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Olson’s conditional-logistic model retains the nice property of the LOD score formulation
and has advantages over other methods that make it an appropriate choice for complex
trait linkage mapping. However, the asymptotic distribution of the conditional-logistic
likelihood-ratio (CL-LR) statistic with genetic constraints on the model parameters is
unknown for some analysis models, even in the case of samples comprising only
independent sib pairs. We derive approximations to the asymptotic null distributions of
the CL-LR statistics and compare them with the empirical null distributions by simulation
using independent affected sib pairs. Generally, the empirical null distributions of the
CL-LR statistics match well the known or approximated asymptotic distributions for all
analysis models considered except for the covariate model with a minimum-adjusted
binary covariate. This work will provide useful guidelines for linkage analysis of real data
sets for the genetic analysis of complex traits, thereby contributing to the identification of
genes for disease traits.
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INTRODUCTION
In the study of human data by genetic linkage analysis, the tradi-
tional LOD score method, also called a “parametric” or “model-
based” method because it requires information about an assumed
genetic model, is efficient for single-gene Mendelian traits but is
much less well suited for the analysis of traits with complex non-
Mendelian modes of inheritance. In the absence of a well-defined
disease inheritance model, alternative robust “non-parametric,”
“weakly-parametric” or “model-free” linkage methods, which do
not require the specification of a disease model, have been used
for deciphering the genetic basis of complex traits.

One such approach that has been extremely useful in the anal-
ysis of human genetic diseases is the affected sib pair (ASP) study
design, as in tests based on the mean proportion of identity-by-
descent (IBD) sharing (Blackwelder and Elston, 1985) or tests
based on the likelihood-ratio (LR) defined by Risch (1990a,b)
that uses the same one-parameter model to analyze ASPs or any
other affected unilineal relative pairs by producing a LOD score.
Holmans (1993) extended Risch’s maximum LOD score method
into a two-parameter model for ASPs, but with the genetic con-
straints required for single locus Mendelian inheritance; here
we call this the Risch and Holmans (RH) model. Olson (1999)
proposed a general conditional-logistic (CL) model that com-
bines several extensions and modifications (Cordell et al., 1995;
Rogus and Krolewski, 1996; Greenwood and Bull, 1997, 1999;
Olson, 1997; Lunetta and Rogus, 1998) into a unified framework:
the likelihood is conditioned on sampling affected relative pairs
(ARPs) and the parameterization is done in terms of the log-
arithm of allele sharing specific relative risks, instead of allele
sharing probabilities as in the RH model. The CL model not only
retains the “nice” property of the LOD score formulation of the

RH model, i.e., it is additive over independent sets of data, but it
also has advantages over the RH model. It is valid for any type of
ARPs with the same allele sharing specific parameters. In contrast,
the RH model is parameterized in terms of relative-type specific
IBD probabilities, so it can accommodate only one ARP type at a
time. The other advantage of this CL model is that it can allow for
incorporation of covariate effects by re-parameterizing the model
in terms of the logarithms of genetic relative risk parameters. A
modification of this original two-parameter CL model into a one-
parameter model was proposed by Goddard et al. (2001). Linkage
analysis using the CL model has been proven to be an effective
tool for evaluating genetic linkage (Goddard et al., 2001; Arcos-
Burgos et al., 2004; Reck et al., 2005; Doan et al., 2006; Rybicki
et al., 2007; Stein et al., 2007; Zandi et al., 2007; Song et al., 2011).

One limitation of the general two-parameter CL model is the
unknown asymptotic distribution of certain cases when single-
locus genetic constraints are imposed on the model parameters,
even in the case of analyzing only independent ASPs. Because of
the genetic constraints (Holmans, 1993), the distribution of the
CL-LR (i.e., 2ln(10) ∗ LOD score) statistics for linkage are mix-
tures of χ2 distributions that are difficult to specify. The use of
simulation methods to obtain p-values has been recommended
to ensure accuracy of the inference in complex situations (Olson,
1999). Although gene-dropping techniques can be used for this
purpose, the ideal method to infer the statistical significance of a
test statistic is to compare it with its permutation distribution.
When analyzing affected pairs alone, however, permuting the
allele sharing of relative pairs does not lead to a useful permuta-
tion distribution. As an alternative, Sinha et al. (2006) developed
regression prediction models that provide more accurate p-values
under the CL model framework. However, their results are limited
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to the cases they evaluated, so it is not a general solution for the
unknown distribution of the CL-LR statistic.

