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In genome wide association studies (GWAS), family-based studies tend to have less power
to detect genetic associations than population-based studies, such as case-control studies.
This can be an issue when testing if genes in a family-based GWAS have a direct effect on
the phenotype of interest over and above their possible indirect effect through a secondary
phenotype. When multiple SNPs are tested for a direct effect in the family-based study,
a screening step can be used to minimize the burden of multiple comparisons in the
causal analysis. We propose a 2-stage screening step that can be incorporated into the
family-based association test (FBAT) approach similar to the conditional mean model
approach in the Van Steen-algorithm (Van Steen et al., 2005). Simulations demonstrate
that the type 1 error is preserved and this method is advantageous when multiple markers
are tested. This method is illustrated by an application to the Framingham Heart Study.
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INTRODUCTION
Some of the recently published genome-wide association studies
identified the same genetic locus as a disease susceptibility locus
for different complex diseases (Amos et al., 2008; Thorgeirsson
et al., 2008). One possible mechanism is that the marker locus
is pleiotropic and has genetic effects on several, different pheno-
types. Determining whether the marker acts directly on each of
these phenotypes or only indirectly via one or more intermediate
phenotypes is an important step in understanding the biologi-
cal significance of the genetic associations. In order to understand
and characterize the underlying genetic effect, methods have been
proposed to disentangle these potential direct and indirect genetic
effects (Vansteelandt et al., 2009; Vansteelandt, 2010; Berzuini
et al., 2012; Vansteelandt and Lange, 2012; VanderWeele et al.,
2012). All currently available methods focus on the direct and
indirect genetic effects relative to one (group of) secondary phe-
notypes. Because the magnitude of the indirect effect depends on
how strongly these secondary phenotypes affect the primary phe-
notype, these methods consider adjustment for confounding of
the relationship between these phenotypes by measured extrane-
ous factors. Some of these methods quantify both the direct and
indirect genetic effects, but assume that none of these extrane-
ous confounding factors is influenced by the considered marker
(VanderWeele et al., 2012). Some of these methods allow for some
of the extraneous confounding factors to be influenced by the
considered marker, but they merely quantify direct genetic effects
(Vansteelandt et al., 2009; Vansteelandt, 2010; Berzuini et al.,
2012).

Regardless of the considered framework, all available meth-
ods only test one gene at a time and need to be corrected for
multiple comparisons. This concern over multiple comparisons
becomes an issue in family-based genome wide association

studies (GWAS). When there is a region with a strong associa-
tion with both the endo-phenotype and phenotype, identifying
SNPs in the region that are still associated with the phenotype
of interest after accounting for the association with the endo-
phenotype requires testing for a direct causal effect for every SNP
in the region. In order to increase power to detect this direct
genetic effect, we propose a 2-stage testing strategy to minimize
the burden of multiple comparisons in the causal analysis (Van
Steen et al., 2005; Murphy et al., 2008; Won et al., 2009). The
application of a screening step when testing for direct genetic
effects is an important advantage in this scenario where the
multiple-comparison problem is a major hurdle. The power of
our approach is assessed by simulation studies. We show that the
type-1 error is preserved and the method is shown to be advan-
tageous when multiple SNPs are tested for a direct effect on the
phenotype of interest.

METHODS
Suppose that in the family-based study, n trios (offspring and
both parents) have been genotyped at a specific marker locus.
Assuming there is no bias due to ascertainment conditions, the
variable Xi denotes the coded genotype of the offspring and
Si denotes the parental genotypes for individual i. If genotypic
data is unavailable for the parents but genotypic information is
available on the subject’s siblings, the variable Si denotes the suf-
ficient statistic by Rabinowitz and Laird (2000) For offspring i,
Yi denotes the target phenotype in the association study and Ki

denotes the secondary phenotype in the study.
Suppose that an association has been observed between the

secondary phenotype of interest, Ki, and the marker locus. Given
this association, the goal is to test for an association between
the target phenotype Yi and the marker locus that cannot be
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explained by a possible indirect effect mediated by Ki. To achieve
this goal, data is needed on all risk factors of the secondary pheno-
type Ki that are also associated with the primary phenotype (Cole
and Hernan, 2002). Let Li denote this collection of measured con-
founding variables. Because L may be high-dimensional, we do
not assume that it is only related with Y by means of a causal
effect, but allow for their association to be itself confounded by
potentially unmeasured factors U . This is shown in the causal
diagram of Figure 1, where the presence of U additionally cap-
tures the potential for confounding of the genetic association as
a result of population admixture (Vansteelandt and Lange, 2012).
Throughout, in contrast to other mediation analysis techniques
(namely those based on so-called natural direct and indirect
effects), we will allow for the possibility that some of these con-
founding variables are themselves affected by the studied marker,
as illustrated via the edge from X to L in the causal diagram
(VanderWeele et al., 2012).

