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Autism Spectrum Disorder (ASD) occurs more often among males than females in a
4:1 ratio. Among theories used to explain the causes of ASD, the X chromosome and
the Y chromosome theories attribute ASD to the X-linked mutation and the male-limited
gene expressions on the Y chromosome, respectively. Despite the rationale of the
theory, studies have failed to attribute the sex-biased ratio to the significant linkage or
association on the regions of interest on X chromosome. We further study the gender
biased ratio by examining the possible interaction effects between two genes in the sex
chromosomes. We propose a logistic regression model with mixed effects to detect
gene–gene interactions on sex chromosomes. We investigated the power and type I
error rates of the approach for a range of minor allele frequencies and varying linkage
disequilibrium between markers and QTLs. We also evaluated the robustness of the
model to population stratification. We applied the model to a trio-family data set with
an ASD affected male child to study gene–gene interactions on sex chromosomes.

Keywords: binary traits, gene–gene interaction, generalized linear mixed effect model, logistic model, trio data,

sex chromosomes

1. INTRODUCTION
Autism Spectrum Disorders (ASDs) refer to a collection of devel-
opmental disabilities in social interaction, communication, and
behavior. The prevalence of autism and related ASDs is increasing
and about 1% of children need education and social care (Baird
et al., 2006). A more recent study estimates that the worldwide
median autism spectrum disorder prevalence is 62 out of 10,000
(Elsabbagh et al., 2012).

ASD is four times more common in males than in females
(Chakrabarti and Fombonne, 2001). The bias could be in part
due to the fact that females are less likely to be diagnosed as
ASD at the equivalent level of autistic traits in males (Dworzynski
et al., 2012). ASD is also environmental and genetic (Persico and
Bourgeron, 2006; Matsuzaki et al., 2012). In Baron-Cohen et al.
(2011), they summarized three possible factors that may attribute
psychological and physiological changes in the male brain: (a)
the masculinizing effect of fetal testosterone; (b) X- and Y-linked
theories; (c) autosomal penetrance theory.

Intuitively, the sex chromosomes represent a reasonable start-
ing point in order to find the causes of the gender bias in ASD.
In fact, studies found that the X chromosome contains genes that
are highly expressed in brain tissues compared to other tissues
(Nguyen and Disteche, 2006). This supports the important role of
the X chromosome in brain functions, which is also evident from
the X-linked mental disabilities. There are also Y-linked male-
specific genes expressed in human brains, such as SRY, ZFY, and
PCDH11R (Mayer et al., 1998; Durand et al., 2006). The asso-
ciation studies of the genes on X or Y chromosomes with ASD
include Serajee and AH (2009), Noor et al. (2010), Chung et al.
(2011), Kaya et al. (2012). These studies focused on one of the sex
chromosomes but not both at the same time.

For family-based association studies, the transmis-
sion/disequilibrium test [TDT, Spielman et al. (1993)], its
generalizations such as the sib transmission/disequilibrium test
[S-TDT, Spielman and Ewens (1998)], and the family-based
association test [FBAT, Horvath et al. (2001)] are standard
choices for qualitative data. However, they are not specifically
designed for detecting interaction effects in genes. In this
article, we look for interaction effects between two genes on
sex chromosomes in males. No studies have been conducted to
determine attribution of the diseases to gene–gene interactions
on the sex chromosomes. We will seek to determine if there
are gene–gene interactions on sex chromosomes that drive the
gender bias in ASD.