Here, we first derive approximations to the asymptotic dis-
tributions of the CL-LR statistics when using the constrained
two-parameter analysis model for independent ASPs. The deriva-
tion is done under the null hypothesis of no linkage and assuming
complete marker information, by following Self and Liang (1987),
as done for the RH model (Holmans, 1993; Whittemore and
Tu, 1998; Feng et al., 2006). Next, we study the empirical null
distributions of the CL-LR statistics by simulation, again for inde-
pendent ASPs, examining several analysis models with different
constraints on the model parameters when using the LODPAL
program in the S.A.G.E. package (2012). Then, we compare these
distributions to the derived asymptotic distributions - either
known or approximated in the previous step.

MATERIALS AND METHODS
CONDITIONAL-LOGISTIC MODEL
We first briefly describe the original two-parameter CL model
from Olson (1999). The unconditional (prior) probability that a
pair of type r relatives shares i alleles IBD is denoted as fri, and the
estimated probability that the pair shares i alleles IBD conditional

on the available marker data Im is denoted as f̂ri. Then the likeli-
hoods under the null hypothesis (H0) of no linkage and under the
alternative (H1) can be written as

H0 : L (λ1 = 1,λ2 = 1) = P (Im|r)

and

H1 : L (λ1,λ2) = P (Im|r)

∑
i = 0, 1, 2

λi f̂ri

∑
i = 0, 1, 2

λifri
,

where λi is the relative risk to an individual who shares i alleles
IBD (i =0, 1, 2) with an affected relative: equating with the nota-
tion used in the RH model,λ0 = λu(= 1) is the relative risk for
unrelated individuals, λ1 = λo is the offspring relative risk, and
λ2 = λm is the MZ-twin relative risk. The CL model is param-
eterized in terms of the logarithms of relative risk, so λi = eβi .
Under the null hypothesis of no linkage, the parameters (β1, β2) =
(0, 0) correspond to Risch’s allele sharing probability parameters
(z1, z2) = (½, ¼), where z1 and z2 are the respective probabilities
an ASP shares 1 and 2 alleles IBD at a locus. The LR contribu-

tion for an ARP of type r is LR =
∑

i = 0 1 2 λi f̂ri∑
i = 0 1 2 λifri

, and for a sample

of independent ARPs the LOD score is obtained by summing the
base-10 logarithms of the pair-specific LRs. For the test of linkage,
this LOD score is maximized over a possible range of the param-
eter space that depends on the constraints imposed, as discussed
in the following section. For details of the derivation of the LR
and the equivalence of the LR whether the parameterization is in
terms of allele sharing probabilities or allele sharing relative risks,
we direct the reader to Olson (1999).

When the parameters β1 and β2 are completely free without
any constraints, the parameter space is the whole 2-dimensional

plane with two coordinate axes defined by the two parameters.
The values of the two parameters under the null hypothesis fall
into interior points of this parameter space, and so the CL-LR
statistic under the null hypothesis of no linkage is distributed as
χ2

2 asymptotically. We refer to this model as the unconstrained
two-parameter model.

When the (pure single-locus etiology) genetic constraints
(Holmans, 1993) are imposed, the parameter β1 and β2 are con-
strained to be β1 ≥ 0 and β2 ≥ loge

(
2eβ1 − 1

)
, or equivalently,

λ1 ≥ 1 and λ2 ≥ 2λ1 − 1, to reflect the possible allele sharing
probabilities for ASPs. In this case, the values of the parameters
under the null hypothesis are on the edge of the parameter space,
so that the LR statistic is asymptotically distributed as the mixture( 1

2 − c
)
χ2

0 + 1
2χ2

1 + cχ2
2 with the mixing proportion c represent-

ing the probability that the allele sharing estimates fall inside a
triangle that is part of the two-dimensional plane. We refer to this
model as the constrained two-parameter model.

MIXING PROPORTION c
The mixing proportion c is a function of the expected informa-
tion matrix. For the RH model with allele sharing parameters, it
has been derived to be c ≈ 0.098 when there is complete marker
information (Holmans, 1993; Whittemore and Tu, 1998; Feng
et al., 2006), regardless of the choice of any two free parame-
ters, i.e., (z0, z1), (z0, z2), or (z1, z2). However, for the CL model
with the parameters in terms of the logarithms of relative risk, this
value is unknown. We apply the method of Self and Liang (1987),
as for the RH model, to derive the mixing proportion c for the LR
statistic in the CL genetic constrained, two-parameter model.