Consider model

E[Yi|Xi, Ki, Li] = γ0 + γ1Ki + γ2Xi + γ3Li (1)

where γj for j = 0, 1, . . . , 3 denote the mean parameters and can
be estimated by ordinary least squares. Note that γ1 represents the
true effect of Ki on Yi and not a spurious association because, by
assumption, the above model includes all relevant risk factors of
Ki. In order to construct an adjustment principle that tests for a
direct genetic effect of the marker locus X on the target phenotype
Y , the effect of the secondary phenotype K has to be estimated.
Vansteelandt et al. use an estimate for γ1 based on model (1) to
adjust the phenotype Yi to Yi − γ1Ki. A family-based association
test (FBAT) on this adjusted phenotype is then a test for the direct
genetic effect in the family-based setting (provided that the dis-
tribution of the test statistic acknowledges the uncertainty in the
estimated effect γ1) (Vansteelandt et al., 2009).

To reduce the number of multiple comparisons, we adapt the
conditional mean model approach in the VanSteen-algorithm
(Van Steen et al., 2005) to model (1). By replacing the observed
marker score in model (1) by the expected marker score con-
ditional upon the parental genotypes or sufficient statistic, the
genetic effects of locus Xi can be assessed without having to adjust
the α-level of any subsequently computed FBATs (Lange et al.,

FIGURE 1 | Causal diagram illustrating the confounding of the target

phenotype Y and the marker locus X. S denotes the parental genotype
or Rabinowitz and Laird’s sufficient statistic. K denotes the secondary
phenotype of interest. L allows for confounding between K and Y .
U represents a collection of unmeasured factors that allow for confounding
due to population stratification or confounding between the two
phenotypes K and Y . Note that causal diagrams assume that all variables
that jointly affect any two variables are included. The absence of an arrow
between any two variable denotes that there is no direct causal effect. For
instance, U has no direct causal effect on X .

2003a,b; Van Steen et al., 2005). Similar to the idea of the con-
ditional mean model approach, model (1) can be rewritten by
substituting Xi with its expected value E(Xi|Si),

E[Yi|Ki, Li, Si] = β0 + γ1Ki + β2Li + β3E(Xi|Si) , (2)

As shown in the proof given in the appendix, the parameter γ1 is
the same in both model (1) and model (2) when the null hypoth-
esis holds that there is no direct effect and, moreover, there is no
confounding due to population substructure. For testing the null
hypothesis of no direct genetic effect, model (2) can thus be used
to estimate the parameter γ1 in a screening step without bias-
ing the significance level since Xi is not included in this model,
provided there is no confounding due to population substructure.

For the screening step, each subject contributes

T∗i = {E(Xi|Si)} Ỹ∗i (3)

where Ỹ∗i = Yi − ȳ − γ̂∗1(Ki − k̄) and γ̂∗1 is the ordinary least
squares estimate for γ1 in model (2), which does not involve the
genetic marker X. Ỹ∗i is not adjusted for the covariates Li since
including factors such as Li in the phenotypic adjustment would
introduce bias if the common risk factor Li is associated with
the DSL Xi (Vansteelandt et al., 2009). The parameters ȳ and k̄
are the observed phenotypic means of Y and K in the sample,
respectively. Then the test statistic for the screening step is

(∑n
i= 1 T∗i

)2

∑n
i= 1 var ˜(T∗i )

(4)

where

T̃∗i = T∗i − E
[{E(Xi|Si)} (Ki − k̄)

]
(

Ki − μ
∗(i)
k

)

σ∗2k

ε∗i (5)

where var( ˜T∗i ) is calculated based on the sample variance

of T̃∗ and ε∗i denotes the residual from model (2). μ
∗(i)
k =

E(K|Li, E(Xi|Si)) is the predicted value for K under a linear
regression model for K with the covariates Li and E(Xi|Si), and
σ∗2k denotes the residual variance in that model. The variance cor-
rection given in Equation (5) is needed to account for estimating

γ1 in the proposed phenotype adjustment Ỹ∗i (Vansteelandt et al.,
2009).

