; Ng et al., 2001; Kannan et al., 2004).
The spectral clustering algorithms are similarity-based. A popu-
lar choice for defining the similarity between a pair of subjects
(xi, xj)(i �= j) is letting Wij = exp(−||xi − xj||2/σ2

ij) , where the
scale parameter σij controls the size of local neighborhoods in
the weighted graph. Although a global scale σij = σ is often used,
as mentioned in Zelnik-manor and Perona (2004), using a local
scale parameter, σij = (σiσj)

1/2 with σi, σj > 0, for each pair (i, j)
may obtain better performance, especially when the clusters of the
data have different volumes. Below we review the local scale spec-
tral clustering algorithm proposed by Zelnik-manor and Perona
(2004).

Given a set of n points {x1, . . . , xn} in the J-dimensional
Euclidean space RJ and the neighborhood parameter T, cluster
them into K clusters as follows:

1. Compute alocal scale σi = d(xi, xiT ) for each point xi, where
d(. , .) is the Euclidean distance metric and xiT is the T-th
nearest neighbor of point xi.

2. Form a weight matrix W with its ij-th element Wij =
exp(− d2(xi, xj)

σiσj
) for each i and j ∈ {1, . . . , n} with i �= j and

Wii = 0 for each i ∈ {1, . . . , n}.
3. Define D to be a diagonal matrix with Dii = ∑n

j = 1 Wij

and construct the normalized Laplacian matrix L = I −
D−1/2WD−1/2.

4. Find u1, . . . , uK , the smallest K eigenvectors of L, and let U
be the matrix containing the vectors u1, . . . , uK as columns.
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5. For i = 1, . . . , n and j = 1, . . . , K, let U ′
ij =

Uij/(
∑K

j′ = 1 U2
ij′)

1/2, and then U ′ is a matrix with elements U ′
ij.

6. For i = 1, . . . , n, let yi = (y(1)
i , . . . , y(K)

i )t ∈ RK be the vec-
tor corresponding to the ith row of U ′, and then cluster the
points {y1, . . . , yn} with the K-means algorithm into K clusters
{S1, . . . , SK}.

7. Assign the original point xi to cluster Sj if and only if yi is
assigned to cluster Sj.

Let M denote the must-link matrix and C denote the cannot-link
matrix for clustering n points {x1, . . . , xn}, where Mii = Cii = 0
(i = 1, . . . , n) and for i �= j, Mij = 1 (or Cij = 1) means that
xi, xj are already known to be in the same (or different) clus-
ter(s); Mij = 0 (Cij = 0) means that we do not know whether
xi, xj are in the same cluster. Given the must-link matrix M
and the cannot-link matrix C, Yang et al. (2008) proposed a
semi-supervised algorithm by modifying the second step of the
local scale spectral clustering algorithm above as follows: for
each pair i �= j, if Mij = 1, then let Wij ≡ 1; if Cij = 1, then
let Wij ≡ 0. By letting Wij ≡ 1 for a must-link pair (i, j), the
algorithm forces the pair (i, j) to be clustered into the same
cluster. However, in general, letting Wij ≡ 0 for a cannot-link
pair (i, j) may not force the pair (i, j) to be clustered into two
different clusters. Wij ≡ 0 only means that observations i and
j are far away; if there exists an observation k such that Wik

and Wkj are large enough, i and j may still be clustered into
one cluster. Thus, for embedding cannot-link information into
a spectral clustering algorithm, only letting the weights of all
cannot-link pairs to be zero is not enough. To avoid cluster-
ing a cannot-link pair (i, j) into one cluster, we adjust Wik and
Wkj for each k without any cannot-link information, based on
which we propose a new semi-supervised spectral clustering
algorithm.

