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The Canadian National DNA Database was created in 1998 and first used in the mid-2000.
Under management by the RCMP, the National DNA Data Bank of Canada offers each year
satisfactory reported statistics for its use and efficiency. Built on two indexes (convicted
offenders and crime scene indexes), the database not only provides increasing matches
to offenders or linked traces to the various police forces of the nation, but offers a
memory repository for cold cases. Despite these achievements, the data bank is now
facing new challenges that will inevitably defy the way the database is currently used.
These arise from the increasing power of detection of DNA traces, the diversity of
demands from police investigators and the growth of the bank itself. Examples of new
requirements from the database now include familial searches, low-copy-number analyses
and the correct interpretation of mixed samples. This paper aims to develop on the
original way set in Québec to address some of these challenges. Nevertheless, analytic
and technological advances will inevitably lead to the introduction of new technologies
in forensic laboratories, such as single cell sequencing, phenotyping, and proteomics.
Furthermore, it will not only request a new holistic/global approach of the forensic
molecular biology sciences (through academia and a more investigative role in the
laboratory), but also new legal developments. Far from being exhaustive, this paper
highlights some of the current use of the database, its potential for the future, and
opportunity to expand as a result of recent technological developments in molecular
biology, including, but not limited to DNA identification.
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THE CANADIAN NATIONAL DNA DATA BANK
At the time the UK launched its DNA database in 1995, the exon-
erations of two wrongly accused individuals (Morin case, 1985
and Milgaard case, 1969) and the implementation of the C-104
bill (to amend the Criminal Code and the Young Offenders Act)
acknowledged the need for a similar requirement in Canada and
initiated the creation of the Canadian National DNA database
(NDDB) by the Identification Act (Law C-37 of Dec. 10th, 1998)
(Curran, 1997).

Following a nation-wide consultation with various institu-
tional bodies (such as the Privacy Commissioner, the Canadian
Bar Association, and the Canadian Police association), to address
ethical, legal, and social implications issues also tackled by the
National Human Genome Research Institute’s (NHGRI) dur-
ing the human Genome Project, its operative use was launched
immediately after the proclamation of the S-10 bill on June 2000.
A number of amendments led the NDDB to store genetic traces
collected at crime scenes in the Crime Scene Index (CSI) and,
under court order, the DNA profiles of offenders serving any
sentence of imprisonment, for various categories of offences des-
ignated in section 487.04 of the criminal code, in the Convicted
Offenders Index (COI).

Under the supervision of the DNA Data Bank Advisory
Committee, composed of seven authoritative personalities
involved in forensic biology, human rights and laboratory man-
agement, the NDDB is operated by the Royal Canadian Mounted
Police (RCMP) for the benefit of all law enforcement agencies in
the country, be it federal (the RCMP), provincial [the Ontario
Police force or Sûreté du Québec (SQ)] or urban (depending on
the level of police a town has to deliver in regard to its popula-
tion), as provided by the RCMP at provincial and urban levels if
requested.

The CSI is maintained by the RCMP labs, the Center of
Forensic Sciences in Toronto (CFS1) and the Laboratoire de sci-
ences judiciaires et de médecine légale du Québec in Montréal
(LSJML2) (Figure 1). On July 15th, 2013, the COI contains more
than 273,000 profiles, while the CSI is nearing 87,0003.

Based on 13 DNA markers, DNA profiles are managed and
compared using the Combined DNA Index System (CODIS). On
a yearly basis, a RCMP report on the management of the NDDB
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2http://www.securitepublique.gouv.qc.ca/lsjml.html.
3http://www.rcmp-grc.gc.ca/nddb-bndg/stats-eng.htm.
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FIGURE 1 | The architecture of the National DNA Data Bank in Canada

and its relationship to forensic laboratories. The bank is a national
repository composed of two indexes. The Convicted Offender Index is
managed centrally at the national level, while the National Crime Scene Index
(CSI-nat) is managed collectively by three forensic labs (RCMP, LSJML, and
CFS), with each lab being responsible for the profiles generated under its
jurisdiction. The CSI-nat allows for inter-jurisdictional comparisons of crime
scene profiles (solid gray arrows). The Local Crime Scene Index (CSI-loc)

corresponds to the databases maintained locally by forensic labs and
containing DNA profiles that do not meet the criteria to be deposited in the
NDDB (e.g., some complex mixtures). Local comparisons can be made both
between profiles stored in the same CSI-loc and between profiles of the
CSI-loc of a given lab and the portion of the CSI-nat managed by the same lab
(solid black arrows; see Figure 2). Gray dotted arrows show the deposition of
DNA profiles from caseworks into the national and local indexes, while black
dotted arrows illustrate match information returned to the forensic labs.