For step 1, the test statistic given in Equation (4) can be
used for the screening step to pick the SNPs with the highest
power since X is not used in this test statistic. For step 2, this
smaller subset of SNPs are used to test the null hypothesis of
no direct effect using the test statistic based on Equation (1)
proposed by Vansteelandt et al. (2009)

Ti = {Xi − E(Xi|Si)}Ỹi (6)
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where Ỹi = Yi − ȳ − γ̂1(Ki − k̄) and γ̂1 is the ordinary least
square estimate for γ1 in model (1), which does involve the
genetic marker X. Using this association test with the adjusted
phenotype Ỹi as the target phenotype provides a robust and valid
test for the null hypothesis that there is no direct effect between
the target phenotype Yi and the DSL; i.e., the association between
the target phenotype Yi and the DSL is solely a result of the
association between the secondary phenotype Ki and the DSL.
Adjusting for estimating γ1 based on model (1), the test statis-
tic is distributed chi-square with one degree of freedom under the
null hypothesis of no direct effect of X on Y and has the following
form

(∑n
i= 1 Ti

)2

∑n
i= 1 var(T̃i)

(7)

where

T̃i = Ti − E[{Xi − E(Xi|Si)}Ki]

(
Ki − μ

(i)
k

)

σ2
k

εi (8)

where var(T̃i) is calculated based on the sample variance

of T̃ and εi denotes the residual from model (1). μ
(i)
k =

E(K|Li, Xi, E(Xi|Si)) is the predicted value for K under a linear
regression model for K with the covariates Li, Xi, and E(Xi|Si),
and σ2

k denotes the residual variance in that model. The variance
correction given in Equation (8) is needed to account for estimat-
ing γ1 in the proposed phenotype adjustment Ỹi (Vansteelandt
et al., 2009). Note that Equation (3) is similar to Equation (6), but
Equation (6) contains the genetic marker Xi. Similarly, Equation
(5) is similar to Equation (8), but Equation (8) contains the
genetic marker Xi.

Note that under the alternative hypothesis, the association
between K and Y is different in models (1) and (2), even in the
absence of population admixture. Model (1) represents the causal
effect of K on Y under the alternative hypothesis, but model (2)
does not represent the causal effect of K on Y because there is a
remaining spurious association between X and Y along the path
K ← X→ Y in Figure 1. Under the null hypothesis, this path
does not exist. As a result, the proposed approach is valid for
testing in the absence of population stratification, but may have
less power when either the X→ K or the X→ Y link is strong.

This scenario is explored further in the simulation section of this
paper.

Because the test statistic for the screening step given in
Equation (4) is susceptible to population stratification, we
examined this scenario in the simulation section as well. Principal
component analysis (PCA) can be used in the screening step to
correct for population stratification.

SIMULATIONS
Using simulation studies, we asses the type-1 error rate, the
power, and robustness of this new approach which uses a trait
that estimates γ1 based on model (2) in the screening step and
compare it to the approach proposed by Vansteelandt et al. (2009)
which uses a trait that estimates γ1 based on model (1). Similar to
Vansteelandt et al. (2009), both methods are evaluated under var-
ious conditions. All simulations use a sample size of 1000 trios
and are based on 5000 replications. The simulations are run for
allele frequencies 5, 10, 15, 20, 25, 30, 35, 40, and 45%.

To reflect a realistic setting, the data is simulated to reflect
covariances found in the Framingham Heart Study (Herbert et al.,
2006). The phenotype of interest Y is simulated such that it
resembles FEV1. The secondary phenotype K resembles weight
and the set of common confounding variables resemble height
and age. As seen in Figure 2, the first scenario assumes there is
a direct genetic effect of the marker on the intermediate phe-
notype K and on the common covariate L. Each genetic effect
has a locus specific heritability of 1%. The intermediate pheno-
type K explains 1% of the phenotypic variation in Y , creating an
association between the SNP and Y . The second scenario is sim-
ilar to the first scenario except that there is no genetic effect on
the confounder L. The genetic association with the intermediate
phenotype K is still present. The third scenario is similar to the
first scenario except there is no association between K and Y . The
fourth scenario is similar to the second scenario except that there
is no genetic effect on the intermediate phenotype K.

As seen in Table 1, the type-1 error rate is similar whether
model (1) or model (2) is used to estimate γ1. For lower allele
frequencies, under scenario 1 and 3, the type-1 error rate is 1–2%
higher than expected. For higher allele frequencies under all four
scenarios, the type-1 error rate is 0.5% lower than expected. In
general, the type-1 error rate is close to 0.05 regardless of how
γ1 is estimated. As seen in Table 2, the power is similar whether
model (1) or model (2) is used to estimate γ1 assuming no pop-
ulation admixture. For lower allele frequencies, the method by

FIGURE 2 | The top left figure represents scenario 1. The top right figure
represents scenario 2 which is the same as scenario 1 except that X does
not cause L. The bottom left figure represents scenario 3 which is the same

as scenario 1 except that K does not cause Y . The bottom right figure
represents scenario 4 which is the same as scenario 2 except that X does
not cause K .
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Table 1 | This table displays the type-1 error rate for the test statistics using Model 1 [the Vansteelandt et al. test statistic (Vansteelandt et al.,

2009)] or Model 2 (the screening test statistic) to estimate γ1 for different allele frequencies.