Mixed effects models have been widely adopted in a wide
range of disciplines. Mixed effects models use both fixed and ran-
dom effects. Fixed effect parameters represent the average changes
in the response variable, while random effects usually represent
the subject-to-subject variability. Examples of the latter include
batches in a chemical experiment, classrooms in an education
setting, and members in a family. Recently, mixed effects mod-
els have received a significant attention in genetic association
tests that account for the population stratification and the cor-
relation among the individuals (Zhang et al., 2009; Wang et al.,
2011; De Lobel et al., 2012; Zhou and Stephens, 2012). Zhou and
Stephens (2012) developed a genome-wide efficient mixed-model
association (GEMMA), in which the related polygenic effects are
treated as a random effect. De Lobel et al. (2012) introduced
a mixed effects model that incorporates gene–gene interactions
in autosomal chromosomes. These mixed effects models for the
association study, with or without gene–gene interaction, are
currently designed for quantitative response variables only.
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In this article, we apply a generalized linear mixed effects
model to handle dichotomous responses and genetic interaction
effects. Generalized mixed effects models (Breslow and Clayton,
1993; McCulloch, 1997) are the extensions of generalized linear
models (Nelder and Wedderburn, 1972; McCullagh and Nelder,
1989). Generalized linear models are regression models for dif-
ferent response types and the expected value of the response
μi is

μi = g−1 (xiβ) ,

where g is an invertible link function, xi is the ith observation
for fixed effects, and β is fixed effect coefficients. In a generalized
linear mixed effects model with two random effects A and E, the
expected response is

μi = g−1 (xiβ + Ai + Ei) .

For a binary response, the logistic link is defined as g(μi) =
log (μi/ (1 − μi)) and

μi = 1/(1 + exp (− (xiβ + Ai + Ei))).

Here, μi can be the trait probability for the ith individual. In our
study, we treat genetic effects, including an interaction effect, as
fixed effects, but we further include unlinked autosomal effects as
random effects.

2. MATERIALS AND METHODS
2.1. THE MODEL
We introduce a generalized mixed effects model for the associ-
ation test on sex chromosome in males. Family-based trio data
with an affected son will be considered. Assume that two unlinked
additive QTLs are associated with the disease. Our model is
written as

log

(
pij

1 − pij

)
= β0 + β1Xij + β2Yij + β12XYij + Aij + Eij, (1)

where pij is the trait probability for the jth individual in the ith
family, β0, β1, β2, and β12 are the regression coefficients, Xij and
Yij denote the genotypes at two loci of the jth individual in the
ith family and they are either 0 or 2, and XYij is the interaction
effect of the two. Let Aij be the random effect due to the unlinked
autosomal QTLs and Eij be the environmental random effect. The
variance - covariance matrix of the two random effects between
the jth and the kth individuals in the ith family is given by

�ijk =
{

σ2
a + σ2

e if j = k

φijkσ
2
a + σ2

e if j �= k,
(2)

where φijk is twice of the kinship coefficient between the
jth and the kth individual in the ith family. We assume
that the random effects follow a Normal distribution with
mean 0 and variance �ijk. The analysis is conducted using
an R package pedigreemm (Vazquez et al., 2010). When we

consider a model with a binary response variable and ran-
dom effects, the full maximum likelihood analysis requires
a numerical integration technique. In such case, the package
pedigreemm uses the Laplace approximation (Tierney and
Kadane, 1986). The fixed effects are estimated based on the iter-
ative re-weighted least squares algorithm (Green, 1987). Under
the assumption that the estimates follow a Normal distribu-
tion, pedigreemm generates the test statistics z = β̂/s.e(β̂) and
the corresponding p-values (for two-sided test) under the null
hypothesis of no association. Our study results are based on
these outputs.

2.2. SIMULATION STUDY
Assume that the two QTLs are unlinked. We generated two mark-
ers in linkage disequilibrium (LD) with the two QTLs from D′ =
0 to D′ = 1 with an increment of 0.1. For D′ = 0, the markers
have no LD with QTLs and therefore have no association with
the disease. For D′ = 1, the markers have complete dependency
to QTLs. We assume that QTLs and markers have the same minor
allele frequencies (MAFs), which we vary in the simulations at
0.1, 0.3, and 0.5. We set the sample size to be 2000 (1000 fami-
lies with father and one son in each family) and use σ2

a = 0.5 and
σ2

e = 1.
First, we explain how the correlated random effects within a

family are generated. Similarly to De Lobel et al. (2012), the ran-
dom effects due to unlinked autosomal QTLs are generated as
follows:

AiF ∼ N(0, σ2
a)

AiO = 0.5AiF + √
0.75v, where v ∼ N

(
0, σ2

a

)
,

where AiF and AiO are unlinked autosomal random effects of a
father and a son, respectively, in the ith family. This leads to the
correlation between AiF and AiO at 0.5 · σ2

a.
Second, we need to generate family samples in which the

father is unaffected and the son is affected. Initially, we gen-
erated a large enough number of samples and selected fam-
ily samples in which the father is unaffected and the son
is affected. The website of the R code for this sampling
method is provided in the Supplemental data. The R code
generates genotypes with specified MAFs and the two ran-
dom effects (including Aij as explained above), obtains binary
responses based on the trait probabilities, and returns fam-
ily samples that contain an unaffected father and an affected
son.

When the samples are selected under such condition, the sam-
ple means of the random effects AiF and AiO can be shifted
away from zero. In simulation study, the random effect sam-
ples follow a Normal distribution but the two sample means
are not equal to zero, which violates the model assump-
tion about the random effect having mean zero. We tested
if the discrepancy between sample means and zero affects p-
values for testing the significance of interaction effect. We
simulated 100 datasets using the parameters in the simula-
tion studies (Tables 1, 2) and found that the discrepancy in
means did not affect p-value of the interaction effect (data not
shown).
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2.2.1. No population stratification
We conducted 24 simulation studies with varying MAFs and
regression coefficients β0, β1, β2, and β12. They are summarized
in Tables 1, 2, respectively. The regression coefficients in Table 2
represent the following: coef A (β0 = 0, β1 = 0, β2 = 0, and
β12 = 0.5) has no main effect but an interaction effect, coef B
(β0 = 0, β1 = 0.25, β2 = 0.25, and β12 = 0.75) has a larger inter-
action effect, coef C (β0 = 0, β1 = 0.5, β2 = 0.5, and β12 = 0.5)
has equal main and interaction effects, and coef D (β0 = 0,
β1 = 0.75, β2 = 0.75, and β12 = 0.25) has larger main effects.
We note that the same magnitude of the interaction coefficient
does not reflect the same amount of contribution to the disease
risk. Despite the fact that coef A and coef C have the same
interaction coefficient β12 = 0.5, the increase in risk by adding
the interaction effect are about 0.38 and 0.1, respectively. This
is due to the fact that the interaction effect occurs on top of
the two main effects. When the two main effects are smaller,
the increase in disease risk due to the interaction effect becomes
larger.

2.2.2. Population stratification
It has been known that population stratification can result in
spurious association findings in mixed effects model settings
(Abecasis et al., 2000). De Lobel et al. (2012) orthogonalized the
genotype scores into within and between-family effects in order to
avoid such spurious findings. We study the impact of population
stratification on the type I error and power of detecting gene–gene
interaction effects using the proposed model.

We consider two populations, each with 1000 individuals.
The population stratification can be formulated in three ways in
Model (1):

• Different β0: the disease prevalence is different due to other
factors

• Different MAFs: MAFs can be different in two populations
• Different β1, β2 and β12: the genotype effects can be different

Table 1 | MAFs of QTLs for simulation study when no population

stratification is present.

MAFs

MAF of X chromosome 0.1 0.3 0.5 0.1 0.1 0.3

MAF of Y chromosome 0.1 0.3 0.5 0.3 0.5 0.5

Table 2 | Coefficients for simulation study.

β0 β1 β2 β12 Additional risk

coef A 0 0 0 0.5 0.38

coef B 0 0.25 0.25 0.75 0.25

coef C 0 0.5 0.5 0.5 0.1

coef D 0 0.75 0.75 0.25 0.03

Additional risk on the disease due to the interaction

effects is exp (2β1 + 2β2 + 4β12)/(1 + exp (2β1 + 2β2 + 4β12)) −
exp (2β1 + 2β2)/ (1 + exp (2β1 + 2β2)).