provides statistics, financial costs information, a user guide for the
reader, as well as information on the changing legal frame of the
database, under the auspices of the Advisory Committee (Police,
2012).

The Advisory Committee controls and actively searches and
suggests legislative and regulatory changes. This transparency in
the management of the NDDB is what leads to the efficiency of
the Canadian system, qualified as having “an astonishing degree
of consistency in sampling regimes throughout the history of the
Canadian DNA database.” (Walsh, 2009). Using the ratio of hits
over the product of NC, (N being the numbers of profiles in the
COI and C the numbers of profiles in the CSI), to assess the effi-
ciency of DNA databases between four western countries (USA,
the United Kingdom, the Netherlands, and New Zealand), the
performance of the NDDB ranks just below New Zealand and
is quite good, accounting for the lower proportion of the pop-
ulation being present in the database (0.5% for Canada instead
of 2.1% for New Zealand). In regards to the public perception
of civil rights, it could easily be deemed highly efficient. At least
“Canada had a well-understood and effectively resourced con-
cept of operation in place prior to the initiation of databasing”
(Walsh, 2009). On such ground, Canada seems better prepared
than many other countries to tackle new challenges facing forensic
DNA identification.

THE LSJML DATABANKING STRATEGY
As with other DNA databanks, the NDDB holds key figures to
address interpretation issues (Foreman et al., 2003; Dror and
Hampikian, 2011) such as low copy numbers (LCN) (Lowe et al.,

2002; Phipps and Petricevic, 2007), mixed samples (Bill et al.,
2005; Curran, 2008), and familial searches (Bieber et al., 2006;
Reid et al., 2008; Miller, 2010; Murphy, 2010; Gershaw et al.,
2011; Meyers et al., 2011; Pham-Hoi et al., 2013). While address-
ing the issue of familial searches is not yet on the agenda, as
it would require changes to the Canadian legislation, LCN has
become a routine challenge faced by forensic labs nationwide.
Indeed, due to technological improvements, the detection of ever-
smaller traces of DNA is now possible (Kayser and de Knijff,
2011). However, because of stochastic effects (drop-outs, drop-
ins), this comes at the cost of lower repeatability and overall
completeness of genetic profiles recovered from small quantities
of DNA. This problem is made worse with mixtures owing to
competitive amplification. Deconvoluting the information and
sorting out the alleles of each contributor in a mixture can
become hard to achieve even in simpler cases such as a mixed
profile from two contributors. As a consequence of these new
challenges, forensic laboratories, and the database managers may
use various criteria to limit the deposition of mixed or partial
profiles into the NDDB. For instance, the NDDB will only accept
mixtures with data for L STR loci, where 9 ≤ L ≤ 13 with a max-
imum number of loci exhibiting more than two alleles equal to
L−7, and with no more than five alleles per locus. Although
STRs exhibit very high level of polymorphism enabling high dis-
criminatory power, they are subject, like any amplification-based
markers, to the presence of polymorphisms within the primer
binding site which results in lack of amplification or so-called
drop-out alleles (or null alleles). The impact of such result has
been well documented (Haned et al., 2011) and probabilistic
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methods can be used to account for drop-in and drop-out alleles
(Gill et al., 2012).

With these managerial constraints, the development of statis-
tical methodologies allowing more formal quantitative compar-
isons of casework profiles to DNA databanks is required. In the
meantime, the LSJML has developed an innovative investigative
strategy to increase the use of partial profiles from LCN or com-
plex mixtures in their search for matches in the databanks, relying
on two complementary practices.