Allele frequency (%) Type-1 error rate when 1 SNP is tested

5 10 15 20 25 30 35 40 45

Scenario 1: Model 1 0.071 0.059 0.049 0.047 0.045 0.047 0.049 0.051 0.050

Scenario 1: Model 2 0.069 0.058 0.048 0.046 0.046 0.046 0.049 0.050 0.051

Scenario 2: Model 1 0.044 0.045 0.045 0.045 0.045 0.045 0.045 0.043 0.045

Scenario 2: Model 2 0.045 0.044 0.045 0.045 0.045 0.043 0.045 0.043 0.045

Scenario 3: Model 1 0.058 0.048 0.043 0.045 0.045 0.046 0.044 0.047 0.044

Scenario 3: Model 2 0.052 0.050 0.044 0.046 0.044 0.046 0.045 0.047 0.046

Scenario 4: Model 1 0.044 0.045 0.045 0.043 0.046 0.044 0.045 0.045 0.042

Scenario 4: Model 2 0.044 0.044 0.045 0.043 0.046 0.044 0.046 0.045 0.042

Table 2 | This table displays the power for the test statistics using Model 1 [the Vansteelandt et al. test statistic (Vansteelandt et al., 2009)] or

Model 2 (the screening test statistic) to estimate γ1 for different allele frequencies.

Allele frequency (%) Power when 1 SNP is tested

5 10 15 20 25 30 35 40 45

Scenario 1: Model 1 0.264 0.363 0.448 0.504 0.576 0.629 0.669 0.692 0.706

Scenario 1: Model 2 0.241 0.361 0.444 0.508 0.581 0.633 0.671 0.696 0.710

Scenario 2: Model 1 0.180 0.302 0.406 0.492 0.564 0.610 0.649 0.667 0.686

Scenario 2: Model 2 0.180 0.302 0.408 0.491 0.563 0.610 0.646 0.666 0.685

Scenario 3: Model 1 0.265 0.365 0.449 0.504 0.581 0.632 0.669 0.696 0.712

Scenario 3: Model 2 0.246 0.361 0.451 0.510 0.586 0.634 0.671 0.699 0.716

Scenario 4: Model 1 0.175 0.304 0.408 0.499 0.558 0.607 0.647 0.671 0.681

Scenario 4: Model 2 0.174 0.303 0.407 0.498 0.557 0.605 0.648 0.672 0.682

Vansteelandt et al. (2009) has higher power and for higher allele
frequencies the proposed method has higher power. However, this
difference in power is negligible; the power never differs by more
than 2%.

The advantage of our approach becomes clear when testing
multiple SNPs. Table 4 shows how the power to detect the causal
SNP for our approach compares to Vansteelandt et al. (2009)
when one SNP has a direct effect on the phenotype as simulated
above in Table 2 and 49 other SNPs are not associated with the
phenotype of interest. Table 1 shows the type-1 error rate in this
scenario where the one SNP has an indirect effect on the phe-
notype as simulated above in Table 1 and 49 other SNPs are not
associated with the phenotype of interest or any of the other phe-
notypes. Table 6 shows how the power to detect the causal SNP
for our approach compares to Vansteelandt et al. (2009) when one
SNP has a direct effect on the phenotype as simulated above in
Table 2 and 99 other SNPs are not associated with the phenotype
of interest. Table 5 shows the type-1 error rate in this scenario
where the one SNP has an indirect effect on the phenotype as sim-
ulated above in Table 1 and 99 other SNPs are not associated with
the phenotype of interest or any of the other phenotypes.

Our approach allows for a screening step similar to the Van
Steen algorithm (Van Steen et al., 2005) where the top 3 SNPs out
of 50 and the top 5 SNPs out of 100 with the highest test statis-
tic given by Equation (4) are chosen. We chose 3 SNPs out of 50

and 5 SNPs out of 100 since this is roughly 5% of the SNPs. After
the top 3 or 5 SNPs are chosen based on the screening step, the
test statistic described in Equation (7) is used to obtain a p-value
which is compared to α/3 and α/5, respectively. We compare our
approach with the screening step to the approach by Vansteelandt
et al. (2009) with a Sidak correction. Since our approach allows
for a screening step, we are better able to detect the SNP that
has a direct causal effect on the target phenotype as seen in
Tables 4, 6.