As shown in Figure 1, let (β1,β2) represent a point in the
2-dimensional plane with two coordinate axes that are defined
by the parameters β1 and β2, constrained to be β1 ≥ 0, β2 ≥
loge

(
2eβ1 − 1

)
(gray area). We first define the three vertices of

possible triangles in the (β1,β2) plane. Let N = (0, 0) be the
null point, A denote an additive inheritance point, and D a
dominant inheritance point. The point A will be on the line
β2 = loge

(
2eβ1 − 1

)
. We define D =(0, β2) as a point on the

β2 axis where the value of β2 is the same as the point A, as in
Figure 1. Let I be the Fisher information matrix of the likelihood

function L
(

data|β̂1, β̂2

)
evaluated at the null values. Assuming

complete information, the variance-covariance matrix of the

parameters is the inverse of I, i.e., I−1 =
(

6 4
4 8

)
. Let P�PT be

the spectral decomposition of I−1, and YN , YA, and YD be the
orthogonally transformed vertices of N, A and D such that Y =
�1/2PT

(
β̂ − N

)
. Let yN , yA, and yD be the rotated vertices of YN ,

YA and YD such that YA lies on the β1 axis and the ray defined by
two points YN and YD becomes the hypotenuse in the upper right
quadrant of the plane. Now, the three rotated vertices yN , yA, and
yD define the triangle area in the orthogonal space, and the angle
θ formed by the two rays −−→yN yA and −−→yN yD represents the mixing
proportion c. Letting the end point of the hypotenuse be (x, y),
θ = arctan

( y
x

)
and c = θ

2π
.

If a model with no dominance genetic variance is to fit, then
β2 = loge

(
2eβ1 − 1

)
, as shown by a solid red line in Figure 1.

Owing to the fact that this line is not straight, the angle θ differs
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FIGURE 1 | The three points (A1, A2, and A3) used to approximate the

relation between β1 and β2 and the upper bound of β1 under genetic

constraints in the CL model. The corresponding dominant points are
denoted (D1, D2, and D3), and the shaded area is the possible triangle area
in the CL model.

according to the choice of the point A on the line. The point
A depends on both the assumption we make about the relation
between β1 and β2, and the upper value of β1 that is chosen.
We consider 3 different points for A, denoted A1, A2, and A3,
as shown in Figure 1. First, under the A1 assumption, we take
the exact relation between β1 and β2, i.e., β2 = loge

(
2eβ1 − 1

)
,

and approximate the angle θ under the assumption that β1 repre-
sents the allele sharing probability z1, which has maximum value
½. Second, with the A2 assumption, we approximate a straight
line about the null value using a Taylor series expansion, i.e.,
β2 = 2β1 (dotted red line in Figure 1). In this case, the upper
bound of β1 is irrelevant. This is equivalent to using the trian-
gle obtained from the constraints on λ, i.e., λ2 = 2λ1−1. Third,
with the A3 assumption, we take the exact relation between β1

and β2 and approximate the angle θ under the assumption that
β1 can go up to 1. This is equivalent to assuming the maximum
offspring relative risk λ1 = λ0 ≈ 2.718. We derive the resulting
mixing proportions for these 3 cases and expand them for more
values in the results section.

ONE-PARAMETER MODEL
Goddard et al. (2001) proposed to modify the two-parameter
model into a one-parameter model on the basis of the min-
max model developed by Whittemore and Tu (1998). In
this one-parameter model, the constraint λ2 = (π + 1)λ1−π

was imposed, where π is a parameter associated with the
mode of inheritance and is fixed to be 2.634, i.e., β2 =
loge

(
3.634eβ1 − 2.634

)
(Olson, 2002). This constraint assumes

a genetic model approximately halfway between a recessive and
a dominant mode of inheritance, which has been shown to be
usually more powerful for most genetic models.

For this one-parameter model, the CL-LR statistic is known
to be asymptotically distributed as a χ2

1 when β1 is free with-
out any constraints, because its null value is an interior point of
the parameter line. Even though Whittemore and Tu’s minmax
constraint is already imposed to make it a one-parameter model,
we refer to this model as the unconstrained one-parameter model
because β1 is completely free without any genetic constraints.
When the parameter space for β1 is constrained by β1 ≥ 0 (equiv-
alently λ1 ≥ 1) to reflect non-negative allele sharing probabilities,
the CL-LR statistic is asymptotically distributed as a 50:50 mix-
ture of a point mass at 0 and χ2

1. We refer to this as the constrained
one-parameter model.

COVARIATES
If there are K covariates in the model, assuming a log-linear
(i.e., multiplicative) effect of the covariate on genetic relative risk,
which is a common, natural, and flexible way to model relative
risk in general epidemiology (Olson, 1999), the relative risk is

λi = exp
(
βi + ∑K

j=1 δijxj

)
, where the δij are the two parameters

associated with the covariate xj, with β0 = δ0j = 0. Therefore,
each covariate added requires two additional parameters for the
two-parameter model but only one additional parameter for the
one-parameter model.