Elaborated interpretation and databanking guidelines at
LSJML allow the specific extraction of the relevant genetic infor-
mation contained in single-source or mixed profiles for databank
searches for intelligence purposes (Noël et al., 2009). For instance,
the flagging of alleles as “obligate” or “non-obligate” in queries
sent to the NDDB allows filtering out considerably the potential
matches, limiting them to a subset of possible matches that is con-
sistent (see section Challenges of the LSJML model and research
prospects) with all the information available for the casework.
For example, this procedure is used to separate alleles that are
likely to come from the putative aggressor in intimate swabs from
the victim of a sexual assault—i.e., alleles that must be included
in any candidate match returned by the NDDB—from alleles of
less certain origin (e.g., alleles of the victim potentially shared
with the aggressor) that need not be present in the candidate
profile. More generally, this approach is valid for any mixture
related to any type of infraction where some of the alleles are
more likely than others to come from the offender(s). Another
option is to eliminate alleles from a person whose DNA profile
is known from other traces obtained for the same casework (e.g.,
victim, witness or single-source unknown), or those that would
imply either highly unbalanced peak heights of a contributor to a
mixture or dropouts when it is not a reasonable possibility based
on statistical data. It is up to the reporting scientist to check the
relevance of the hypothesis with his/her scientific investigation of
the case.

The second aspect of the LSJML strategy is the maintenance
of its own local database (also hosted in the CODIS system)
where complex mixtures that do not meet the NDDB criteria can
be deposited, namely in the “Forensic High Mixture” index, for
comparison with other local casework profiles (Figures 1, 2). In
addition, the local database allows searching for matches using
more loci, i.e., up to 15 at the LSJML operational setup instead

of the 13 CODIS loci in the NDDB. Finally, mixed strategies
are authorized whereby a full mixture can be deposited into the
local database while a subset of its alleles (a “submixture”) is sent
to the NDDB. Thus, matches can potentially occur at the local
level between the whole mixture kept as a “backup” and pure or
mixed profiles from other caseworks. This can be especially useful
when deconvolution is difficult so that there is much uncertainty
around which alleles should be sent at the NDDB.

CHALLENGES OF THE LSJML MODEL AND RESEARCH
PROSPECTS
While the LSJML model provides great flexibility in maximiz-
ing the number of matches, it also raises legitimate questions
about potential biases that may arise from its databanking strategy
(Lynch, 2003; Dror et al., 2006; Dror and Hampikian, 2011).

Aware of it, the LSJML has adopted different strategies to
assess their importance and limit them. These range from oper-
ational rules to current and prospective research projects. First,
the LSJML does not declare a match as valid as soon it occurs
(except when both the target and the candidate are single-sourced
and complete). Thus, once a match between a target profile and a
candidate profile in the NDDB has occurred, the LSJML scientist
must assess its validity. The procedure involves an evaluation of
the candidate profile using the original electropherogram from
which the target profile was extracted, statistical data on peak
height balance and drop-outs, as well as other profiles from the
casework. This is the step where consistence with all the infor-
mation available for the casework is evaluated. In addition, the
validity of the match must also be confirmed by one of the two
local scientists managing the databank.

Second, because the above procedure may limit but not com-
pletely eliminate fortuitous (wrong) matches, the opinion on
evidential weight (Providers, 2009) is based on standard statis-
tical approaches such as the probability of exclusion or likelihood
ratios performed on the whole mixture, and not on extracted ele-
ments, except when a major profile can clearly be extracted using
strict deconvolution rules.

Third, the LSJML has been proactive in challenging the validity
of its own strategy with respect to biases or invalid match gener-
ation by undertaking a number of quantitative statistical evalua-
tions. It is worthy to note that the databanking and match review
strategies for targets arising from mixtures of various levels of