Note that the power in Tables 4, 6 is lower than that in
Table 2 which is expected since multiple SNPs are tested. For
more common allele frequencies, the power of using the proposed
method with a screening step is more than double that of the
Vansteelandt algorithm with a Sidak correction while the type-1
error rates are similar as seen in Tables 3, 5. Therefore, if multiple
SNPs are tested, the proposed approach has better power to detect
the SNP that has a direct effect on the phenotype of interest.

Since the proposed approach is valid for testing, but may have
less power when either the X→ K or the X→ Y link is strong,
we looked at the effect of increasing the association between X
and K when K influences Y (X→ K) and X and Y (X→ Y).
We increased the correlation between X and K from 0.025 to 0.05
and then 0.075. We also increased the correlation between X and
Y from 0.05 to 0.10 and then 0.15. The power of both statis-
tics remained very close. At most, the power of the Vansteelandt
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et al. statistic (Vansteelandt et al., 2009) was 0.9% better than our
approach.

Since the test statistic for the screening step given in Equation
(4) is susceptible to population stratification, we examined a
few scenarios where population stratification was present. We

simulated half of the subjects to have allele frequency of 5, 5,
20, and 40% and the other half of the subjects to have allele fre-
quency of 10, 45, 25, and 45%, respectively. Similar to Tables 3, 4,
one SNP has a direct effect on the phenotype of interest and 49
other SNPs are not associated with the phenotype of interest in

Table 3 | This table displays the significance rate when one SNP does not have a direct effect on the phenotype Y but acts as seen in Figure 2

without the arrow from X to Y and 49 SNPs are not associated with the phenotype Y.

Allele frequency (%) Type-1 error rate when 50 SNPs are tested

5 10 15 20 25 30 35 40 45

Scenario 1: Model 1 0.0018 0.0008 0.0008 0.0006 0.0004 0.0006 0.0008 0.0006 0.0010

Scenario 1: Model 2 0.0014 0.0006 0.0002 0.0006 0.0012 0.0012 0.0006 0.0012 0.0006

Scenario 2: Model 1 0.0014 0.0006 0.0008 0.0012 0.0004 0.0008 0.0004 0.0008 0.0002

Scenario 2: Model 2 0.0004 0.0010 0.0012 0.0016 0.0012 0.0006 0.0010 0.0004 0.0006

Scenario 3: Model 1 0.0018 0.0006 0.0008 0.0014 0.0006 0.0010 0.0008 0.0008 0.0002

Scenario 3: Model 2 0.0014 0.0006 0.0008 0.0016 0.0012 0.0010 0.0012 0.0004 0.0006

Scenario 4: Model 1 0.0014 0.0006 0.0008 0.0012 0.0004 0.0008 0.0004 0.0008 0.0002

Scenario 4: Model 2 0.0008 0.0010 0.0013 0.0016 0.0012 0.0006 0.0010 0.0004 0.0006

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 is used estimate γ1 with a screening step where the three SNPs with the largest test statistic

given by Equation (8) are tested.

Table 4 | This table displays the power when one SNP has a direct effect on the phenotype Y and 49 SNPs are not associated with the

phenotype Y.

Allele frequency (%) Power when 50 SNPs are tested

5 10 15 20 25 30 35 40 45

Scenario 1: Model 1 0.031 0.039 0.073 0.075 0.120 0.150 0.176 0.191 0.191

Scenario 1: Model 2 0.038 0.073 0.133 0.188 0.255 0.321 0.356 0.368 0.431

Scenario 2: Model 1 0.013 0.030 0.040 0.074 0.110 0.112 0.158 0.162 0.172

Scenario 2: Model 2 0.015 0.056 0.117 0.18 0.236 0.292 0.344 0.356 0.378

Scenario 3: Model 1 0.031 0.039 0.074 0.083 0.121 0.130 0.185 0.191 0.201

Scenario 3: Model 2 0.038 0.073 0.136 0.194 0.257 0.312 0.368 0.370 0.445

Scenario 4: Model 1 0.012 0.030 0.063 0.076 0.110 0.113 0.159 0.176 0.177

Scenario 4: Model 2 0.015 0.057 0.107 0.181 0.235 0.290 0.344 0.376 0.416

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 is used estimate γ1 with a screening step where the three SNPs with the largest test statistic

given by Equation (8) are tested.

Table 5 | This table displays the significance rate when one SNP does not have a direct effect on the phenotype Y but acts as seen in Figure 2

without the arrow from X to Y and 99 SNPs are not associated with the phenotype Y.

