frontiers in
GENETICS

REVIEW ARTICLE
published: 03 December 2013
doi: 10.3389/fgene.2013.00266

=

Discovering epistasis in large scale genetic association
studies by exploiting graphics cards

Gary K. Chen'* and Yunfei Guo'?

! Division of Biostatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
2 Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA

Edited by:
Xuefeng Wang, Harvard University,
USA

Reviewed by:

Li Zhang, University of California,
San Francisco, USA

Nathan Morris, Case Western
Reserve University, USA

*Correspondence:
Gary K. Chen, Division of Biostatics,

Department of Preventive Medicine,

University of Southern California,
2001 North Soto Street, SSB-202Q,
MC-9234, Los Angeles, CA
90089-9601, USA

e-mail: gary.k.chen@usc.edu

1. INTRODUCTION

Despite the enormous investments made in collecting DNA samples and generating
germline variation data across thousands of individuals in modern genome-wide
association studies (GWAS), progress has been frustratingly slow in explaining much of
the heritability in common disease. Today's paradigm of testing independent hypotheses
on each single nucleotide polymorphism (SNP) marker is unlikely to adequately reflect the
complex biological processes in disease risk. Alternatively, modeling risk as an ensemble
of SNPs that act in concert in a pathway, and/or interact non-additively on log risk for
example, may be a more sensible way to approach gene mapping in modern studies.
Implementing such analyzes genome-wide can quickly become intractable due to the fact
that even modest size SNP panels on modern genotype arrays (500k markers) pose a
combinatorial nightmare, require tens of billions of models to be tested for evidence of
interaction. In this article, we provide an in-depth analysis of programs that have been
developed to explicitly overcome these enormous computational barriers through the
use of processors on graphics cards known as Graphics Processing Units (GPU). We
include tutorials on GPU technology, which will convey why they are growing in appeal
with today’s numerical scientists. One obvious advantage is the impressive density of
microprocessor cores that are available on only a single GPU. Whereas high end servers
feature up to 24 Intel or AMD CPU cores, the latest GPU offerings from nVidia feature over
2600 cores. Each compute node may be outfitted with up to 4 GPU devices. Success on
GPUs varies across problems. However, epistasis screens fare well due to the high degree
of parallelism exposed in these problems. Papers that we review routinely report GPU
speedups of over two orders of magnitude (>100x) over standard CPU implementations.

Keywords: epistasis, GPU programming, CUDA tutorial, high performance computing, gene-gene interactions

et al., 2013). Tackling this challenge requires a multi-prong strat-

Large scale population based genome-wide association studies
(GWAS) of complex disease have been highly effective at elucidat-
ing hereditary risk factors. As of August 1st of 2013, at least 13,841
single nucleotide polymorphisms (SNPs) have been cataloged by
NHGRI (Hindorff et al., 2009) as risk variants across 868 dis-
eases and other traits. Despite the apparent success story, reported
SNPs account for only a small proportion of heritable varia-
tion. For instance, the explained heritability in Type 2 diabetes is
approximately 6% even though 18 risk loci have been discovered
(Manolio et al., 2009). Given that gene networks are complex,
these findings may not be all that surprising. Genes or their reg-
ulatory elements are most likely to act in concert via common
pathways/networks. Hence it seems reasonable that methods that
model SNPs jointly and/or explicitly test for non-additive inter-
actions among them should identify new genetic markers that
better explain risk. The computational challenge of exhaustively
searching for higher-order interactions, also known as statisti-
cal epistasis, is enormous (e.g., a search for pair-wise interactions
on the Illumina 1 M Duo microarray would require over (2!;600)
billion tests). Statistical geneticists have long been interested in
developing methods to detect epistasis (Cordell, 2002; Huang

egy of advances in statistical methodology, clever optimization
algorithms (e.g., those requiring less iterations to converge to
a solution), and efficient implementations that extract the full
potential of state of the art many-core processors. This review
focuses on advances in epistasis research that emphasize the third
strategy. We bring attention to some innovative software that
scale well to the epistasis problem by harnessing the potential
of massively parallel microprocessors on graphics cards, oth-
erwise known as Graphics Processing Units (GPUs). Speedups
relative to standard serial implementations of over two orders
of magnitude (100 fold) are commonplace. Epistasis detection
only scratches the surface of the set of biologically relevant prob-
lems which have already been addressed using GPUs, including
proteomics (Hussong et al., 2009), phylogenetics (Suchard and
Rambaut, 2009; Zhou et al., 2011a), gene-expression analysis
(Buckner et al., 2010; Kohlhoff et al., 2011; Magis et al., 2011),
high dimensional optimization (Zhou et al., 2010; Chen, 2012),
sequence alignment (Campagna et al., 2009; Blom et al., 2011;
Vouzis and Sahinidis, 2011; Liu et al., 2012b), systems biology
(Liepe et al., 2010; Klingbeil et al., 2011; Vigelius et al., 2011; Zhou
et al., 2011b; Liu et al., 2012a), and genotype imputation (Chen

www.frontiersin.org

December 2013 | Volume 4 | Article 266 | 1

http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Genetics
http://www.frontiersin.org/journal/10.3389/fgene.2013.00266/abstract
http://www.frontiersin.org/people/u/38347
http://www.frontiersin.org/people/u/114564
mailto:gary.k.chen@usc.edu
http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

Chen and Guo

Discovering epistasis using GPUs

et al., 2012). Although there is a rich array of statistical methods
designed to search for epistasis, only a few have been developed
into code that can make use of GPUs. We encourage readers who
are interested in applying or developing state of the art meth-
ods to consider implementation strategies that make use of the
parallelism in modern processors. Hence, we devote most of this
paper’s content on basic concepts that are critical for successful
implementations. The first section provides a primer on GPU
concepts. The following Methods section describes the statisti-
cal method and practical issues (such as availability and software
prerequisites) behind four programs we successfully tested. This
section is also meant to delve deeper on the concepts laid out in
the preceding section by presenting vignettes of real life strate-
gies employed by these programs for maximizing performance,
each of which is adapted to the underlying statistical method.
We provide in the Appendix a training resource for readers with
no GPU programming experience who are interested in getting
started with minimal effort. This tutorial revolves around a short
working example that inclined readers can use to extend toward
more interesting problems.