Before introducing the algorithm, to make best use of the
semi-supervised information, we may first adjust the must-
link matrix and cannot-link matrix as follows: (1) Adjust the
must-link matrix M such that: for each pair (i, j) (i �= j),
Mij = 1 whenever there exists a k �= i, j such that Mik = 1
and Mkj = 1; (2) Adjust the cannot-link matrix C such that:
for each pair (i, j) (i �= j), Cij = 1 whenever there exists a k �=
i, j such that Mik = 1 and Ckj = 1. After the adjustment, if
there exists any contradictory pair (i, j) (i �= j) with Cij = 1
and Mik = 1, to avoid being misled we will let Cij = 0 and
Mik = 0.

In fact, though there have been much reported success with
using pairwise constraints for clustering, there are two limita-
tions (Davidson and Ravi, 2005; Davidson et al., 2006). First,
if the constraints are poorly specified and then using cannot-
link constraints may make the feasibility problem intractable
(Davidson and Ravi, 2005); second, some constraints may have
adverse effects to semi-supervised clustering (Davidson et al.,
2006). There were some discussions about how to deal with
the limitations, and accordingly some methods were specifically
designed to overcome such limitations. Because the concern of
the limitations is not the focus of this paper, we will not introduce
these methods in detail.

Let VM = ⋃
Mij = 1{i, j} and VC = ⋃

Cij = 1{i, j}. Now we are

ready to show our semi-supervised spectral clustering (SSSC)
algorithm.

Algorithm SSSC Given a set of n points D = {x1, . . . , xn}
in RJ , a must-link matrix M, a cannot-link matrix C, and the
parameters α ∈ {0, 1}, β ≥ 1 and the neighborhood parameter T,
cluster the points into K clusters as follows:

1. Compute the local scale σi = d(xi, xiT ) for each point xi, where
xiT is the T-th neighbor of point xi.

2. Form the weight matrix W :

a. Initially let Wij = exp(− d2(xi,xj)

σiσj
) for i �= j and Wii = 0.

b. For each i and j (i �= j), if Mij = 1, let Wij = 1; and if Cij =
1, let Wij = 0.

c. For each k ∈ V\VC , let ck = arg maxc∈VC (Wkc). Then for
each i ∈ VC with Ccki = 1, let Wik and Wki be replaced by
Wik/β.

d. For each k ∈ V\VM, let mk = arg maxm∈VM(Wkm). If α =
1, then for each j ∈ VM with Mmkj = 1, let Wjk and Wkj be
replaced by Wmkk.

3. Define D to be a diagonal matrix with Dii = ∑
j Wij

and construct the normalized Laplacian matrix L = I −
D−1/2WD−1/2.

4. Find u1, . . . , uK , the first K eigenvectors of L, and let U be the
matrix containing the vectors u1, . . . , uK as columns.

5. For i = 1, . . . , n and j = 1, ..., K, let U ′
ij =

Uij/(
∑K

j′ = 1 U2
ij′)

1/2, and then U ′ is a matrix with elements U ′
ij.

6. For i = 1, . . . , n, let yi = (y(1)
i , . . . y(K)

i )t ∈ RK be the vector
corresponding to the ith row of U ′, and then cluster the
points {y1, . . . , yn} with the K-means algorithm into K clusters
{S1, . . . , SK}.

7. Assign the original point xi to cluster Sj if and only if yi was
assigned to cluster Sj.

Note that in the Step 2.c of our new algorithm above, we believe
that for each k ∈ V\VC and each cannot-link pair (i, j), if xk is
nearer to xi, then it should be much farther away from xj, because
the distance between xi and xj has already been set to the maxi-
mum. Thus, we penalize the similarity between xk and xj by letting
Wjk = Wkj = Wjk/β (β > 1). On the other hand, we set a param-
eter α to determine whether we force the similarities between a
sample k ∈ V\VM and a must-link pair (i, j) to be the same. In
fact, if α = 0 and β = 1, then our algorithm reduces to that of
Yang et al. (2008).

2.3. CHOOSING THE PARAMETERS
We develop a cross-validation procedure to choose the param-
eters for the Algorithm SSSC, modified from a criterion used
in Tibshirani and Walther (2005) for the K-mean clustering. In
addition, we borrow the idea of cluster reproducibility index
(RI) (Shen et al., 2009) to define a new prediction strength. We
summarize the procedure as follows.