Allele frequency (%) Type-1 error rate when 100 SNPs are tested

5 10 15 20 25 30 35 40 45

Scenario 1: Model 1 0.0010 0.0006 0.0004 0.0006 0.0007 0.0006 0.0002 0.0004 0.0005
Scenario 1: Model 2 0.0008 0.0004 0.0004 0.0006 0.0006 0.0006 0.0008 0.0002 0.0006
Scenario 2: Model 1 0.0006 0.0000 0.0008 0.0000 0.0000 0.0004 0.0002 0.0006 0.0002
Scenario 2: Model 2 0.0004 0.0004 0.0008 0.0002 0.0004 0.0006 0.0010 0.0004 0.0008
Scenario 3: Model 1 0.0010 0.0010 0.0002 0.0004 0.0000 0.0004 0.0002 0.0008 0.0000
Scenario 3: Model 2 0.0008 0.0004 0.0002 0.0002 0.0002 0.0006 0.0002 0.0002 0.0004
Scenario 4: Model 1 0.0006 0.0003 0.0004 0.0006 0.0007 0.0006 0.0002 0.0004 0.0005
Scenario 4: Model 2 0.0002 0.0004 0.0004 0.0006 0.0006 0.0006 0.0008 0.0002 0.0006

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 is used estimate γ1 with a screening step where the five SNPs with the largest test statistic

given by Equation (8) are tested.
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Table 6 | This table displays the power when one SNP has a direct effect on the phenotype Y and 99 SNPs are not associated with the

phenotype Y.

Allele frequency (%) Power when 100 SNPs are tested

5 10 15 20 25 30 35 40 45

Scenario 1: Model 1 0.014 0.028 0.049 0.048 0.084 0.109 0.111 0.147 0.142
Scenario 1: Model 2 0.021 0.056 0.099 0.136 0.196 0.262 0.277 0.332 0.351
Scenario 2: Model 1 0.004 0.018 0.040 0.055 0.076 0.099 0.098 0.116 0.123
Scenario 2: Model 2 0.014 0.042 0.088 0.145 0.178 0.246 0.249 0.284 0.332
Scenario 3: Model 1 0.018 0.028 0.038 0.049 0.087 0.094 0.112 0.128 0.139
Scenario 3: Model 2 0.023 0.057 0.099 0.137 0.198 0.229 0.283 0.315 0.368
Scenario 4: Model 1 0.006 0.018 0.040 0.041 0.076 0.086 0.098 0.116 0.123
Scenario 4: Model 2 0.011 0.042 0.088 0.126 0.178 0.209 0.249 0.284 0.332

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 is used estimate γ1 with a screening step where the five SNPs with the largest test statistic

given by Equation (8) are tested.

Table 7 | This table displays the significance level when one SNP has

an indirect effect on the phenotype Y as seen in Figure 2 without the

arrow from X to Y and 49 SNPs are not associated with the

phenotype Y.

Allele frequency Type-1 error rate when the following population

stratification is present

5 and 10% 5 and 45% 20 and 25% 40 and 45%

Scenario 1: Model 1 0.0012 0.0014 0.0011 0.0013

Scenario 1: Model 2 0.0006 0.0006 0.0004 0.0005

Scenario 2: Model 1 0.0010 0.0006 0.0004 0.0006

Scenario 2: Model 2 0.0012 0.0013 0.0018 0.0020

Scenario 3: Model 1 0.0009 0.0002 0.0004 0.0011

Scenario 3: Model 2 0.0008 0.0012 0.0016 0.0008

Scenario 4: Model 1 0.0006 0.0014 0.0008 0.0009

Scenario 4: Model 2 0.0009 0.0006 0.0006 0.0012

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 to is used

estimate γ1 in a screening step where the three SNPs with the largest test

statistic given by Equation (4) are tested. Population stratification is present such

that half of the subjects have one of the allele frequencies listed and the other

half of the subjects have the other allele frequency listed.

Tables 7, 8. Similar to Tables 5, 6, one SNP has a direct effect
on the phenotype of interest and 99 other SNPs are not associ-
ated with the phenotype of interest in Tables 9, 10. As seen in
Tables 7, 9, the type-1 error rates are similar for both methods. As
seen in Tables 8, 10, even though there is some population strat-
ification present, the proposed method with a screening step still
performs better than the Vansteelandt algorithm, especially when
the allele frequencies are more common.

DATA ANALYSIS: AN APPLICATION TO THE FRAMINGHAM
STUDY
We evaluated the practical relevance of the proposed adjust-
ment principle by an application to the Framingham Heart Study
with 1400 probands (Herbert et al., 2006). For the target phe-
notype, we selected the lung-function measurement FEV1. For
the secondary phenotype K, we selected height. Gender, and age

Table 8 | This table displays the power when one SNP has a direct

effect on the phenotype Y and 49 SNPs are not associated with the

phenotype Y.