When there are no constraints imposed on the covariate
parameters, with the addition of K covariates the CL-LR statistic
is asymptotically distributed as χ2

2(k+1)
in the unconstrained two-

parameter model. For the triangle-constrained two-parameter
model, with the addition of K covariates the distribution of the
CL-LR statistic is a mixture of a point mass at 0 and several χ2s
with up to 2(K + 1) df, asymptotically. However, no covariates
are allowed in the two-parameter model in the LODPAL program
in the S.A.G.E. package (2012), owing to the practical difficulty of
maximizing the likelihood of models with two additional parame-
ters for each covariate. Therefore, in this study we did not consider
the two-parameter models with covariates.

For the one-parameter model, addition of covariates requires
one additional parameter for each covariate. With the addition
of K covariates, without any additional constraints imposed on
covariate parameters the CL-LR statistic is asymptotically dis-
tributed as χ2

k+1 in the unconstrained one-parameter model.
Addition of K covariates in the constrained one-parameter
model, again without any additional constraints imposed on the
covariate parameters, gives a CL-LR statistic with a distribution
that is asymptotically a 50:50 mixture of a χ2 with K df and a
χ2 with K + 1 df, (Goddard et al., 2001). In this study, we only
included the constrained one-parameter model with covariate(s),
and this is referred to as the covariate model.

Depending on additional constraints on the covariates, we
define two covariate models. By including a “mean-centered”
covariate (x − x̄), no constraints on the δ1j are required (Olson,
1999), so the CL-LR statistic is asymptotically distributed as a
50:50 mixture of two χ2s depending on the number of such
covariates, as stated previously. This is reasonable for many
covariates, in particular continuous covariates such as age. We
refer to this as the unconstrained covariate model.

However, for some covariates, such as indicator variables that
represent different populations or a binary factor, the offset from
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the minimum value of the covariate, i.e., “minimum-adjusted,”
[xa = x − min(x)] is included in the model, so that the smallest
value of the covariate equals zero. For such covariates, the con-
straint min

xaj > 0

∑
j xajδ1j ≥ −β1 is applied; it is not then feasible to

derive the asymptotic distribution of the CL-LR statistic under
the null hypothesis theoretically, since it depends on the distribu-
tion of the covariate values in the given data. We refer to this as
the constrained covariate model.

SIMULATIONS
To examine the precision of the expected asymptotic distribu-
tions in the previous section, we used simulation to determine
the empirical null distributions of the CL-LR statistics. We con-
sidered 6 different analysis models described in the previous
section. We considered the covariate model with just one covari-
ate. For the unconstrained covariate model, we included one
with a mean-centered continuous covariate. For the constrained
covariate, we included one with a minimum-adjusted binary
covariate.

We first simulated 100,000 replicates of 500 nuclear families
having two parents and two affected siblings, i.e., 500 indepen-
dent ASPs. For each case, one fully informative unlinked marker
was simulated by assigning a unique allele to each founder, and
then the alleles were randomly segregated to all offspring. For
covariate models, under the null hypothesis of no linkage and
no covariate effect, the covariate was simulated such that it was
correlated with affection status but not with genotype. A random
continuous value from a normal distribution with mean 0 and
variance 1 was first assigned to each individual, regardless of affec-
tion status. Then a continuous covariate was simulated by adding
a pre-fixed covariate effect to this value. A binary covariate was
generated by dichotomizing this continuous covariate such that
its population prevalence was 0.2. Given the covariate values for
each member of the pair, the pair-level covariate for a pair was
created by summing the two individual-level covariates. The con-
tinuous pair-wise covariate values for the unconstrained covariate
model are mean-centered, and the binary pair-wise values for
the constrained covariate model are minimum-constrained when
they are included in the analysis.

To check the performance of the expected asymptotic null dis-
tribution for each analysis model under different sample sizes,
we also simulated 100,000 replicates of 30, 50, and 100 fami-
lies, as above. Additionally, the precision of the approximated
asymptotic null distributions of the CL-LR statistics for the con-
strained two-parameter model was compared with the empirical
null distributions under different marker information levels. We
simulated 100,000 replicates of 100 independent ASPs for markers
with 2, 4, 8, and 20 equally frequent alleles. These numbers corre-
spond to PIC values of 0.38, 0.70, 0.86, and 0.95, respectively. We
checked two cases, when both parents are typed and when neither
is typed.