Given a data set D and a candidate set of parameters � =
K × A × B × T , where K and T are sets of positive
integers, A = {0, 1}, and B is a set of real numbers equal to
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or larger than 1. Randomly permute the sample index set V =
[N] of D , and then partition the permuted sample index set
into two roughly equal parts. Select one part as the test index
subset Vte for the test data D te = {Xn: n ∈ Vte} and take the
remaining part as the training index subset Vtr for the training
data D tr = {Xn: n ∈ Vtr}. Let Mtr = MVtrVtr , Mte = MVteVte ,
Ctr = CVtrVtr and Cte = CVteVte . For each θ = (K, α, β, T) ∈ �,
apply Algorithm SSSC to divide D tr into K clusters with parame-
ters α, β, T and the must-link matrix Mtr , the cannot-link matrix
Ctr ; apply Algorithm SSSC to divide D te into K clusters with
parameters α, β, T and the must-link matrix Mte, the cannot-
link matrix Cte. Let ltr and lte denote the corresponding clustering
assignments. Divide the test data D te into K clusters under the
guidance of ltr , that is, assign each sample in D te into the closest
cluster of D tr characterized by ltr in the sense of the Euclidean
distance, and then let lte|tr denote the corresponding clustering
assignment. Note that here the distance between a sample and a
cluster is defined as the minimum distance between this sample
and each sample in the cluster. Next, compute the adjusted Rand
index (Hubert and Arabie, 1985) between lte|tr and lte as the pre-
diction strength. Repeat the above steps for a number of times
with different randomly selected permuted samples, and finally

choose θ̂ = (K̂, α̂, β̂, T̂) ∈ � with the highest average prediction
strength.

Note that while using PCA for dimension reduction in Section
2.1, we did not mention how to choose an appropriate number
of PCs. There are many studies about this problem for tradi-
tional PCA, such as Jackson (1991), Jolliffe (2002) and Pedro
et al. (2005). Because in this paper we only focus on the per-
formance of a clustering algorithm, we propose using a special
procedure that is related to the clustering performance. In fact,
we view the number of PCs as a parameter and then decide it in
the above cross-validation procedure. Especially, we first choose
θ̂J ∈ � using the above cross-validation procedure for each J in a
set of candidate numbers of PCs J , and then choose Ĵ ∈ J with
the highest average prediction strength among J as the best fitted
number of PCs.

3. RESULTS
3.1. MAIN RESULTS
We used all the SNVs appeared in all the three continental groups
in chromosomes 1-22 to extract the top t principle components
(PCs). As shown in the left panel of Figure 1, the top 2 PCs could

completely separate the three continental groups. However, some
subgroups could not be completely separated. We used the local
scale spectral clustering algorithm introduced in Section Methods
to cluster the 607 t-dimension vectors into 10 clusters. As shown
in Table 2 and Figure 1, subgroup GBR (‘4’) cannot be completely
distinguished from CEU (‘6’); CHS (‘8’) cannot be completely
distinguished from CHB (‘9’).

The spectral clustering algorithm used above is an unsuper-
vised clustering algorithm without using any additional clustering
information. However, in many cases, partial knowledge is avail-
able concerning pairwise (must-link or cannot-link) constraints
among a subset of subjects. Thus, we propose a semi-supervised
local scale spectral clustering algorithm to make use of the pre-
known constraints. We show the performance of our algorithm
by varying the number of available must-link or cannot-link
constraints. We let SSR denote the semi-supervised ratio, and ran-
domly selected a fraction SSR of individuals from each subgroup.
Then we obtained a must-link matrix and a cannot-link matrix
according to the selected individuals and their subgroup iden-
tities, which were input to our semi-supervised algorithm. We
used the algorithm in Yang et al. (2008) and our new proposed
algorithm to cluster the 607 individuals into 10 clusters with the
top 10, 20, and 30 PCs respectively, and then compared the Rand
index (Rand, 1971) and an adjusted Rand (ARand) index (Hubert
and Arabie, 1985) between the true subgroups and the clustering
results. We repeated this process for 100 times and at each time
we randomly selected some individuals for getting the pre-known
must-link matrix and cannot-link matrix by setting a different
seed in R software. Then we indicated the average results of these
100 simulations in Figure 2. From Figure 2, we can see that when
using the top 10, 20 and 30 PCs for clustering, our algorithm per-
formed much better than the existing one with (α = 0, β = 1)
(Yang et al., 2008) in terms of the Rand index and adjusted Rand
index for almost all the values of SSR. It is clear that the blue
vertical lines for our new algorithm appeared with smaller SSR
values, indicating that our algorithm made use of the given semi-
supervised information more efficiently. In fact, while using other
numbers of the top PCs, we also obtained similar results (not
shown). Additionally, here in our new algorithm we used α = α̂