We considered two scenarios: case 1 includes the first two
conditions but not the third condition and case 2 includes all
three conditions. For case 1, we used β0 = 0 for Population 1
and β0 = 0.2 for Population 2 and the three combinations of
MAFs in Table 3. In Population 1, the MAFs of X and Y chro-
mosomes are the same while they are not identical (0.5 and
0.3) in Population 2. The coefficients β1, β2, and β12 are set to
be the same for the two populations. For case 2, while keep-
ing the first two conditions the same as those in case 1, we
use the regression coefficients from Table 2 for Population 1 and
use 0.2 for all the regression coefficients β0, β1, β2, and β12 for
Population 2.

2.3. APPLICATION TO AUTISM STUDY
We obtained the parent-offsprings trios data from dbGaP
at http://www/ncbi.nlm.nih.gov/gap through dbGaP accession
number phs000267.v1.p1. As the interest is on the interaction
of genetic variables on the X and Y chromosomes, we selected
families who have an affected son. We have a total of 2216 indi-
viduals in 1108 families. We focused on 90 and 2 SNPs on the
X and Y chromosomes, respectively. The ninety SNPs on the X
chromosome are in PTCHD1, TBL1X, and NLGN3, which are
candidate genes for autism spectrum disorder (Noor et al., 2010;
Chung et al., 2011; Kaya et al., 2012). The two SNPs on Y chro-
mosome are based on Serajee and AH (2009). Out of the six SNPs
in Serajee and AH (2009), only three (rs9306845, rs9786893, and
rs16980459) are available in dbGaP data. Also, the two genotypes
rs9786893 and rs16980459 are identical and hence only two are
used in the study. In total 180 tests were conducted. We excluded
families whose SNP is missing, and thus the number of families
we used for testing varies. The smallest number of families we
used is 1077.

3. RESULTS
3.1. SIMULATION STUDY
3.1.1. No population Stratification
The type I error and power of detecting interaction effects for
varying LD, MAFs and regression coefficients are summarized in
Figure 1. The MAFs in the top row of Figure 1 are equal in both
markers while MAFs are different in the bottom row. Each plot
includes the results of four different regression coefficients listed
in Table 2 varying D′ from 0 to 1.

The power of detecting interaction effects is significantly
affected by the MAF values. This can be best shown by compar-
ing the first and the last plots in the top row. When MAFs are
0.1 on two markers, the maximum power to detect the interac-
tion effect is 0.75 for coef A when LD is equal to 1. Meanwhile,

Table 3 | MAFs of QTLs for simulation study when population

stratification is present.

Population 1 Population 2

MAF of X chr MAF of Y chr MAF of X chr MAF of Y chr

0.1 0.1 0.5 0.3
0.3 0.3 0.5 0.3
0.4 0.4 0.5 0.3
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FIGURE 1 | Type I error and power of detecting interaction effects with

different MAFs and four regression coefficients. For all four β0 = 0, coef A:
β1 = 0, β2 = 0, and β12 = 0.5, coef B: β1 = 0.25, β2 = 0.25, and β12 = 0.75,

coef C: β1 = 0.5, β2 = 0.5, and β12 = 0.5, coef D: β1 = 0.75, β2 = 0.75, and
β12 = 0.25, and σ2

a = 0.5 and σ2
e = 1, when the sample size is 2000 (1000

families). The red horizontal line indicates the 0.05 significance level.

when MAFs are both 0.5, the power is about 0.8 for coef A when
LD is larger than 0.6. The power is associated with the number of
nonzero interaction genotypes. The expected number of nonzero
genotypes in the interaction is only 20 when both MAFs are 0.1,
which is 1% of the sample size 2000. This may not be large enough
number to be able to detect the interaction effects at the power
level 0.8.