The empirical p-value corresponding to the LOD score was
determined by assigning p = (r + 1)/(100, 000 + 1) to the rth of
the ranked LOD scores from 100,000 replicates. The asymptotic
p-value corresponding to the same LOD score was calculated
using the known or approximated asymptotic distribution, as
described above.

RESULTS
ASYMPTOTIC NULL DISTRIBUTIONS UNDER TRIANGLE CONSTRAINTS
The resulting triangles under assumption A1 are graphically
illustrated in Figure 2, showing the steps to derive the mixing
proportion for a given value of A. In this figure, the possi-
ble triangle space for ASPs on the original (β1, β2) plane is
in black, formed by the three vertices (N, A, D) = {[0, 0],
[½, loge(2e1/2 − 1)], [0, loge(2e1/2 - 1)]}. Then, we have

YN =
(

11.12 0
0 2.88

)1/2 (
0.615 −0.788
0.788 0.615

)T (
0
0

)
=

(
0
0

)
,

YA =
(

11.12 0
0 2.88

)1/2 (
0.615 −0.788
0.788 0.615

)T (
0.5

loge

(
2e0.5 − 1

)
)

=
(

3.213
0.199

)
,

YD =
(

11.12 0
0 2.88

)1/2 (
0.615 −0.788
0.788 0.615

)T (
0

loge

(
2e0.5 − 1

)
)

=
(

2.187
0.868

)
;

and then yN =
(

0
0

)
, yA =

(
3.219

0

)
, and yD =

(
2.236
0.731

)
.

The corresponding orthogonally transformed triangle (YN , YA,
YD) is in blue, and the green dashed triangle (yN ,yA,yD) is the
same orthogonally transformed triangle after rotation such that
YA lies on the β1 axis and the ray defined by YN and YD becomes
the hypotenuse in the upper right quadrant of the plane. Then
the angle θ formed by the two rays −−→yN yA and −−→yN yD in the green
triangle is arctan

( 0.731
2.236

) ≈ 0.316, and the corresponding mixing

proportion c1 is θ
2π

≈ 0.050. By following the same steps, we
find the mixing proportions to be c2 ≈ 0.044 and c3 ≈ 0.054,
respectively, under the A2 and A3 assumptions.

FIGURE 2 | The distribution of constrained CL-LR statistics under the

A1 approximation. The black area (N, A, and D) is the original possible
triangle space for ASPs, the blue area (YN , YA, and YD ) is the orthogonally
transformed triangle, and the green dashed triangle (yN , yA, and yD ) is the
space after rotation. The angle θ formed by the two rays yNyA and yNyD

represents the mixing probability c.
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The value of c2 obtained from the A2 assumption provides the
minimum bound for c and, from the A1 and A3 assumptions, we
can see that the mixing proportion value c becomes larger as we
take a larger upper value for β1. Figure 3 shows how the value of
c depends on the value of the parameter β1. It can be seen that
the maximum value converges to around 0.070, which is smaller
than the value for the RH model. The critical LOD score values
corresponding to the test sizes 0.05, 0.01, 0.001, 0.0001 [the clas-
sical “LOD score 3” criterion given by Morton (1955)], 0.000049
[significant evidence for linkage given by Lander and Kruglyak
(1995)] and 0.00001 are given in Table 1 for the different mixing
proportion values. Given the same size of test, the critical LOD
scores for the CL model are smaller than those for the RH model.
Therefore, the null hypothesis is more likely to be rejected using
the CL-LR test, and the CL-LR statistic is more powerful.

EMPIRICAL NULL DISTRIBUTIONS
Two-parameter model
In Figure 4, we show plots of –log10(empirical p-value) against
–log10(asymptotic p-value) corresponding to the observed CL-
LR statistics with a sample size 500 for two two-parameter
models. For the unconstrained model, the empirical p-values well
matched the asymptotic p-values from the expected chi-square

FIGURE 3 | The range of the mixing proportion values according to the

different beta1 values for the distribution of the CL-LR statistics from

the constrained two-parameter model.

Table 1 | Critical LOD scores obtained from the constrained

two-parameter models for different mixing proportion values;

CL − cmin and CL − cmax are the minimum and maximum c values for

the CL model, A1-c is the value from the A1 approximation, and RH-c

is the mixing proportion for the RH model.