and β = β̂.
Tables 3, 4 present the numbers of subjects assigned to each of

the 10 clusters based on the top 10 PCs using the existing SSSC
algorithm (α = 0, β = 1) (Yang et al., 2008) and our Algorithm

FIGURE 1 | Left: Top: 2 PCs after PCA dimension reduction for the
SNV data from chromosomes 1-22, where subjects are
self-identified as EUR (green), AFR (blue) and ASN (red). Middle:

Top 2 PCs for EUR group: GBR (green), FIN (black), CEU (blue),
TSI (red); Right: Top 2 PCs for ASN group: CHS (red), CHB
(green), JPT (blue).
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SSSC with SSR = 0.5. We can see that our new algorithm
performed much better than the existing one.

To further illustrate the difference among the unsupervised
local scale spectral clustering algorithm, the existing SSSC algo-
rithm (α = 0, β = 1) (Yang et al., 2008) and our new SSSC
algorithm (α = α̂, β = β̂), we plotted the first two co-ordinates
(of yi’s in Step 6) for each of the three algorithms (see Figure 3).
To better observe the separation between the two subgroups CHS
(‘8’) and CHB (‘9’), we particularly plotted for the two subgroups,
where the colors of the subjects in CHB were still kept red, how-
ever, those in CHS were changed to black (see the right three

Table 2 | The numbers of subjects assigned to each of the 10 clusters

based on the top 10 PCs using the unsupervised local scale spectral

clustering algorithm.

Groups Subgroups S1 S2 S3 S4 S5 S6 S7 S8 S9 Sa All

AFR YRI 78 0 0 0 0 0 0 0 0 0 78

LWK 0 60 7 0 0 0 0 0 0 0 67

ASW 0 0 1 23 0 0 0 0 0 0 24

EUR GBR 0 0 4 0 39 0 0 0 0 0 43

FIN 0 0 0 0 0 36 0 0 0 0 36

CEU 0 0 0 0 90 0 0 0 0 0 90

TSI 0 0 2 0 0 0 90 0 0 0 92

ASN CHS 0 0 0 0 0 0 0 25 0 0 25

CHB 0 0 0 0 0 0 0 68 0 0 68

JPT 0 0 0 0 0 0 0 0 17 67 84

(Rand = 0.961, ARand = 0.821).

sub-figures of Figure 3). The top two sub-figures are for the unsu-
pervised local scale spectral clustering algorithm, the middle two
are for the existing SSSC algorithm (α = 0, β = 1) and the bot-
tom two are for our SSSC algorithm (α = α̂, β = β̂). From the
first two sub-figures of Figure 3 and Table 2, we see that the two
pairs of subgroups, GBR-CEU and CHS-CHB were inseparable,
respectively. Then for the middle two sub-figures of Figure 3 and
Table 3, by adjusting the similarities between must-link pairs to
be 1 and those between cannot-link pairs to be 0, the subjects in
GBR and CEU were a little more separable, however the subjects
in CHS and CHB were still inseparable. Finally for the last two

Table 3 | The numbers of subjects assigned to each of the 10 clusters

based on the top 10 PCs using the existing SSSC algorithm (α = 0,

β = 1) with SSR = 0.5.