2. PRIMER ON CREATING GPU BASED ALGORITHMS

GPUs are devices installed as adapter cards that slide into any
available PCle (Peripheral Component Interconnect Express)
slot, found on modern PC motherboards. The microprocessor on
a GPU is known as a SIMD (single instruction multiple data) or
stream processors because instructions, such as data loads/stores
or arithmetic operations, are simultaneously carried out on sev-
eral elements of a data stream in a single instruction. Provided
that a sufficient number of calculations can be independently car-
ried out in parallel, GPUs can be quite effective in accelerating
code. Unlike the CPU, GPU chips are designed with propor-
tionally more transistors dedicated toward floating point logic,
as depicted in Figure 1. For this reason, GPUs were originally
designed to operate in graphics domains like 3-dimensional ren-
dering and animation since calculations of signal intensities and
colors can generally be computed independently over millions
of pixels and program logic is homogeneous across pixels. GPU
programs have moved into realm of basic science research given
the pressing need to develop new ways of analyzing Big Data.
New application programming interfaces (APIs) are transforming
these specialized devices into workhorses for general problems.
GPUs that support such APIs are sometimes called General

A

Control

FIGURE 1 | Comparison of CPU and GPU architecture.

Purpose GPUs (GPGPUs). GPUs are enabling some previously
intractable problems to be completed in days or hours versus
years. Searching for epistasis is an example of a problem that maps
well to one or more GPUs. This problem is well-structured in that
for a given set of input (e.g., all possible pair-wise genotypes for
a set of SNPs and an outcome vector), it is easy to keep all avail-
able GPU cores busy for virtually the entire time the program is
running since calculations for each interaction are “embarrass-
ingly parallel.” The GPU is not a panacea for big computational
problems however. For certain classes of problems with less par-
allelization exposed such that many instructions are required to
wait for others to complete before a value can be computed
(e.g., some sorting routines), a GPU implementation can be even
slower than the serial version of the algorithm. The reason behind
this can be understood when comparing CPU and GPU architec-
tures as depicted in Figure 1: in comparison to CPUs, GPUs give
up some efficiency in terms of optimization tricks like memory
caching and branch prediction (e.g., bypassing “if” statements
when possible) for gains in arithmetic throughput.

There are currently many offerings for programming GPGPUs.
Many are tailored for programmers who wish to access the power
of GPUs with minimal ramp up time. For example, OpenACC
(http://www.openacc-standard.org/) allows developers to easily
parallize loops written in C, C4++, or Fortran code on an “accel-
erator” such as a multi-core CPU or GPU. The key advantages
of OpenACC are easily accessible syntax and portability. The sci-
entific computing toolkit MATLAB is now bundled with support
for nVidia GPUs so that programmers can invoke functions on
the GPU using familiar MATLAB commands. PyCUDA (http://
mathema.tician.de/software/pycuda/) is a wrapper around the
CUDA SDK, enabling Python programmers to easily write par-
allel code. Even statisticians who prefer to work in R can choose
among many packages on the CRAN repository, such as gputools
or gmatrix, that interface with any available GPU devices.

However, programmers with highly custom algorithms who
need to maximize performance from GPUs will need a greater
degree of control over the inner workings of these devices. To
this end, two user-friendly APIs are available. In 2006, nVidia
Corp announced the release of a proprietary toolkit known as the
Compute Unified Device Architecture (CUDA) runtime, target-
ing a broad audience of C programmers. The toolkit includes an
API and a compiler called nvce, which compiles C code contain-
ing CUDA extensions into instructions understood by any nVidia
CUDA compliant GPU. OpenClL is an alternative open-standard
API for GPUs that was originally geared toward a heteroge-
neous mix of target devices such as cable set top boxes, smart
phones, and desktop CPUs. Although OpenCL code is more
portable, developing in OpenCL is more labor-intensive than in
CUDA. ATT and nVidia, the two sole manufacturers of GPUs,
both support OpenCL natively in most of their product line.

When developing code on the GPU, extracting the most speed
requires developing a strategy of how data and calculations will be
organized. Regarding data, the primary goal is to make use of the
high bandwidth (amount of data that can be transferred per time
unit) that is unique to GPUs. This property makes parallelization
on GPUs more advantageous in many cases than say paralleliza-
tion over a compute cluster when internode communication is

Frontiers in Genetics | Statistical Genetics and Methodology

December 2013 | Volume 4 | Article 266 | 2

http://www.openacc-standard.org/
http://mathema.tician.de/software/pycuda/
http://mathema.tician.de/software/pycuda/
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

Chen and Guo

Discovering epistasis using GPUs

necessary. Memory available to the GPU is categorized at the
coarsest level into three levels, where the level with the most abun-
dant memory has the longest latency (i.e., the time it takes to
receive data after a request is issued). These three levels can be
loosely labeled as system memory, device memory, and on-chip
memory. System memory denotes the RAM that is available to the
operating system and conventional applications. Device memory,
aka global memory, is abundant memory (several GB in many
cases) on the GPU that is located on memory banks away from
the processing core. On-chip memory is scarce but fast memory
adjacent to the GPU computing cores, akin to the L1/L2 caches
found on current CPUs. This memory resource is further divided
into memory that is visible only to a single thread and that which
is shared across threads (threads are explained later in the next
paragraph). While semantics are the same between CUDA and
OpenCL, they have differing terminology. For example, the on-
chip memory resource that is visible across threads is known as
shared memory in CUDA while this same resource is called local
memory in OpenCL. Performance across these different classes
of memory varies greatly. For example, the nVidia Tesla K20 is
advertised with a maximum bandwidth of 250 GB/s for memory
transfers between global memory and the GPU microprocessors.
Bandwidth increases by at least an order of magnitude higher
when the cores access shared memory. In stark contrast, in theory
only up to 8 GB/s of data can be transferred between system RAM
and the GPU because the GPU is an outboard device that inter-
faces with the host CPU through a PCle slot. Hence data locality
(i.e., the proximity of data to microprocessors) is the greatest
determinant of performance. It is imperative then that programs
minimize frequent accesses to system RAM, and use device and
on-chip memory as much as possible. Because discrete genotypes
can be represented as two bits and hence heavily compressed,
genome-wide data can be easily accommodated on device mem-
ory. Some of the programs we reviewed implement some type of
data compression.