Within each plot, it is apparent that the power increases as the
additional risk due to the interaction effect increases (see the last
column in Table 2). The power of detecting interaction effects is
generally 0.8 or larger when D′ is 1 in most of the cases, excluding
coef D in all plots and all regression coefficients combinations
in MAF1 = 0.1 and MAF2 = 0.1. The proposed model detects
interaction effects at a power greater than 0.8 (D′ = 1) when their
risk is as low as 0.1 with MAFs larger than 0.1.

The power in general increases as D′ increases. However, there
are two exceptions; first, when coef D (MAF1= 0.1 and MAF2=
0.1) and when D′ is less than 0.4 (MAF1= 0.5 and MAF2= 0.5).
In the former, both the number of nonzero genotypes in inter-
action effect and the additional risk due to interaction effect
are not large enough to be detected by the proposed model.
When the sample size is 5000, the decreasing trend in power
disappears, although the power is still as low as 0.1 at D′ = 1

(See Supplementary Data: Supplemental Figure 1). In the lat-
ter, the type I errors in the third plot (MAF1 = 0.5 and MAF2
= 0.5) in Figure 1 are 0.073, 0.086, 0.088, 0.075 for coef A
to coef D, respectively, and they are larger than expected. The
95% confidence intervals are (0.057, 0.089), (0.068,0.104), (0.070,
0.106), and (0.058, 0.092), respectively. These slightly inflated
type I errors do not seem to appear when the sample size is
5000, in which type I errors are 0.054, 0.064, 0.078, and 0.063,
respectively. The type I error for coef C is the only one that is sta-
tistically significantly larger than expected. The 95% confidence
interval is (0.061, 0.0950). We suspect that these two exceptional
trends are due to the lack of information by relatively small
sample size.

Testing interaction effects is reliable using the proposed model
excluding some cases when the additional risk due to interaction
effects are insignificant or when the number of nonzero inter-
action genotypes is quite small. On the other hand, we found
that the variance estimates, σ̂2

a and σ̂2
e in Equation (2), are heavily

biased and close to zero in the simulation studies. Consequently,
the fixed effect estimates are identical or close to those of a logis-
tic regression model in the simulation study settings. While the
generalized linear mixed effects model is computationally more
demanding, it can accommodate more general family structures.
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As an example, we compared the type I error and the power of
the two models in Figure 2 when there are a father and four male
siblings in a family. Figure 2 contains only two cases coef A and
coef D for a demonstration. There is no significant differences
in power between two models for coef D (gray curves). The two
black plots in Figure 2 are well separated and this shows that the
generalized linear mixed effects model performs better in detect-
ing interaction effects for coef A for all MAFs. The discrepancy
in power for coef A at D′ = 1 is as high as 0.080 in MAF1 =
0.3 and MAF2 = 0.3. In addition, the generalized linear mixed
effects model is more suitable to incorporate the genetic correla-
tion among family members even if it is computationally more
expensive.

Breslow and Clayton (1993) illustrated that generalized mixed
effects model estimates are biased when applied to clustered
binary data, and therefore we anticipated that the model estimates
would be biased. Table 4 shows the median interaction effect esti-
mates and the 95% confidence intervals at D′ = 0, 0.5, and 1
when the two MAFs are equal to each other. As expected, the
estimated parameters are underestimated in all cases. Regardless,
the power of detecting interaction effects is larger than 0.8 at
D′ ≥ 0.8 excluding when coef D and when MAFs are both 0.1.

See Figure 1. Based on the performance of detecting interaction
effects, the proposed model is suitable to detect interaction effects
in the simulation study settings.