Groups Subgroups S1 S2 S3 S4 S5 S6 S7 S8 S9 Sa All

AFR YRI 78 0 0 0 0 0 0 0 0 0 78

LWK 0 62 5 0 0 0 0 0 0 0 67

ASW 0 0 1 23 0 0 0 0 0 0 24

EUR GBR 0 0 2 0 39 2 0 0 0 0 43

FIN 0 0 0 0 0 0 36 0 0 0 36

CEU 0 0 0 0 17 73 0 0 0 0 90

TSI 0 0 1 0 0 0 0 91 0 0 92

ASN CHS 0 0 0 0 0 0 0 0 25 0 25

CHB 0 0 0 0 0 0 0 0 68 0 68

JPT 0 0 0 0 0 0 0 0 1 83 84

(Rand = 0.975, ARand = 0.881).

FIGURE 2 | Rand indices (black) and adjusted Rand indices (red) between the true subgroups and the clustering results with various numbers of the

top PCs. A vertical blue line indicates the point of SSR, at which the Rand index and adjusted Rand index are both larger than 0.90 for the first time.
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Table 4 | The numbers of subjects assigned to each of the 10 clusters

based on the top 10 PCs using our new SSSC algorithm (α = α̂, β = β̂)

with SSR = 0.5.

Groups Subgroups S1 S2 S3 S4 S5 S6 S7 S8 S9 Sa All

AFR YRI 78 0 0 0 0 0 0 0 0 0 78

LWK 0 67 0 0 0 0 0 0 0 0 67
ASW 0 0 24 0 0 0 0 0 0 0 24

EUR GBR 0 0 0 7 34 2 0 0 0 0 43
FIN 0 0 0 0 0 0 36 0 0 0 36
CEU 0 0 0 82 8 0 0 0 0 0 90
TSI 0 0 0 0 0 92 0 0 0 0 92

ASN CHS 0 0 0 0 0 0 0 20 5 0 25
CHB 0 0 0 0 0 0 0 4 64 0 68
JPT 0 0 0 0 0 0 0 0 1 83 84

(Rand = 0.984, ARand = 0.923).

FIGURE 3 | The top two sub-figures are for the unsupervised local

scale spectral clustering algorithm, the middle two are for SSSC

algorithm (α = 0, β = 1) and the bottom two are for our SSSC

algorithm (α = α̂, β = β̂). Note that in the right three sub-figures, the colors
of the subjects in CHS (‘8’) were changed from red to black. Note that the
y (1) and y (2) axes are just the first two co-ordinates of the data points
{y1, . . . , yn} in Step 6 of Algorithm SSSC.

sub-figures of Figure 3 and Table 4, we can see that the subjects
in all the subgroups were more separable, and in particular, in the
bottom right sub-figure the subjects in CHS and CHB were more
separable.

3.2. SEMI-SUPERVISED CLUSTERING VERSUS CLASSIFICATION
We also did some numerical experiments to compare classifica-
tion (supervised learning) with our semi-supervised clustering.
For illustration and to have a easier problem for classification, we
only took the individuals in the EUR continental group and used
common variants (CVs) with minor allele frequencies (MAFs)
greater than 5% on chromosome 1. Furthermore, we used PLINK
(Purcell et al., 2007) to prune out correlated SNVs with a sliding
window of size 50 (shifted by 5) and a threshold of r2 ≤ 0.05, after
which we had 11,840 CVs.

First, we randomly chose a fraction SSR of individuals from
each of the above four subgroups as semi-supervised informa-
tion for our clustering algorithm and as the training data for a
classification algorithm. We used penalized multinomial logistic
regression with the Lasso or the Ridge penalty for classification;
the penalization parameter was chosen by 5-fold cross-validation.
We used the trained classifier to predict the subgroup labels for
the remaining data, and combined the known labels in the train-
ing data and the predicted labels in the test data together to
compare with the true labels in terms of the Rand indices and
adjusted Rand indices. The top two sub-figures in Figure 4 sum-
marize the corresponding results based on 100 simulations; it is
demonstrated that in our experiments, our semi-supervised clus-
tering algorithm performed much better than both Lasso- and
Ridge-penalized regression, especially for cases with low SSRs.