It is also essential to determine how work is parallelized on the
GPU. The microprocessors of GPUs process a fixed number of
data elements per instruction. On nVidia hardware, this number
is known as a warp with value 32 whereas on ATI hardware
it is known as a wavefront with value 64. Each element of a
data set (or partition of) are mapped into a three-dimensional
coordinate layout. These mappings are known as threads and
work-items in CUDA and OpenCL terminology, respectively.
Threads (or work-items) themselves are grouped into higher-
level constructs known as threadblocks (work-groups in the
OpenCL spec), which are also mapped in three-dimensions.
Figure 2 illustrates this concept in the 2D case where the z
dimension is simply sized 1. Since threadblocks can be deployed
in any order by the task scheduler on the GPU, the general
idea is to group fine-grained but tightly coupled calculations
into a threadblocks. In the context of epistasis, one would likely
map SNP specific genotypes across a set of subjects into a
threadblock. To better understand the semantics of
the GPU constructs introduced in this section, Table 1 relates
these constructs to the perhaps more familiar entities of a conven-
tional CPU cluster. In the next section we describe four methods
implemented on GPUs that put these concepts into practice in the
context of epistasis detection.

Grid
Block (0,0) | Block (1, 0) | Block (2, 0)
Block (0, 1)" Block (1, 1) Block (2, 1)
‘I ‘P
Block (1, 1)

FIGURE 2 | Parallel execution work-items on a GPU.

Table 1 | Introduction of GPU constructs using the analogy of a CPU
cluster.

GPU construct? Cluster construct Notes

NAS (network
attached storage) array
Local hard drives
(temporary scratch
space)

Global memory Plentiful but slow

Shared memory Low latency but
visible to attached
node

Threadblock Portion of data Calculations do not
processed by a depend on results
specific node from other nodes

Thread Computations Example: using

parallelizable on a finer
scale

OpenMP to
parallelize a for loop

aTerminology as defined in the CUDA specification.

3. METHODS

Upon searching the literature for epistasis detection methods
on GPUs, we were able to locate and download programs for
eight published methods, which we list as EpiGPU(Hemani
et al., 2011), GLIDE (Kam-Thong et al., 2012), GBOOST(Yung
et al., 2011), cuGWAM(Kwon et al., 2012), EPIBLASTER(Kam-
Thong et al., 2011a), EpiGPUHSIC(Kam-Thong et al., 2011b),
SHEsisEpi(Hu et al., 2010), and MDRGPU(Greene et al., 2010).
We evaluate the first four programs of this list, as these were the
only ones we were able to successfully deploy on our environment.

www.frontiersin.org

December 2013 | Volume 4 | Article 266 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

Chen and Guo

Discovering epistasis using GPUs

Table 2 summarizes some key features of these programs. The
remaining four programs could not be installed for various rea-
sons. EpiGPUHSIC and EPIBLASTER requires the user to specify
a partitioning scheme for large input datasets. Unfortunately,
this partitioning logic caused these programs to crash mid-
way through the epistasis screen. We have already notified the
author of this bug. SHEsisEpi is software designed to run on a
Windows platform so was incompatible in our Linux based envi-
ronment. Although it is open-source, the code base relies heavily
upon Windows libraries. Despite efforts to modify the code, we
could not compile it successfully for our environment. MDRGPU
requires several Python related libraries to be installed one of
which includes PyCUDA (Python wrapper for CUDA). Although
we obtained the latest library versions, MDRGPU complained
about an issue regarding the PyCUDA version. The authors are
working to resolve this issue.

As a prerequisite to running any of the programs featured here,
it is necessary that proper GPU drivers are installed and working
correctly, which in our case is the proprietary display driver from
nVidia (ATI provides a “Catalyst” driver for users with ATI GPUs)
and the CUDA runtime. The CUDA runtime includes sample
programs that verify a proper installation. In the following sub-
sections, we provide descriptions of each of the four programs.
As part of our evaluation, we also designed a basic simulation
study and present results to gain further insight into how these
programs compare amongst each other.

3.1. EpiGPU

EpiGPU is designed to model and test for the association between
a continuous trait and a combination of interaction forms
(Hemani et al., 2011). Because SNP genotypes are coded with
three possible values, there are a total of nine genotype combi-
nations (i.e., interaction forms) that can be constructed for any
pair of SNPs. The method performs an 8 d.f. F-test to test for sig-
nificance of a model that includes all interaction forms except the
double wild type. For an interaction’s genotypes x defined using
SNP i and j and a phenotype mean of y, the following hypotheses
are tested:

3 3
Ho:) > &j—w’=0

i=1j=1

3 3
Hy:i)y) G—w’ >0 (1)

i=1j=1

The program gives the user the option of testing a different set
of hypotheses as well, carrying out a potentially more powerful 4
d.f. test. In this test the term x;; — u in Equation (1) is replaced
with Xx;; — X; — Xj — . where the middle two terms are marginal
means for the genotypes of the two SNPs. The authors employ
several optimizations to improve performance, including using
on-line algorithms to compute sums of squares and maximizing
bandwidth of global memory by compressing genotype data into
bitpacked form. Combining different optimization tactics yields
improvements of up to 90 fold improvement over a serial ver-
sion as depicted in Figure 3. Based on the figure, one can see that
improving bandwidth makes the greatest impact on performance.

EpiGPU is the only program in this comparison list writ-
ten in OpenCL; hence it is also the only program that has been
evaluated on ATT GPUs. OpenCL programs have one convenient
property in that since OpenCL is bundled as part of the GPU
driver installation rather than the CUDA runtime installation,
users do not need to specify a special search path for shared library
objects (e.g., Linux .so files or Windows .dll files) as would be
required when running a CUDA based program. The authors dis-
tribute EpiGPU as pre-compiled executables, available for the 64
bit Linux, Windows, and Mac platforms. The software is well doc-
umented and includes example data sets. Because this program
does not require compilation by the user we found EpiGPU to be
the easiest program to get up and running.