Mixing

proportion

Size of test

0.05 0.01 0.001 0.0001 0.000049 0.00001

CL-cmin 0.662 1.276 2.202 3.154 3.452 4.118

A1-c 0.672 1.289 2.219 3.172 3.470 4.138

CL-cmax 0.702 1.328 2.265 3.225 3.524 4.195

RH-c 0.742 1.377 2.324 3.290 3.591 4.265

distribution with 2 df. For the constrained model, the mixture
distribution from the A1 assumption was also close to the empir-
ical distribution. Since the mixing proportions from the three
approximations are so close to each other, the empirical distri-
butions matched the asymptotic distributions well for all three
different mixing proportions (results not shown).

For each sample size simulated, the specific LOD score val-
ues corresponding to the empirical p-values 0.05, 0.01, 0.001, and
0.0001 for these two models are given in Figure 5, compared with
the theoretical values (shown as a red line for each p-value). These
values are the critical values for the type I error rates equal to the
given empirical p-values. Overall, for all sample sizes, the criti-
cal LOD scores from the empirical distributions were similar and
very close to the values from the asymptotic distributions, well up
to about –log10(p-value) = 3. When the type I error rate is 0.0001,
the critical LOD scores varied depending on the sample size.

The empirical null distributions under different marker infor-
mation levels for the constrained two-parameter model are shown
in Figure 6 (A for parents typed, B for parents not typed). For
the two types of parental information, the specific LOD score val-
ues corresponding to the empirical p-values 0.05, 0.01, 0.001, and
0.0001 are again compared with the theoretical values from the
A1 assumption (shown as a red line for each p-value). Again, it
can be seen that the approximated asymptotic null distribution
well matched the empirical distribution for the different levels of
marker information, both in terms of the number of alleles and
the amount of parental information.

One-parameter model
Here again, we found that the distribution of LOD scores follows
the theoretical distribution well (results not shown). For both
one-parameter models, the empirical p-values well matched the
asymptotic p-values from the expected chi-square distributions.
For the unconstrained case, the CL-LR statistic was distributed as
a χ2

1, as expected. The empirical distribution of the CL-LR statis-
tics for the constrained model followed closely a 50:50 mixture of
a point mass at 0 and a χ2

1, which again agrees with the asymptotic
distribution. For all sample sizes, the critical LOD scores from
the empirical distributions were again similar and very close to
the values from the asymptotic distributions well, up to about -
log10 (p-value) = 3, and they varied depending on the sample
size when the type I error rate is 0.0001, as for the two-parameter
model.

Covariate model
In Figure 7, we show the distributions of empirical p-values under
the null hypothesis of no linkage for the unconstrained covari-
ate model. The empirical p-values for the covariate model with
one unconstrained continuous covariate matched well the asymp-
totic p-values from a 50:50 mixture of a χ2

1 and a χ2
2 distribution

when the sample size was 500, as expected. However, unlike
other analysis models, the distribution of LOD scores did not
follow the theoretical distribution for the smaller sample sizes.
We found the empirical null distribution departed more from
the asymptotic null distribution the smaller the sample size, as
expected. For example, the critical LOD scores were over 10.0
for sample sizes 30, 50, and 100, compared to 3.77 from the
asymptotic distribution for the test size 0.0001.
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FIGURE 4 | Null distributions of the CL-LR statistics for the

two-parameter models, using 500 independent ASPs and a fully

informative marker. The empirical p-values for the observed LR statistics
(y-axis) are plotted against the asymptotic p-values from known chi-square

distribution (x-axis) for the unconstrained model (A) and for the constrained
model (B) Note that the asymptotic distribution for the constrained model is
under the A1 assumption, and a 95% confidence interval is shown by the
dotted red line.

FIGURE 5 | The LOD score values corresponding to the empirical

p-values 0.05, 0.01, 0.001, and 0.0001 for the unconstrained

two-parameter model (A) and the constrained two-parameter model (B),

by sample size and size of the test. These values are the critical values for
the type I error rates equal to the given empirical p-values. The theoretical
values are shown as a red line for each p-value.
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FIGURE 6 | LOD score values corresponding to the empirical p-values

0.05, 0.01, 0.001, and 0.0001 under different marker information levels for

the constrained two-parameter model, when the parents are typed (A)

and not typed (B). These values are the critical values for the type I error
rates equal to the given empirical p-values. The theoretical values are shown
as a red line for each p-value.