On the other hand, in some cases the given semi-supervised
information may not involve all the four subgroups. For exam-
ple, we only had information about a subset of subjects from the
CEU and GBR subgroups, but not any from the other subgroups.
As before, we randomly selected a fraction (SSR) of individu-
als from the CEU and GBR subgroups respectively; they were
used as semi-supervised information for our algorithm and as
training data for a classification algorithm. The bottom three
sub-figures in Figure 4 show the corresponding comparisons,
indicating that our semi-supervised clustering algorithm per-
formed overwhelmingly better than Lasso- and Ridge-penalized
regression, because the classification algorithm predicted all the
individuals of the unknown TSI or FIN subgroup as of either
CEU or GBR subgroup. This illustrates an obvious advantage
of a semi-supervised clustering approach for discovery of novel
classes.

4. DISCUSSION
4.1. DIMENSION REDUCTION
In Section 3, we have demonstrated good performance of our
algorithm with a few top PCs. In addition, we also obtained simi-
lar results (not shown) with other methods for dimension reduc-
tion, such as the spectral graph approach used in SpectralR
and SpectralGEM (Lee et al., 2010). We used the spectral
method in (Lee et al., 2010) for dimension reduction, then clus-
tered the data into 10 clusters; we took the same procedure
to compare the Rand index and adjusted Rand index values.
Figure 2.

4.2. ALL OR A SUBSET OF SNVs?
In the previous section, we used all 7,459,664 SNVs appear-
ing in all the three continental groups on chromosomes 1
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FIGURE 4 | Rand indices (black) and adjusted Rand indices (red)

between the true subgroups and the SSSC or classification results.

A vertical blue line indicates the point of SSR, at which the Rand and
adjusted Rand are both bigger than 0.90 for the first time. The top

three sub-figures demonstrate comparison of Lasso, Ridge and SSSC
for the cases that semi-supervised information involves all the four
subgroups, while the bottom three for the cases that semi-supervised
information involves two subgroups.

Table 5 | The numbers of subjects assigned to each of the 10 clusters

based on the top 10 PCs using the unsupervised local scale spectral

clustering algorithm.

Groups Subgroups S1 S2 S3 S4 S5 S6 S7 S8 S9 Sa All

AFR YRI 59 19 0 0 0 0 0 0 0 0 78

LWK 0 67 0 0 0 0 0 0 0 0 67

ASW 24 0 0 0 0 0 0 0 0 0 24

EUR GBR 0 0 0 43 0 0 0 0 0 0 43

FIN 0 0 0 0 36 0 0 0 0 0 36

CEU 0 0 0 90 0 0 0 0 0 0 90

TSI 0 0 0 0 0 92 0 0 0 0 92

ASN CHS 0 0 0 0 0 0 19 6 0 0 25

CHB 0 0 0 0 0 0 21 7 40 0 68

JPT 0 0 0 0 0 0 0 16 0 68 84

(Rand = 0.948, ARand = 0.758).

to 22 without pruning out SVNs in linkage disequilibrium.
We used common variants (CVs) with minor allele frequen-
cies (MAFs) greater than 5% on chromosomes 1 to 22, and
used PLINK (Purcell et al., 2007) to prune out correlated
SNVs with a sliding window of size 50 (shifted by 5) and
a threshold of r2 ≤ 0.5, after which we had 1,022,090 CVs.
Next, we used PCA for dimension reduction and then use the
three algorithms to analyze the resulting data after dimension
reduction.

Table 6 | The numbers of subjects assigned to each of the 10 clusters

based on the top 10 PCs using the existing SSSC algorithm (α = 0,

β = 1) with SSR = 0.5.