Nvidia GTX580 -
el

ATI Radeon 6970 -

AT| Radeon 5870 -
Optimisation

. Unoptimised

Eﬂ On-line algorithms

Nvidia GTX285 - L2 memory
Bitpack genotypes
Vectorised kernel
Nvidia 8800GT - e

— 1 core
--- 8 cores

T T T T T T

2 4 6 8 10 12
F tests / second (millions)

FIGURE 3 | Improvements from GPU optimizations (figure from
Hemani et al., 2011).

Table 2 | Summary of software.

Program Trait? Open source Implementation Availability

EpiGPU C N OpenCL http://sourceforge.net/projects/epigpu/

GLIDE C Y CUDA http://micb.is.tuebingen.mpg.de/Forschung/glide/
GBOOST B Y CUDA http://bioinformatics.ust.hk/BOOSThtmI#GBOOST
cuGWAM B N (linux) CUDA http://bibs.snu.ac.kr/cugwam/

aC, continuous; B, binary.

Frontiers in Genetics | Statistical Genetics and Methodology

December 2013 | Volume 4 | Article 266 | 4

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

Chen and Guo

Discovering epistasis using GPUs

3.2. GLIDE

GLIDE is built on the framework of classical least squares mul-
tiple regression (Kam-Thong et al., 2012). As such, in contrast to
EpiGPU, it can support continuous valued inputs such as imputed
genotypes, which are often reported as expected dosages. A p-
value for the interaction (between SNPs i and j) term is derived
from a t-statistic with n — 4 degrees of freedom. To review, this
t-statistic is computed as

o)
tfj = — =t 2)
Res’... PR
\/ g [XITX) "y 4
where the residual sum of squares is
~ij\2
Resdsy =) (0 — 7)) (3)
k=1
and the solution for the interaction term is
O‘Z _ (XijTXij)—IXijTy (4)

The CUDA based code in GLIDE does a good job of exploiting the
high levels of parallelism on the GPU. As shown in Figure 4, the
problem of carrying out the full search on @ SNPs is divided
at the coarsest level into tiles labeled with “GridID” in the upper
shaded triangle. Computations are carried out sequentially across
tiles, but in parallel within tiles. If a threadblock dimension of
512 is specified for example, all 512 x 512 interaction pairs of the
SNPs assigned to a particular grid are in principle evaluated in
parallel; in reality the GPU task scheduler coordinates how many
threadblocks can be run at any instance given available resources.
A large matrix multiplication operation evaluates A™ in order

to pre-compute correlation matrices, where A stores genotypes:
columns and rows denoting SNPs and subjects, respectively. The
value of A™ is stored in fast shared memory, so that block specific
correlation matrices X7 X% for any SNP pair i and j as shown in
Equation (4) can simply be extracted from A™ and re-used in
computing Equation (2). In benchmarks against the serial version
of PLINK’s FastEpistasis option (Purcell et al., 2007), the authors
consistently reported speedups of around 2000x over a range of
sample sizes.

Source code, documentation, and test data is available and can
be compiled on any platform by simply running the make com-
mand. GLIDE requires larger datasets to be divided into two input

files.

3.3. GBOOST

Unlike the two previously described methods, the method of
GBOOST tests for association between a binary trait and pair-
wise interactions. Testing for association between any variable
and a binary trait is inherently more challenging, since max-
imum likelihood methods such as logistic regression are too
computationally expensive on such a large scale. The strategy
used by GBOOST is to apply a set of fast closed form approx-
imations on the entire search space of interactions as described
in the paper which first introduced BOOST (Wan et al., 2010).
These approximations rule out the vast majority of interactions
that show little to no evidence of association to the outcome
based on a user specified threshold. Additionally these computa-
tions are easier to implement on GPUs than exact solutions. The
screening mechanism gains further efficiency by storing input
genotypes in a manner that enables fast bit wise operations to
be carried out when constructing counts of contingency tables.
One needs to be wary of missing true signals when relying upon
approximations particular when the user does not apply a liberal

FIGURE 4 | Parallelization in GLIDE (figure from Kam-Thong et al., 2012).

3715 %5019

|thread?®
6ss)

www.frontiersin.org

December 2013 | Volume 4 | Article 266 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

Chen and Guo

Discovering epistasis using GPUs

threshold. The BOOST method is considered to perform well as
a screen since it overestimates the true significance, thus mini-
mizing the false negative rate (Wan et al., 2010). The statistics for
the approximation versus the exact solution are shown in the x-
axis and y-axis of Figure 5, respectively. Candidates that pass the
screen are subsequently tested by computing the log likelihood for
a log-linear model using a standard iterative method and com-
paring this to the log likelihood of the null model. GBOOST is a
CUDA implementation of the original BOOST algorithm (Yung
et al., 2011). The supplementary material provides an in depth
analysis of how different optimization strategies make dramatic
impacts on runtime speed. Figure 6 shows run time on the y-
axis and the number of threads assigned to each threadblock.
Each series in the figure plots performance for a variant of the

30 ; T T . .

N
4]

Log-linear: 2(Lg — Lg)
i &

-
o
T

0 5 10 15 20 25 30
KSA: 2(s — Licsa)

FIGURE 5 | Candidates from BOOST first stage screen (figure from
Wan et al., 2010).

—o— Algorithm |

——Algorithm Il
—2—Algorithm Il
—v—Algorithm IV
—< Algorithm V

10° E
0 R —>=Algorithm VI
5 —o—Algorithm VII

Time per 10000 SNP comparisons (ms)

% — —%

: L . L
0 100 200 300 400 500 600
Thread Number

FIGURE 6 | Runtime as a function of number of active threads across
different optimization levels (figure from Yung et al., 2011).

GBOOST algorithm where higher numbers denote heavier lev-
els of optimization. Not surprisingly, for each algorithm variant,
increased parallelism per block improves throughput, reducing
run time. The most significant improvement in speed across vari-
ants occurs between Algorithm I and II where contingency tables
are stored in what’s known as constant memory in the former
and texture memory in the latter. Constant and texture memory
are both cached sections of global memory, but since the GPU
architecture allows only a relatively small number of concurrent
threads to access constant memory, parallelism can be severely
hampered. Algorithm III improves Algorithm II by re-organizing
how genotypes are laid out. In particular, by converting the geno-
type matrix from a SNP major to a subject major ordering data
fewer memory fetches from global memory are required, a strat-
egy known as coalesced memory accesses. Diminishing returns
are observed with subsequent optimization strategies.