FIGURE 7 | Null distributions of the CL-LR statistics for the

unconstrained covariate models, using 30, 50, 100, and 500 independent

ASPs and a fully informative marker. The empirical p-values for the

observed LR statistics (y -axis) are plotted against the asymptotic p-values
from the known chi-square distribution (x-axis) for the unconstrained
covariate model. The dotted red line is the 95% confidence interval.
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FIGURE 8 | Null distributions of the CL-LR statistics for the constrained

covariate model, using 500 independent ASPs and a fully informative

marker. The empirical p-values for the observed LR statistics (y-axis) are

plotted against the asymptotic p-values from a 50:50 mixture of a χ2
1 and a χ2

2
distribution (A), and from a 50:50 mixture of a point mass at 0 and a χ2

1 (B)

The dotted red line is the 95% confidence interval.

FIGURE 9 | LOD scores corresponding to the empirical p-values

0.05, 0.01, 0.001, and 0.0001 for the constrained covariate model

by sample size and size of test. These values are the critical
values for the type I error rates equal to the given empirical

p-values. The theoretical values are shown as a red line for each
p-value. The dotted lines are from a 50:50 mixture of a χ2

1 and a
χ2

2 distribution and the solid lines are from a 50:50 mixture of a
point mass at 0 and a χ2

1.

For the constrained covariate model with a minimum-
adjusted binary covariate, we show the empirical null distribution
compared with two asymptotic distributions in Figure 8, one
with a 50:50 mixture of a χ2

1 and a χ2
2 distribution (A) and the

other with a 50:50 mixture of a point mass at 0 and χ2
1 distribu-

tion (B). The asymptotic p-values from a 50:50 mixture of a χ2
1

and a χ2
2 distribution were too conservative, while the asymptotic

p-values from a point mass at 0 and χ2
1 distribution well matched

the empirical p-values. In the simulated data for this model, the
possible pair-wise covariate values are 0, 1, or 2, since we included
the sum of two individual binary covariate values. Since β1 ≥ 0

and min
xaj > 0

∑
k xajδk ≥ −β1, δ1 ≥ 0 when β1 = 0. When β1 > 0,

the minimum value of δ1 is −β1
2 . Therefore, the two-parameter

space is constrained to be 1/3 of the whole plane, instead of 1/2
of the plane, which causes the asymptotic p-values from a 50:50
mixture of a χ2

1 and a χ2
2 distribution to be too conservative. In

practice, the distribution will depend on the distribution of the
covariate values in the data.

In Figure 9, the specific LOD score values corresponding to the
empirical p-values 0.05, 0.01, 0.001, and 0.0001 are given for each
sample size simulated. These values are again the critical values
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for the type I error rates equal to the given empirical p-values,
compared with theoretical values (shown as a red line for each
p-value). The dotted lines are from a 50:50 mixture of a χ2

1 and a
χ2

2 distribution, and the solid lines are from a 50:50 mixture of a
point mass at 0 and a χ2

1.

DISCUSSION
In the RH model, the mixing probability c (which represents the
probability that the allele sharing estimates fall inside the possi-
ble triangle) is the same for any two allele-sharing parameters.
However, this is not so in the CL model owing to the non-straight
line relation between the two parameters β1 and β2, the loga-
rithms of relative risks. In this paper, we developed three approx-
imations to the asymptotic distributions of the CL-LR statistics
for the constrained two-parameter model, under the null hypoth-
esis of no linkage, for independent ASPs. We derived the mixing
probability c assuming complete information, as was done for the
RH model with Risch’s allele sharing parameters, following the
method given by Self and Liang (1987). From these three approx-
imations, we also investigated the relation between the parameter
values for β1 and c. We found the range of the c values to be
(0.0439–0.070), which is lower than the value obtained for the RH
model. This results in critical LOD score values lower by 5–11%
(0.702–0.662 vs. 0.742) for a test size 0.05, and by 3–5% (2.265–
2.202 vs. 2.324) for a test size 0.001, compared to the RH model.
Therefore, the test using the CL-LR statistic will be more power-
ful, though perhaps not significantly so. In practice, the estimate
of β1 can be used to decide on an appropriate value for c to obtain
a reasonably accurate test of linkage for a particular set of data.

By simulation, the performance of the approximate asymp-
totic distribution was checked for various sample sizes both when
there is perfect information and under different marker informa-
tion levels. This was done for two different parental information
cases (typed and not typed) for a fixed sample size of 100 inde-
pendent ASPs. Generally, for all sample sizes and the different
levels of information content investigated, we found the empiri-
cal null distribution of the CL-LR statistic from the constrained
two-parameter model matches well the approximated asymptotic
distribution.Thisresultshowstheapplicabilityoftheapproximated
asymptotic distribution to real data analysis for any marker.