3.1.2. Population stratification
The simulation study results of type I error and power of detect-
ing interaction effects when population stratification is present
are shown in Figure 3. The plots in the top row correspond to
case 1 and the ones in the bottom correspond to case 2. In
both cases, the type I error rates are consistent around 0.05 and
no spurious false positives are found. In both case 1 and case
2, the increase in power is mainly affected by the increase in
MAFs: the larger MAFs the better power among the plots in both
top and bottom rows. As explained earlier, this is related to the
expected numbers of nonzero interaction genotypes. They are 160
[(0.1 × 0.1 + 0.5 × 0.3)/2 × 2000], 240, and 310, for the first, the
second and the third columns, respectively in Figure 3.

If it were not known that there is population stratification,
the first simulation setting (MAF1 = 0.1 and MAF2 = 0.1 in
Population 1 and MAF1 = 0.5 and MAF2 = 0.3 in Population
2) can be considered as MAF1 = 0.3 and MAF2 = 0.2 with no
population stratification. And this is equivalent to MAF1 = 0.2

FIGURE 2 | Type I error and power of detecting interaction effects with

different MAFs using a generalized linear mixed effects model (solid)

and a generalized linear model (dotted) when samples with five family

members are randomly generated. Two regression coefficients are β0 = 0,

coef A: β1 = 0, β2 = 0, and β12 = 0.5 (shown in black), coef D: β1 = 0.75,
β2 = 0.75, and β12 = 0.25 (shown in gray), σ2

a = 10 and σ2
e = 0.01, and the

sample size is 2000 (400 families). The red horizontal line indicates the 0.05
significance level.
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Table 4 | The median and 95% confidence interval of the interaction coefficient estimates at D′ = 0, 0.5, and 1 when the two MAFs are the

same.

MAFs D′ coef A coef B coef C coef D

Med. CI Med. CI Med. CI Med. CI

0.1
0 −0.01 (−0.23, 0.20) −0.00 (−0.21, 0.22) −0.01 (−0.22, 0.20) −0.00 (−0.23, 0.22)

0.5 0.09 (−0.14, 0.32) 0.08 (−0.15, 0.33) 0.04 (−0.18, 0.29) 0.02 (−0.20, 0.26)

1 0.39 (0.15, 0.72) 0.51 (0.20, 3.82) 0.31 (0.03, 3.51) 0.13 (−0.14, 3.34)

0.3
0 −0.00 (−0.09, 0.08) −0.00 (−0.09, 0.09) 0.00 (−0.09, 0.09) −0.00 (−0.08, 0.08)

0.5 0.08 (−0.00, 0.18) 0.09 (−0.01, 0.17) 0.05 (−0.05, 0.14) 0.02 (−0.08, 0.11)

1 0.37 (0.28, 0.47) 0.43 (0.30, 0.57) 0.24 (0.14, 0.35) 0.10 (0.00, 0.20)

0.5
0 −0.00 (−0.07, 0.07) −0.00 (−0.07, 0.08) −0.00 (−0.08, 0.07) −0.00 (−0.07, 0.07)

0.5 0.08 (0.01, 0.16) 0.08 (0.01, 0.16) 0.05 (−0.03, 0.13) 0.02 (−0.06, 0.09)

1 0.36 (0.27, 0.43) 0.37 (0.28, 0.45) 0.22 (0.14, 0.30) 0.10 (0.02, 0.18)

Coef. 0.5 0.75 0.5 0.25

Med. refers to the median interaction effect estimate, CI refers to the 95% confidence interval (2.5th percentile, 97.5th percentile), and Coef. refers to the true

interaction effect coefficient.