The GPU implementation is approximately 45 times faster
than the CPU version. Source code is available and can eas-
ily be compiled on all platforms supporting the CUDA runtime
through a make file.

34. cuGWAM

The multifactor dimensionality reduction (MDR) method has
been a popular choice for testing for epistasis without strict
assumptions about the interaction forms that are implicit in a
regression framework for example (Ritchie et al., 2001). Because
the method does not rely on any known asymptotics, it employs
cross-validation to generate prediction accuracy as a measure of a
model’s noteworthiness. Figure 7 provides an overview the algo-
rithm: For each pair of SNPs, counts for cases and controls are
tabulated at each two-locus genotype for a large proportion of

Step 2
Step 1 ;
6 4
List of locus BB & i1 36 15
combinations l D
12 R] — |
1.3 15 20 310 5 10
= » ID D ID
20 25 4 12 30 20
bb .D -l:] .D
Step 5 - Step 4 — Step 3
AA Aa aa AA Aa aa
Models
Loci Error
12 65.44 BB HR HR LR BB 1) 6 0.33
1.3 78.88
LR LR LR 0.75 0.3 0.5
)) Bb Bb
15 e LR | LR | HR 08 | 033 (15
bb bb
FIGURE 7 | Overview of MDR (figure from Oki and Motsinger-Reif,
2011).

Frontiers in Genetics | Statistical Genetics and Methodology

December 2013 | Volume 4 | Article 266 | 6

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

Chen and Guo

Discovering epistasis using GPUs

observations known as the training data (e.g., 90%). Based on
some threshold, the nine cells are then labeled as high-risk or
low-risk. These labels are then used to predict disease status on
the remaining “test” observations to evaluate predictive accuracy.
The procedure is the repeated for other random divisions of the
data to get an averaged predictive accuracy. The computationally
demanding nature of cross-validation makes MDR a nice fit for
the GPU.

Kwon et al. developed a CUDA implementation of the MDR
algorithm called cuGWAM (Kwon et al., 2012). cuGWAM scales
well with respect to both sample size and number of markers, with
impressive speed ups for the largest problems. For a data set with
2000 markers, speed up increases from 151x with 500 subjects to
652x with 5000 subjects. When the number of markers increases
from 500 to 5000 on a dataset with sample size of 2000, speed up
rises from 97x to 318x. The authors do not provide specific details
as to what strategies they took for optimizing their code other
than the fact that they carried out as much of the computations
as possible in fast on-chip shared memory.

Running cuGWAM is straightforward. A utility called
GMDRconverter is included which converts a MDR format data
file into a binary file that can be efficiently read in by cuGWAM.
The cuGWAM program allows users to tune GPU performance
by specifying the number of threadblocks, threads per block, and
the index of the GPU if multiple devices are present.

3.5. ADIRECT COMPARISON

After installing the four programs described above on a 64 bit
Linux host equipped with two nVidia Tesla K20 GPUs, we ini-
tially executed each program using included sample data to verify
compatibility. For each program, we recorded average execution
time (taken across 100 simulated datasets), and estimated power
as a function of false positive rate. As indicated in Table 3 execu-
tion times were all similar except for epiGPU, which completed
in approximately a tenth of the time required by the other three
programs.

For the simulation study, we first drew random genotypes on
10,000 SNPs for 2000 subjects assuming linkage equilibrium. A
single pair-wise interaction, with an odds ratio of 2.5 and 72 of
0.6, was then subsequently used to simulate binary and contin-
uous outcomes, respectively. Hundred random distinct datasets
were generated for each outcome type. We applied cuGWAM and
GBOOST on the datasets with binary outcomes, and epiGPU
and GLIDE for datasets with continuous outcomes. The ROC
curve shown in Figure 8 compares the power of epiGPU and
GLIDE. Both methods display comparable power at this effect
size, although epiGPU appears to carry a slight advantage at the
lowest false positive rates. However, at looser thresholds (i.e.,

Table 3 | Average runtime in seconds on simulated data of 10,000
SNPs and 2000 subjects.

epiGPU 11.36
GLIDE 161.78
cuGWAM 116.63
GBOOST 173.54

higher false positive rates), the sensitivity of EpiGPU did not
increase, as indicated by the flat curve. For binary traits, Figure 9
plots the comparison of cuGWAM to GBOOST. Interestingly,
cuGWAM which is based on the MDR method appears to have
slightly more power at this effect size than GBOOST, despite the
fact that one might assume a non-parametric method like MDR
to have less overall power than parametric methods when analyz-
ing a conventional (e.g., log-additive) interaction as is the case in
our simulated data.

4. DISCUSSION

In this review we have highlighted four programs designed
to efficiently search for epistasis, exploiting graphics hardware

0.96 - 4

0.94 -

092 | 4

09 4

True positive rate

0.86 4

EPIGPU =——— |
GLIDE
1

0.82 |-

0.8 L .
0 0.0001 0.0002

False positive rate

0.0003 0.0004

FIGURE 8 | ROC for methods to analyze a continuous trait.

0.98

0.96

0.94

0.92

0.9

0.88 |- _

True positive rate

0.86 |- 4

0.84 | E

CUGWAM =—— |
GBOOST
1

0.82 L

08 ' : '
0 1606 2606 3e-06

False positive rate

4e-06 5e-06

FIGURE 9 | ROC for methods to analyze a binary trait.

www.frontiersin.org

December 2013 | Volume 4 | Article 266 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

Chen and Guo

Discovering epistasis using GPUs

traditionally enjoyed by gamers and computer animation spe-
cialists. Although the methods behind each of the programs are
diverse, our direct comparison indicates that their performance
in terms of runtime speed and accuracy are very similar. The pro-
gram EpiGPU, however, appeared to lead prominently in terms
of run time performance compared to its competitor under the
category of analyzes using continuous traits, GLIDE. However,
GLIDE offers the flexibility of supporting continuously valued
genotypes, which could be of value in settings where imputed
dosages are the preferred input. Because of limited resources, we
did not explore more scenarios such as different number of risk
variants, whether main effects also conferred disease risk, effect
sizes, and minor allele frequency combinations. One should keep
in mind that there may be a greater contrast in power for instance
when a disease model includes main effects. Under this context,
the 8 d.f. test used in EpiGPU may be more appropriate than the
1 d.f. test for interaction used in GLIDE.