Groups Subgroups S1 S2 S3 S4 S5 S6 S7 S8 S9 Sa All

AFR YRI 78 0 0 0 0 0 0 0 0 0 78

LWK 0 67 0 0 0 0 0 0 0 0 67

ASW 0 0 24 0 0 0 0 0 0 0 24

EUR GBR 0 0 0 43 0 0 0 0 0 0 43

FIN 0 0 0 0 36 0 0 0 0 0 36

CEU 0 0 0 12 0 78 0 0 0 0 90

TSI 0 0 0 0 0 0 92 0 0 0 92

ASN CHS 0 0 0 0 0 0 0 25 0 0 25

CHB 0 0 0 0 0 0 0 10 58 0 68

JPT 0 0 0 0 0 0 0 0 0 84 84

(Rand = 0.988, ARand = 0.941).

Tables 5–7 present the numbers of subjects assigned to each
of the 10 clusters based on the top 10 PCs using the unsuper-
vised spectral clustering algorithm, the existing semi-supervised
spectral clustering algorithm and our new algorithm with SSR =
0.5. From these results and those indicated by Tables 2–4,
we see that using all the SNVs was better than using the
pruned data in terms of the performance of the unsupervised
spectral clustering. For the two semi-supervised spectral cluster-
ing algorithms, we find that while using the pruned data, the new
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Table 7 | The numbers of subjects assigned to each of the 10 clusters

based on the top 10 PCs using our new SSSC algorithm (α = α̂, β = β̂)

with SSR = 0.5.

Groups Subgroups S1 S2 S3 S4 S5 S6 S7 S8 S9 Sa All

AFR YRI 78 0 0 0 0 0 0 0 0 0 78

LWK 0 67 0 0 0 0 0 0 0 0 67

ASW 0 0 24 0 0 0 0 0 0 0 24

EUR GBR 0 0 0 43 0 0 0 0 0 0 43

FIN 0 0 0 0 36 0 0 0 0 0 36

CEU 0 0 0 6 0 84 0 0 0 0 90

TSI 0 0 0 0 0 0 92 0 0 0 92

ASN CHS 0 0 0 0 0 0 0 25 0 0 25

CHB 0 0 0 0 0 0 0 5 62 1 68

JPT 0 0 0 0 0 0 0 0 0 84 84

(Rand = 0.991, ARand = 0.957).

semi-supervised spectral clustering algorithm still performed bet-
ter than the existing one (Yang et al., 2008) as in Section 3.1 with
all the SNVs.

4.3. LOCAL SCALE SPECTRAL CLUSTERING
Our semi-supervised spectral clustering algorithm is based on the
local scale spectral clustering (Zelnik-manor and Perona, 2004),
because we believe that local scales work better than choosing a
single global scale for all pairs of subjects. In some situations the
subgroups might not have the same scale; from our experience,
given a fixed number of clusters, the subjects in a sparser group
are more likely to be divided into more clusters, and the individ-
uals in a denser group are more likely to be merged together. In

these cases, it will be difficult to choose a suitable single global
scale. In contrast, using local scales automatically adjusts for the
heterogeneous scales in the subgroups. We did some experiments
to compare the spectral clustering algorithms with a global scale
and with local scales. We used several candidate values for a
global scale, and found that even the best clustering result (in
terms of the Rand indices and adjusted Rand indices) was almost
the same as that obtained by using local scales. Because it is
not the main point of this study, we do not show the detailed
comparisons here.

5. CONCLUSIONS
We have proposed a new semi-supervised spectral clustering algo-
rithm based on a more efficient use of the cannot link constraints
in prior data. A whole-genome sequencing dataset from the 1000
Genomes Project was analyzed to compare the performance of
our and other algorithms. In our experiments, unsupervised clus-
tering algorithms could not completely separate some subgroups,
such as the CEU-GBR and CHB-CHS subgroups; our semi-
supervised spectral clustering algorithm, along with a subset of
individuals with known subgroup identities, distinguished these
subgroups much better. Our proposed method may be poten-
tially useful in genetic association studies. Its extensions to other
clustering (Thalamuthu et al., 2006) and dimension reduction
approaches are to be studied.
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