FIGURE 3 | Type I error and power of detecting interaction effects with

different MAFs when population stratification is present with the equal

sample size 1000 (500 families) in two populations. Plots in the top row:
β0 = 0 for Population 1 and β0 = 0.2 for Population 2 sharing the same
regression coefficients coef A: β1 = 0, β2 = 0, and β12 = 0.5, coef B: β1 = 0.25,

β2 = 0.25, and β12 = 0.75, coef C: β1 = 0.5, β2 = 0.5, and β12 = 0.5, coef D:
β1 = 0.75, β2 = 0.75, and β12 = 0.25, and σ2

a = 0.5 and σ2
e = 1. Plots in the

bottom row: β0 = 0 for Population 1 with the regression coefficients as above
and β0 = β1 = β2 = β12 = 0.2 for Population 2, and σ2

a = 0.5 and σ2
e = 1 for both

populations. The red horizontal line indicates the 0.05 significance level.
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and MAF2 = 0.3. Any loss in the power due to population strat-
ification in case 1 can be revealed by comparing the power with
the same MAFs with no population stratification. The type I error
and the power of the first plot in Figure 3 can be compared with
those in the first in the bottom (MAF1 = 0.1 and MAF2 = 0.3)
and the middle one in the top (MAF1 = 0.3 and MAF2 = 0.3)
in Figure 1. The power lies in the middle of the increasing trend
as MAFs increase. Likewise, the middle plot in the top row in
Figure 3, considered equivalent to MAF1 = 0.3 and MAF2 = 0.4,
can be compared to the middle on the top (MAF1 = 0.3 and

MAF2 = 0.3) and the last (MAF1 = 0.3 and MAF2 = 0.5) in
Figure 1. This also does not indicate any loss in power due to
population stratification with different MAFs in two populations.

The possible loss in the power when the main and interaction
effects on the disease are different in two populations can be dis-
covered by comparing powers in the top and ones in the bottom
in Figure 3. In the top row of Figure 3, the main and interac-
tion effects in two populations vary simultaneously as in Table 2,
and in the bottom row, we replaced the regression coefficients to
β0 = β1 = β2 = β12 = 0.2 in Population 2. In Population 2, the

FIGURE 4 | Type I error and power of detecting interaction effects with

different MAFs and four regression coefficients using an 1-1 matched

logistic regression model with no population stratification. For all four
β0 = 0, coef A: β1 = 0, β2 = 0, and β12 = 0.5, coef B: β1 = 0.25, β2 = 0.25,

and β12 = 0.75, coef C: β1 = 0.5, β2 = 0.5, and β12 = 0.5, coef D: β1 = 0.75,
β2 = 0.75, and β12 = 0.25, and σ2

a = 0.5 and σ2
e = 1, and the sample size is

2000 (1000 families). The red horizontal line indicates the 0.05 significance
level.

Table 5 | Two SNPs on X chromosome that show the smallest p-values.

X chromosome Y chromosome Three fixed effects Four fixed effects

SNP Gene SNP Gene β̂12 p-value β̂12 p-value

rs2681644 TBL1X rs9306845 TBL1Y 0.2073 0.0066 0.19085 0.0139

rs2681644 TBL1X rs9786893 NLGN4Y 0.2090 0.0081 0.19135 0.0174

rs2238860 TBL1X rs9306845 TBL1Y 0.1888 0.0150 0.19423 0.0142

rs2238860 TBL1X rs9786893 NLGN4Y 0.2260 0.0050 0.23351 0.0046

Three fixed effects model is log(
pij

1−pij
) = β0 + β1Xij + β2Yij + β12XYij + Aij + Eij and four fixed effects model is log(

pij
1−pij

) = β0 + β1Xij + β2Yij + β12XYij + CNVij +
Aij + Eij , where CNVij is the copy number variance estimates on X chromosome for the jth member in the ith family.
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additional risk caused by the interaction effect is 0.1271, which is
smaller than those in coef A and coef B and larger than coef C
and coef D in Table 2. This is reflected in a decrease in power for
coef A, coef B, and an increase in power for coef D, when we
compare plots in the top and the ones in the bottom in Figure 3.
For coef C, the change in power due to the different genetic
effects seems to be affected by MAFs: the power decreases in the
first plot in the bottom but stays constant in the second and the
third plots, relative to the ones in the top in Figure 3.