Testing for epistatic models of genetic risk is certainly a
research area that has been active and will continue to be
as the sources of heritability in common diseases remain elu-
sive. Exhaustive searches for epistasis on even moderately sized
datasets (e.g., 500,000 SNPs) are already pushing methods naively
parallelized on commodity clusters to their limit. Microprocessor
clock speeds can not continue to rise given the density of tran-
sistors on today’s chips. If we wish to carry out higher dimension
searches over other potential genetic predictors such as interac-
tions among SNPs and other molecular phenotypes (e.g., expres-
sion levels, methylation status, etc.), we will need to adapt not
only by improving statistical optimization methods, but also
develop code that also exploits modern many-core processors
such as GPUs or multi-core CPUs to extract even more paral-
lelism. We have showcased GPUs as an economical answer to
scaling up epistasis software, but we should also remind read-
ers that modern CPUs are beginning to close the performance
gap (Lee et al., 2010). For several years Intel CPUs have already
provided the market with multi-processors featuring GPU-like
properties, a technology known as SSE (streaming SIMD exten-
sions). For example, in C code, programmers can declare SIMD-
aware datatypes such as int4 or float4, indicating that four data
elements are to be simultaneously processed in one instruction.
Advanced compilers such as Intel's MKL (Math Kernel Library)
can automatically optimize code further to fully make use of avail-
able CPU cores and nearby cache memory banks. The trend is
clear that CPU manufacturers are moving to higher core counts.
For example, Intel’s recent Xeon Phi co-processor sits on a PCI
slot like a GPU device, and features up to 61 cores. Barriers of
entry are claimed to be lower than those of GPUs, as applications
that run on CPUs can be automatically ported to run on these
co-processors. It will be interesting to evaluate how these devices
perform, particularly for demanding problems that do not fit the
GPU programming paradigm well.

ACKNOWLEDGMENTS

Funding sources from NIH: R0l GMO053275, R01 HG006139,
1R0IMH100879-01, RO1 ES019876 to Gary K. Chen; ROl
HGO006465 to Yunfei Guo.

REFERENCES

Blom, J., Jakobi, T., Doppmeier, D., Jaenicke, S., Kalinowski, J., Stoye, J., et al.
(2011). Exact and complete short-read alignment to microbial genomes using
graphics processing unit programming. Bioinformatics 27, 1351-1358. doi:
10.1093/bioinformatics/btr151

Buckner, J., Wilson, J., Seligman, M., Athey, B., Watson, S., and Meng, F. (2010).
The gputools package enables gpu computing in R. Bioinformatics 26, 134-135.
doi: 10.1093/bioinformatics/btp608

Campagna, D., Albiero, A., Bilardi, A., Caniato, E., Forcato, C., Manavski, S., et al.
(2009). Pass: a program to align short sequences. Bioinformatics 25, 967-968.
doi: 10.1093/bioinformatics/btp087

Chen, G. K. (2012). A scalable and portable framework for massively parallel vari-
able selection in genetic association studies. Bioinformatics 28, 719-720. doi:
10.1093/bioinformatics/bts015

Chen, G. K., Wang, K., Stram, A. H., Sobel, E. M., and Lange, K. (2012). Mendel-
GPU: haplotyping and genotype imputation on graphics processing units.
Bioinformatics 28, 2979-2980. doi: 10.1093/bioinformatics/bts536

Cordell, H. J. (2002). Epistasis: what it means, what it doesn’t mean, and statis-
tical methods to detect it in humans. Hum. Mol. Genet. 11, 2463-2468. doi:
10.1093/hmg/11.20.2463

Greene, C. S., Sinnott-Armstrong, N. A., Himmelstein, D. S., Park, P. J., Moore,
J. H., and Harris, B. T. (2010). Multifactor dimensionality reduction for graph-
ics processing units enables genome-wide testing of epistasis in sporadic ALS.
Bioinformatics 26, 694—695. doi: 10.1093/bioinformatics/btq009

Hemani, G., Theocharidis, A., Wei, W., and Haley, C. (2011). EpiGPU: exhaus-
tive pairwise epistasis scans parallelized on consumer level graphics cards.
Bioinformatics 27, 1462—1465. doi: 10.1093/bioinformatics/btr172

Hindorff, L. A., Sethupathy, P, Junkins, H. A., Ramos, E. M., Mehta, J. P,, Collins,
E S., et al. (2009). Potential etiologic and functional implications of genome-
wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. U.S.A.
106, 9362-9367. doi: 10.1073/pnas.0903103106

Hu, X,, Liu, Q., Zhang, Z., Li, Z., Wang, S., He, L., et al. (2010). SHEsisEpi, a GPU-
enhanced genome-wide SNP-SNP interaction scanning algorithm, efficiently
reveals the risk genetic epistasis in bipolar disorder. Cell Res. 20, 854-857. doi:
10.1038/cr.2010.68

Huang, Y., Wuchty, S., and Przytycka, T. M. (2013). eQTL epistasis—challenges and
computational approaches. Front. Genet. 4:51. doi: 10.3389/fgene.2013.00051

Hussong, R., Gregorius, B., Tholey, A., and Hildebrandt, A. (2009). Highly acceler-
ated feature detection in proteomics data sets using modern graphics processing
units. Bioinformatics 25, 1937-1943. doi: 10.1093/bioinformatics/btp294

Kam-Thong, T., Azencott, C. A., Cayton, L., Putz, B., Altmann, A., Karbalai, N., et
al. (2012). GLIDE: GPU-based linear regression for detection of epistasis. Hum.
Hered. 73, 220-236. doi: 10.1159/000341885

Kam-Thong, T., Czamara, D., Tsuda, K., Borgwardt, K., Lewis, C. M., Erhardt-
Lehmann, A., et al. (2011a). EPIBLASTER-fast exhaustive two-locus epistasis
detection strategy using graphical processing units. Eur. J. Hum. Genet. 19,
465-471. doi: 10.1038/ejhg.2010.196