FIGURE 2 | The processes of mixture databanking and comparison at

LSJML. The complexity of profiles decreases from left to right, i.e., from
highly complex mixtures that cannot be deposited as is in databank to
single-source profiles stored under the “forensic unknown” index.
“Forensic high mixture” and “Forensic mixture” are two intermediate
indexes, respectively stored at the local (LSJML) and national (NDDB)

levels. These three indexes composed the Crime Scene Index (CSI; see
Figure 1). Open arrows show how a mixture can switch category when
alleles are removed from it (e.g., alleles of low intensity or from a
known contributor; see section The LSJML databanking strategy). Solid
arrows indicate how profiles from the different indexes are compared in
search for matches.
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complexity generate valid candidate matches in comparable pro-
portions to single-source targets (for which match validity is auto-
matic), with similar levels of effort (i.e., working time required
to evaluate the matches) see (Noël et al., 2009) and (Lavergne
et al., 2008) for details. For instance, less than 12% of candi-
date matches produced with the Forensic Unknown and Forensic
Mixture indexes (Figure 2) are rejected with a “no match” dis-
position after review. One critical aspect is that mixtures must be
of good quality, namely show good peak intensities. Moreover, the
LSJML has begun to perform experimental tests by searching two-
person mixtures with up to 13 mixed loci against the Florida data
bank constituted of nearly 500,000 convicted offender profiles.
Because of the geographical (∼2000 km) and country barriers
between Québec and Florida, it is expected that almost any
eventual match would be fortuitous. Corroborating above con-
clusions, these mixtures did not return more candidate matches
than less complex ones. Moreover, all candidate matches were
rejected independently (i.e., not in concert) by four reporting sci-
entists. Finally, the lab, in collaboration with others, is presently
evaluating an alternative to the current selection procedure for
uploading mixtures to the NDDB. The new approach would be
based on the number of expected matches accounting for the
COI size and is implemented in the CODIS Match Estimator®
module.

At this time, open discussion between LSJML and academic
partners to better assess the potential hazards of inducing these
databanking policies with respect to confirmations bias are cur-
rently underway. Nevertheless, an understanding of this strategy
with respect to a possible future goal toward forensic intelligence
should be kept in mind (Ribaux et al., 2006; Pham-Hoi et al.,
2013). On the other hand, limiting decisions into whether identi-
fication was correct or not by only using pure profiles may provide
a sense of security. However, this also leads to the restricted use of
the information available, with potentially pertinent information
discarded when solving everyday crimes. It is currently unclear
what the consequences of refusing to tackle these issues will have
on victims, and consequently on justice, who also has a validating
role to play in this area.

Nevertheless, a fine-tuned approach, specific to the various
types of casework (sexual assault, homicide, burglary, high-
volume crimes, etc.) definitely needs to be addressed to better,
and more rigorously, assess the consequences these changes will
have on the whole process of identification.

BEYOND THE PRESENT DNA PRACTICE
Notwithstanding these innovative practices and the relevant
interpretation process to be developed being a sign of academic-
practitioner joint effort, the development of STR mixture analysis
and databank searching will eventually reach its limit impeding
further improvements owing to the inherent limitations of using
small sets of markers (typically < 20 for STR) typed by technolo-
gies that do not permit to separate DNA from different cells found
in the same trace (with the exception of differential extraction
of semen DNA). Ultimately, substantial increase in the power of
mixture analysis will come from newer technologies such as single
nucleotide polymorphisms (SNPs) (Daniel and Walsh, 2006; Kidd
et al., 2006; Sanchez et al., 2006; Fang et al., 2009; Pakstis et al.,

2010; Voskoboinik and Darvasi, 2011) or single-cell sequencing
(Hanson and Ballantyne, 2005). Repositories like the NDDB will
need to adapt to these forthcoming innovations in a way that per-
mit forensic labs to benefit from the full power of these new tools
for match searching, but without compromising on the usefulness
of the STR information accumulated since their creation.

Other advances in the biological sciences, not strictly
depending on the NDDB itself, could benefit from the
advice/input/review of the Advisory committee to pave the way
for a new forensic dimension (Daniel and Walsh, 2006; Kidd et al.,

Box 1 | Beyond present DNA practices

1) Going further with genomics
While it was initially believed PCR would be capable of solv-

ing the challenges encountered from analysing LCN samples,
difficulties associated with interpretation lessens its pragmatic
use in forensic casework (Gill et al., 2000; Kloosterman and
Kersbergen, 2006; McCartney, 2008; Budowle et al., 2009) (see
also LCN DNA Review at http://www.mccannfiles.com/id190.html).
In addition, the use of a limited set of markers, as is the case
today, restricts the potential discriminative power that could be
accessed if using full genome sequences.