In both case 1 and case 2, there is no spurious interaction
effect detected. The impact of population stratification on the
power of detecting the interaction effect using Model (1) has not
found in the simulation study in neither case 1 nor case 2.

3.2. APPLICATION TO AUTISM STUDY
Our interest lies in the presence of the interaction between two
SNPs and the statistical test will be focused only on the interac-
tion effects. The chance of falsely rejecting the null hypothesis
(type I error) becomes larger when we conduct multiple statis-
tical tests simultaneously for a given significance level α. The
Bonferroni correction is a simple but conservative approach to
correct this. Instead, we used a permutation test in order to find
an adjusted type I error. In general, all the variables are per-
muted together to generate null datasets. In our case, however,
family members share the same value in Y chromosome. In other
words, the father and the son in a family have the same genotype
on Y chromosome. Due to this constraints, we permute the two
genetic variables separately. The fathers’ genotype scores are per-
muted and the offsprings are given the same value of the father’s.
After 1000 repetitions, we found the adjusted significance level
α′ = 0.001 such that less than or equal to 50 (out of 1000) repeti-
tions include at least one statistically significant interaction effect.
Using α′ = 0.001, we found no statistically significant interaction
effect. The two SNPs on X chromosome, rs2681644 and rs2238860
that have the smallest p-values are shown on Table 5. Both are
located on the intron region of TBL1X.

An advantage of regression models over a contingency table
is the capability to include additional variables of information
flexibly. We added an additional information on copy number
variation (CNV) on X chromosome to the logistic regression
mixed effects model. The additional variable CNV is obtained
after processing the raw CNVs using an R package DNAcopy ver-
sion 1.30.0 (Olshen et al., 2004). In this study, the variable CNV
on the genes of our interest do not statistically significantly affect
on the autism risk. The regression coefficients of interaction when
CNV is included are given in the last two columns in Table 5.

4. DISCUSSION
We applied a logistic regression model with mixed effects to detect
gene–gene interactions on the sex chromosomes in trio data.
Especially, only males who have both X and Y chromosomes are
included for the study. In our study, we used binary response
and explanatory variables and associated the potential correlation
among family members using random effects. From the simula-
tion studies, we find that the proposed model detected interaction
effects at a power greater than 0.8 (D′ = 1) when the risk due to
them is as low as 0.1 and MAFs are larger than 0.1. It is robust to

population stratification and there is no increase in type I error
rate.

Family-based association study data consist of families in
which at least a member is affected. Logistic regression mod-
els were studied for such data using conditional likelihood on
all other possible cases that the specific number of family mem-
bers are affected. This is referred to as ascertainment adjustment
(Burton et al., 2000). In our case, a father is considered as
a control and a son as a case in a family. Regarding this as
one control and one case study in a family, referred to as 1-
1 matched, the conditional likelihood estimate can be obtained
by setting the intercept equal to 0, the new variables defined as
X∗

i = XiO − XiF , and all the response variable set to 1 (Hosmer
and Lemeshow, 1989, Chapter 7). A brief explanation on the
background is provided in the Supplemental data. The type I
error and power of the 1-1 matched logistic model are pre-
sented in Figure 4 for the MAFs and regression coefficients used
in the no population stratification simulation study. The 1-1
matched logistic model performs slightly better in detecting the
existing interaction effects when both MAF1 and MAF2 are 0.1.
However, the logistic regression model with mixed effects per-
forms better in power in all remaining cases. We suspect that
the reason is in that the 1-1 matched logistic regression model
infers the interaction effect of the population while the logistic
model with mixed effect infers the interaction effects within the
samples.

While the proposed model works well for detecting inter-
action effects and performs better in power compared to the
1-1 matched logistic regression model in the most of our
simulation settings, the model underestimates the interaction
effects. Therefore, the logistic regression model with mixed
effects is not appropriate when the interest is in the param-
eter estimates or the true disease risks due to interaction
effects.
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