Kam-Thong, T., Putz, B., Karbalai, N., Muller-Myhsok, B., and Borgwardt, K.
(2011b). Epistasis detection on quantitative phenotypes by exhaustive enu-
meration using GPUs. Bioinformatics 27, 214-i221. doi: 10.1093/bioinformat-
ics/btr218

Klingbeil, G., Erban, R., Giles, M., and Maini, P. K. (2011). Stochsimgpu: par-
allel stochastic simulation for the systems biology toolbox 2 for matlab.
Bioinformatics 27, 1170-1171. doi: 10.1093/bioinformatics/btr068

Kohlhoff, K. J., Sosnick, M. H., Hsu, W. T., Pande, V. S., and Altman, R. B.
(2011). Campaign: an open-source library of gpu-accelerated data clustering
algorithms. Bioinformatics 27, 2321-2322. doi: 10.1093/bioinformatics/btr386

Kwon, M. S., Kim, K., Lee, S., and Park, T. (2012). cuGWAM: Genome-wide
association multifactor dimensionality reduction using CUDA-enabled high-
performance graphics processing unit. Int. J. Data Min. Bioinform. 6, 471-481.
doi: 10.1504/J]DMB.2012.049301

Lee, V. W,, Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., et al.
(2010). Debunking the 100x gpu vs. cpu myth: an evaluation of throughput
computing on cpu and gpu. SIGARCH Comput. Archit. News 38, 451-460. doi:
10.1145/1816038.1816021

Liepe, J., Barnes, C., Cule, E., Erguler, K., Kirk, P., Toni, T., et al. (2010). Abc-
sysbio—approximate bayesian computation in python with GPU support.
Bioinformatics 26, 1797-1799. doi: 10.1093/bioinformatics/btq278

Frontiers in Genetics | Statistical Genetics and Methodology

December 2013 | Volume 4 | Article 266 | 8

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

Chen and Guo

Discovering epistasis using GPUs

Liu, B., Hagiescu, A., Palaniappan, S. K., Chattopadhyay, B., Cui, Z., Wong, W.-F.,
et al. (2012a). Approximate probabilistic analysis of biopathway dynamics.
Bioinformatics 28, 1508-1516. doi: 10.1093/bioinformatics/bts166

Liu, C.-M., Wong, T., Wu, E., Luo, R., Yiu, S.-M,, Li, Y,, et al. (2012b). Soap3:
ultra-fast gpu-based parallel alignment tool for short reads. Bioinformatics 28,
878-879. doi: 10.1093/bioinformatics/bts061

Magis, A. T, Earls, J. C.,, Ko, Y.-H., Eddy, J. A, and Price, N. D. (2011).
Graphics processing unit implementations of relative expression analysis algo-
rithms enable dramatic computational speedup. Bioinformatics 27, 872-873.
doi: 10.1093/bioinformatics/btr033

Manolio, T. A., Collins, E S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter,
D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature
461, 747-753. doi: 10.1038/nature08494

Oki, N. O., and Motsinger-Reif, A. A. (2011). Multifactor dimensionality reduction
as a filter-based approach for genome wide association studies. Front. Genet.
2:80. doi: 10.3389/fgene.2011.00080

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., et
al. (2007). PLINK: a tool set for whole-genome association and population-
based linkage analyses. Am. J. Hum. Genet. 81, 559-575. doi: 10.1086/
519795

Ritchie, M. D., Hahn, L. W.,, Roodi, N., Bailey, L. R., Dupont, W. D,, Parl, E E,
et al. (2001). Multifactor-dimensionality reduction reveals high-order interac-
tions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum.
Genet. 69, 138-147. doi: 10.1086/321276

Suchard, M. A., and Rambaut, A. (2009). Many-core algorithms for statistical phy-
logenetics. Bioinformatics 25, 1370-1376. doi: 10.1093/bioinformatics/btp244

Vigelius, M., Lane, A., and Meyer, B. (2011). Accelerating reaction-diffusion sim-
ulations with general-purpose graphics processing units. Bioinformatics 27,
288-290. doi: 10.1093/bioinformatics/btq622

Vouzis, P. D., and Sahinidis, N. V. (2011). Gpu-blast: using graphics proces-
sors to accelerate protein sequence alignment. Bioinformatics 27, 182-188. doi:
10.1093/bioinformatics/btq644

Wan, X., Yang, C., Yang, Q., Xue, H., Fan, X,, Tang, N. L., et al. (2010). BOOST: a
fast approach to detecting gene-gene interactions in genome-wide case-control
studies. Am. J. Hum. Genet. 87, 325-340. doi: 10.1016/j.ajhg.2010.07.021

Yung, L. S., Yang, C.,, Wan, X,, and Yu, W. (2011). GBOOST: a GPU-based
tool for detecting gene-gene interactions in genome-wide case control studies.
Bioinformatics 27, 1309-1310. doi: 10.1093/bioinformatics/btr114

Zhou, H., Lange, K., and Suchard, M. A. (2010). Graphics processing units and
high-dimensional optimization. Stat. Sci. 25, 311-324. doi: 10.1214/10-STS336

Zhou, J., Liu, X,, Stones, D. S., Xie, Q., and Wang, G. (2011a). Mrbayes on a
graphics processing unit. Bioinformatics 27, 1255-1261. doi: 10.1093/bioinfor-
matics/btr140

Zhou, Y., Liepe, J., Sheng, X., Stumpf, M. P. H., and Barnes, C. (2011b). Gpu
accelerated biochemical network simulation. Bioinformatics 27, 874-876. doi:
10.1093/bioinformatics/btr015

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 27 September 2013; paper pending published: 30 October 2013; accepted: 16
November 2013; published online: 03 December 2013.

Citation: Chen GK and Guo Y (2013) Discovering epistasis in large scale genetic asso-
ciation studies by exploiting graphics cards. Front. Genet. 4:266. doi: 10.3389/fgene.
2013.00266

This article was submitted to Statistical Genetics and Methodology, a section of the
journal Frontiers in Genetics.