Single-cell genome sequencing is a rapidly improving tech-
nology with one of many applications including the detection
of somatic intra-individual variation in cancer patients (Navin
et al., 2011). Initially applied to small prokaryotic genomes
(Stepanauskas and Sieracki, 2007), recent advances in next-
generation sequencing have enabled the coverage of 93% of
the much larger human genome from a single human cell (Zong
et al., 2012). This not only allows for the identification of SNPs
and LCN variation (Zong et al., 2012) but also genomic structural
variation and somatic mutations that give rise to intra-individual
genetic variation (O’Huallachain et al., 2012). With as many
as 2500 genomic structural variations and three million SNPs
(Abecasis et al., 2010) occurring between two unrelated individ-
uals, the discriminative power of this technique could even allow
for identical twins to be differentiated.

Full genome sequencing would permit the use of a much
wider range of genomic polymorphism to convict or exoner-
ate persons of interest. Although currently cost prohibitive,
and against the current ideology that the use of anonymous
loci is preferable, the dwindling cost associated with genome
sequencing may enable their use in a foreseeable future.

2) Adding transcriptomics and proteomics to the forensic
toolbox ?

With research carried out in the fields of transcriptomics and
proteomics, opportunities are emerging to develop and add to
the already existing genomic platforms.

Evidence of physical abuse is often left of the skin of victims,
with bruising found to be the most common form of injury (Dye
et al., 2008; Pierce et al., 2010; Jackson et al., 2012). The abil-
ity to accurately and reliably determine the age of a bruise, in
living individuals, is currently lacking. If possible, this could pro-
vide vital evidence to legal cases of suspected physical abuse. In
cases where multiple bruises are present on the body of a victim,
providing evidence that the injuries were inflicted on separate
occasions could have important medico-legal significance.

Building a human proteome map of protein markers present
in unbruised skin, as well as bruised skin, and analysing changes
in protein expression levels as a bruise evolves, could help to
achieve these goals (Lecomte et al., 2013).
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2006). Research into fields such as ancestry informative markers
(AIMs) (Lao et al., 2008; Kersbergen et al., 2009; Kosoy et al.,
2009; Liu et al., 2009), proteomics (Kool et al., 2007; Lecomte
et al., 2013), genome/marker based phenotyping (Sulem et al.,
2008; Liu et al., 2009; Zubakov et al., 2010; Walsh et al., 2011),
framing the input of DNA to forensic intelligence (Jobling and
Gill, 2004; Ribaux et al., 2006; Bond, 2007; Roman et al., 2009;
Wilson et al., 2011), and the incoming lab-on-a-chip involve-
ment of crime scene (Batt et al., 2009; Bell, 2011). All these
fields belong to a still-debated investigative process (Kaye, 2007)
opposed to the claim for a strict separation of laboratories from
the law enforcement system (Nrc, 2009). Box 1 presents two
examples of techniques that could eventually be used in forensic
sciences on a case-by-case basis. One of them, forensic pro-
teomics, does not directly assist to the evolution of the NDDB.
However, the power of these new tools to address personal charac-
teristics of human beings, could lead to an ethical position being
taken by the Advisory Committee, which could impact the future
developments of the data bank.

CONCLUSION
As exciting projects make their way in the field of molecular biol-
ogy, real challenges also lie in the realm of forensic science, giving
new impedimenta to forensic DNA and, raising obvious ethi-
cal, social, and economic questions. Nevertheless, the inescapable
drive toward DNA intelligence and laboratory miniaturization,
and the projection on the crime scene, could underline the need
for a better scientific support of the crime scene officers present
at the start of the forensic process.

As commissioner Paulson of the NDDB wrote in the last
annual report, “the NDDB operates within a diverse environment
that must consider scientific advancements, privacy rights, and
changing legislation.” In regards to the building up of the NDDB
and the wisdom of its Advisory committee, an optimistic future
for the scientific support of the Canadian law and justice systems
is anticipated.
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