Fortheunconstrainedtwo-parametermodel,theunconstrained
one-parameter model, and the constrained one-parameter model,
we also found that the known asymptotic distributions matched
the empirical distributions well. Therefore, for these models, the
test of linkage using the CL-LR statistic can be performed using

the known asymptotic null distribution to find the p-value. The
unconstrained models may not be biologically plausible, but could
be useful for the purpose of comparison, or when the data include
ASPs with a different direction of genetic effect caused by other
factors, as investigated by Dizier et al. (2000).

Unlike for the other models, a large sample size was needed
for the asymptotic distribution to hold well for the unconstrained
covariate model, i.e., the constrained one-parameter model with
an unconstrained covariate. Sinha et al. (2006) also reported this
vast discrepancy between the asymptotic p-values and the empir-
ical p-values for this model. Their result was based on average
sample sizes of 20, 40, 80, 120, and 320 affected pairs. To deter-
mine the sample size necessary for the asymptotic p-values to
be applicable, we additionally simulated 200 and 300 ASPs. This
showed that with 200 ASPs the empirical distribution matched
well the asymptotic distribution (results not shown). Therefore,
in practice, for this model we recommend the use of simulation
methods or the Sinha et al. method when the sample size is less
than 200, to ensure accurate p-values.

Though the results are not shown, from additional simula-
tions with two and three covariates and 500 ASPs, except in the
tail, the distributions of CL-LR statistics for the unconstrained
covariate model with two covariates also closely matched a 50:50
mixture of a χ2

2and a χ2
3, and that for three covariates a 50:50

mixture of a χ2
3 and a χ2

4, as expected from the asymptotic distri-
butions. These results confirm that the empirical distribution of
the CL-LR statistic for comparing nested unconstrained covariate
models that differ by J covariates has a χ2 distribution with J df,
as expected from the asymptotic distribution. Therefore, in large
samples it is valid to test the significance of the contribution of a
covariate using the asymptotic distribution.

It was interesting to find in our simulated data that the empir-
ical null distribution for the constrained covariate model, i.e.,
constrained one-parameter model with a constrained covariate,
was closer to a 50:50 mixture of a point mass at 0 and χ2

1 dis-
tribution than to a 50:50 mixture of a χ2

1 and a χ2
2 distribution.

This is due to the functional dependency of δ1 on the maxi-
mum covariate value in the data when β1 > 0. This dependency
effectively reduces the degrees of freedom and hence changes
the distribution. To show how the range of the covariate val-
ues in the data changes the null values of the parameters, and
therefore the distribution of the CL-LR statistics, we additionally
simulated datasets with pair-wise covariate values (0 or 1), (0,
1, 2, or 3), (0, 1, 2, 3, or 4), and a random number in the
range (0, 8). In Figure 10, we show a plot of the estimates of

FIGURE 10 | Distributions of the estimates of β1 and δ1 under the constrained covariate model for different covariate distributions. The covariate values
were (0 or 1) (A), (0, 1 or 2) (B), (0, 1, 2, or 3) (C), (0, 1, 2, 3, or 4) (D) and a random number in the range (0, 8) (E)
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the parameters β1 and δ1, including the result from the (0,
1, or 2) case in the previous simulation. We can see that the
space for two parameters becomes smaller as the maximum value
of the minimum-adjusted covariate increases. For the (0 or 1)
case, it seems the CL-LR statistics will be closely distributed as
the mixture c0χ

2
0 + c1χ

2
1 + c2χ

2
2. In other cases, a 50:50 mix-

ture of a point mass at 0 and χ2
1 distribution closely matched

the empirical distribution. Therefore, in practice, the distribu-
tion will depend on the distribution of the covariate values in
the dataset, so careful examination of the distributions of the
covariates in the dataset is needed before including them in any
analysis.

We did not include any power analysis in this study because
our purpose was to find an approximation to the theoretically
unknown null distributions and to compare them with the empir-
ical null distribution, to provide guidelines for testing linkage
when using the CL-LR statistics in various analysis models. To our
knowledge, there has not been any study of the null distribution
of LOD scores for the CL model, neither theoretical nor empiri-
cal. The results from this study should provide useful guidelines
for the linkage analysis of real datasets since our results are based
on both a perfect scenario as well as on non-perfect cases. Our
results for various sample sizes will also provide guidelines for
cases with missing data, since these will in general correspond
to a reduced sample size. We assumed no errors in the relation-
ship between pairs. When the information content in the marker
and/or pedigree structure in real data are reduced due to errors
in the data, we would generally expect the power to be lower for
given type I error; but the test of linkage based on our results
will still be valid, as long as the analysis is done on independent
pairs.
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