Allele frequency Power when the following population

stratification is present

5 and 10% 5 and 45% 20 and 25% 40 and 45%

Scenario 1: Model 1 0.025 0.070 0.111 0.171

Scenario 1: Model 2 0.064 0.199 0.248 0.394

Scenario 2: Model 1 0.016 0.070 0.103 0.163

Scenario 2: Model 2 0.040 0.205 0.227 0.366

Scenario 3: Model 1 0.025 0.070 0.113 0.172

Scenario 3: Model 2 0.064 0.202 0.249 0.396

Scenario 4: Model 1 0.016 0.064 0.103 0.163

Scenario 4: Model 2 0.040 0.186 0.227 0.366

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 to is used

estimate γ1 with a screening step where the three SNPs with the largest test

statistic given by Equation (4) are tested. Population stratification is present such

that half of the subjects have one of the allele frequencies listed and the other

half of the subjects have the other allele frequency listed.

represent L, the collection of common risk factors between FEV1
and height. For rs2415815 a SNP associated with both height and
FEV1, the test statistic equals 0.044 with corresponding p-value
equal 0.83. As a result, we fail to reject the null hypothesis and
conclude that there is no evidence that the SNP acts directly on
FEV1 other than via body height.

DISCUSSION
Our proposed FBAT assesses the direct genetic effect of a marker
locus on the phenotype of interest, other than through another
correlated phenotype. The adjustment is based on the conditional
mean model approach and can be incorporated into the FBAT-
approach in a straightforward fashion. The power of the approach
is assessed by simulation studies and shown to be similar to the
Vansteelandt et al. method when only one SNP is being tested
and superior when multiple SNPs are being tested (Vansteelandt
et al., 2009). Unlike the Vansteelandt et al. method, this method
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Table 9 | This table displays the significance level when one SNP has

an indirect effect on the phenotype Y as seen in Figure 2 without the

arrow from X to Y and 99 SNPs are not associated with the

phenotype Y.

Allele frequency Type-1 error rate when the following population

stratification is present

5 and 10% 5 and 45% 20 and 25% 40 and 45%

Scenario 1: Model 1 0.0011 0.0005 0.0007 0.0003

Scenario 1: Model 2 0.0009 0.0006 0.0008 0.0003

Scenario 2: Model 1 0.0004 0.0015 0.0009 0.0005

Scenario 2: Model 2 0.0003 0.0011 0.0012 0.0005

Scenario 3: Model 1 0.0004 0.0010 0.0008 0.0004

Scenario 3: Model 2 0.0006 0.0009 0.0010 0.0006

Scenario 4: Model 1 0.0008 0.0013 0.0007 0.0004

Scenario 4: Model 2 0.0010 0.0008 0.0011 0.0006

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 to is used

estimate γ1 with a screening step where the five SNPs with the largest test

statistic given by Equation (4) are tested. Population stratification is present such

that half of the subjects have one of the allele frequencies listed and the other

half of the subjects have the other allele frequency listed.

uses a screening step and has the unique advantage in situations
in which a large number of SNPs are tested for a direct effect on
the phenotype of interest. Since the number of tests will be much
smaller than the total number of SNPs, this will lead to substan-
tial reduction in the adjustment for multiple-comparisons and
will result in improved overall statistical power. In this process,
the screening step works under the assumption of no population
admixture, but the final analysis of the selected SNPs is robust
against it.

While we considered several causal scenarios, if the causal rela-
tionships assumed in the DAGs are not true this could cause
problems for the proposed method. For example, a causal arrow
K ← Y or L→ Y could introduce spurious association for this
method. Therefore, one needs to makes sure that the assumptions
of the DAG are met before using the proposed approach. While
the simulations considered 50 and 100 SNPs, a realistic appli-
cation could involve thousands of GWAS SNPs. This leads to
extreme multiple test corrections and may lead to very different
behavior than the behavior observed in the simulation studies
(Morris and Elston, 2011). Furthermore, if phenotypes of the
founders are known, the proposed method could perform poorly
compared to population-based approaches.

For the screening step in the Simulations section, we chose 3
out of 50 and 5 out of 100 SNPs since this is roughly 5% of the
tested SNPs. Another number of SNPs could be chosen for the
screening step. Although, if the majority of SNPs are chosen in the
screening step (i.e., 40 out of 50 SNPs), this increases the num-
ber of multiple comparisons and can decrease power. If too few
SNPs are chosen in the screening step (i.e., 1 out of 50 SNPs), this
decreases the number of multiple comparisons, but one may fail
to detect the causal SNP since too few SNPs were chosen. Care
needs to be given to the number of SNPs chosen in the screening
step (Van Steen et al., 2005). One cannot simply choose different
numbers of SNPs for the screening step until significant results

Table 10 | This table displays the power when one SNP has a direct

effect on the phenotype Y and 99 SNPs are not associated with the

phenotype Y.

Allele frequency Power when the following population

stratification is present

5 and 10% 5 and 45% 20 and 25% 40 and 45%

Scenario 1: Model 1 0.022 0.050 0.073 0.157

Scenario 1: Model 2 0.044 0.141 0.170 0.324

Scenario 2: Model 1 0.014 0.046 0.071 0.148

Scenario 2: Model 2 0.036 0.137 0.161 0.298

Scenario 3: Model 1 0.022 0.050 0.076 0.159

Scenario 3: Model 2 0.045 0.143 0.174 0.326

Scenario 4: Model 1 0.014 0.046 0.071 0.148

Scenario 4: Model 2 0.036 0.137 0.161 0.298

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 to is used

estimate γ1 with a screening step where the five SNPs with the largest test

statistic given by Equation (4) are tested. Population stratification is present such

that half of the subjects have one of the allele frequencies listed and the other

half of the subjects have the other allele frequency listed.

are found since this will inflate the type-1 error rate (Van Steen
et al., 2005).
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APPENDIX
The following proof shows that the test statistics in the first and
second screening steps are uncorrelated under the null hypothe-
sis. As discussed in the introduction and methods sections, Ỹ =
Y − ȳ − γ1K − k̄ is the adjusted phenotype for the effect that the
phenotype K has on the target phenotype Y . For ease of notation,
we will use Ỹ = Y − γ1(K) for this proof. Suppose that the null
hypothesis is true that X has no effect on Y other than through
K. Let

E(Y |X, K, U) = E(Y |K, U) = �{w(U)+ γ1K} (9)

where � equals the identity link or exponential link and w(U) is
an arbitrary function. Without loss of generality, for the following
proof, let � equal the identity link. This model does not involve
X because we are working under the null hypothesis of no direct
effect. Furthermore, the parameter γ1 in this model is the same as
in model

E(Y |X, K, L, S) = w∗(X, L, S)+ γ1K (10)

for some function w∗(X, L, S) of (X, L, S), which can be seen
by inferring this model from model (9) upon noting that
Y ⊥⊥ (L, S)|X, K, U and U ⊥⊥ K|L, X, S. Using model (9) and
model (10) and noting that Y ⊥⊥ S|X, K, U and X ⊥⊥ U|S,
then

E[Ỹ(X − E[X|S])] = E[(Y − γ1K)(X − E[X|S])]
= E[w(U)(E[X|S, U] − E[X|S])] = 0 (11)

As a result of Equation (11) and model (9), the
Cov(Ỹ(X − E[X|S]), ỸE[X|S]) can be written as follows

Cov(Ỹ(X − E[X|S]), ỸE[X|S])
= E[(Y − γ1K)2E(X|S)(X − E[X|S])]
= E[(Y − E(Y |X, K, U)+ w(U))2E(X|S)(X − E[X|S])]
= Part1 + Part2 + Part3

where
Part1 = E[(w(U)2) E[X|S](X − E[X|S])]
Part2 = E[(2(w(U)(Y − E[Y |X, K, U])) E[X|S](X − E[X|S])]
Part3 = E[((Y − E[Y |X, K, U])2) E[X|S](X − E[X|S])] (12)

We will show that the Cov(Ỹ(X − E[X|S]), ỸE[X|S]) = 0 by
showing that each part of the above equation equals zero.

Part1 = E[w(U)2E[X|S](X − E[X|S])]
= E[w(U)2E[X|S](E[X|S, U] − E[X|S])] = 0 (13)

because X ⊥⊥ U|S.

Part2 = E[2w(U)(Y − E[Y |X, K, U])E[X|S](X − E[X|S])] = 0
(14)

because Y ⊥⊥ S|X, K, U .

Part3 = E[(Y − E[Y |X, K, U])2E[X|S](X − E[X|S])]
= E[E[X|S](X − E[X|S])Var[Y |K, U]] (15)

because Y ⊥⊥ S|X, K, U and Y ⊥⊥ X|K, U .
Assuming that Var(Y |K, U) is constant, as we do throughout,

it is immediate that the term Part3 is zero. As a result, this shows
that Cov(Ỹ(X − E[X|S]), ỸE[X|S]) = 0.
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