Copyright © 2013 Chen and Guo. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

www.frontiersin.org

December 2013 | Volume 4 | Article 266 | 9

http://dx.doi.org/10.3389/fgene.2013.00266
http://dx.doi.org/10.3389/fgene.2013.00266
http://dx.doi.org/10.3389/fgene.2013.00266
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

Chen and Guo

Discovering epistasis using GPUs

5 APPENDIX

5.1 AHANDS ON TUTORIAL FOR COMPUTING MEANS

In this section we will navigate the reader through the syntax of
three development platforms that are bundled in nVidia’s toolkit.
We will present a simple working example implemented using
best practices. The concepts of threads, threadblocks, global, and
shared memory should become clearer once readers see them in
action.. The goal here is to compute means in parallel on several
vectors of floating point numbers, or perhaps in the context of
genetics, SNP means.

A commonly applied techniques in parallel programming is
known as reduction. Reduction allows a programmer to compute
a summary statistic such as the average over a vector of n values
in less than » time steps. This can make quite an impact in prob-
lems like epistasis, where means or sums of squares need to be
computed on genotypes across millions of interacting predictors.
Figure A1 illustrates this concept where each row represents a set
of parallel operations that can be completed in a single instruc-
tion. At each instruction, a pairwise operation (e.g., addition) is
carried between elements of the left and right halves of an array.
This recursion continues until one element remains, and requires
a total of log, () steps. The technique is easily implemented on
GPUs and example code is presented in the next two sub-sections.

5.1.1 Thrust

Thrust is a C++ API that is bundled with the nVidia CUDA
SDK. For developers who are familiar with C++ and templates,
Thrust features concise, easy to read syntax that abstracts the
complexities of writing kernel functions for common tasks such
as reductions and sorts.

Let’s begin by walking through the 23 line program shown in
Figure A2. In this program we plan to store 64 random num-
bers in an array, but compute the means on the first 32 and the
last 32 elements of the array, each mean computed with paral-
lel reductions. Lines 8—11 are ordinary C instructions that set up
the array and random seed. In Line 12, we instruct the Thrust
run time to set up a vector (array) data structure on the host

3

[254] [255] [256]

|

[127] [128] [129] 1254]

o

o

(log2 reductions)

é

[0] < reduced result

FIGURE A1 | Parallel reduction for computing summary statistics.

with the desired length as the parameter argument. The follow-
ing line populates this host array with random numbers. Line 14
highlights the advantage of Thrust in that it handles the tasks of
allocating device memory with the appropriate size and transfer-
ring the data to the device in a single concise instruction. Lines
16 and 17 then demarcate the start boundary and one element
past the end boundary of the sub-array that we plan to apply
the reduction operation on. The Thrust reduction instruction on
Line 18 takes in as arguments two C++ style iterators, which
in our case point to the indices of the start and end (plus one)
elements of the current sub-array.

Notice in this Thrust example we did not need to specify any
GPU-specific parameters such as threads, threadblocks, global,
or local memory. Thrust manages resource allocations related to
these constructs internally. The drawback, however, is a loss of
control for more customized algorithms. As with any AP], this is
the price one pays for more abstraction. Suppose we wanted both
reductions to be carried out in a single kernel call (and performed
in parallel given sufficient cores). In the following two examples,
we will present the equivalent problem using CUDA and OpenCL
that allows the programmer to explicitly encode such a design.

5.1.2 CUDA

In this section we will walk through a minimal CUDA program
(shown in Figure A3) that computes genotype means. It is recom-
mended that programmers handle catch errors/exceptions that
are returned by the CUDA runtime, but for the sake of focus-
ing on core concepts, we have removed such error handling code
from this example. To simplify this example further, we limit vec-
tor length to 32, which is the size of an nVidia warp (the minimum
number of data elements that can be read in a single transac-
tion). For longer vector lengths we would need to introduce the
concept of thread barriers, a slightly more advanced concept that
would enable more parallelism but is not necessary for a minimal
implementation.

We begin in lines 20-25 of the program, initializing variables
on the host using standard C syntax. From lines 26-29 we per-
form a set of instructions that allocate two memory buffers on
the GPU: one for the set of input data arrays (stacked into a single
array), and the other for the output array containing the com-
puted means. Line 31 instructs the CUDA runtime to transfer
data from the host arrays to the memory buffers so that these data
will be accessible by the GPU microprocessors. The following line
is the actual invocation of the function that is to run on the GPU
device, where parameters are enclosed by triple angle brackets.
Line 33 is analogous to Line 31 and moves data back to the host,
in this case the computed means.

The section defined by lines 6-17 is the heart of the pro-
gram, which contains the set of instructions that are executed by
the GPU microprocessors. Functions that are run on the GPU
are qualified with either the string _ global _ or _ local ,
where only the former qualifier can be invoked by the host
program. In line 7, we declare an array of floating point num-
bers to store genotypes for a particular SNP. This array is
scoped with keyword __shared__ to specify that the data is to
be stored in the fast memory bank near the computing cores.

Frontiers in Genetics | Statistical Genetics and Methodology

December 2013 | Volume 4 | Article 266 | 10

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

Chen and Guo

Discovering epistasis using GPUs

1 #include<stdio.h>

2 #include<thrust/host_vector.h>

3 #include<thrust/device_vector.h>
4

5 #define BLOCK_SIZE 32

6

7 int main(int argc, char * argv[]){
8 int total_blocks = 2;

10 float means [totalelocks];
11 srand(1l);

15 for(int i=0;i<total_blocks;++1i){

FIGURE A2 | Thrust code for computing means across different SNPs.

9 int vec_len = BLOCK_SIZE * total_blocks;

12 thrust::host_vector<float> test_vec(vec_len);
13 for(int i = 0;i<vec_len;++1i) test_vec[i] = rand()/(RAND_MAX+1.);
14 thrust::device_vector<float> device_invec = test_vec;

16 int offset = i*BLOCK_SIZE;

17 int end = offset+BLOCK_SIZE;

18 float sum = thrust::reduce(test_vec.begin()+offset,test_vec.begin()+end)
19 means[i] = sum / BLOCK_SIZE;

20 printf("GPU Mean at chunk %d: %f\n",i,means[i]);

21 }

22 return 0;

23 }

1 #include<stdio.h>

2 #include<cuda_runtime.h>
3

4 #define BLOCK_SIZE 32

o~NoO v

19 int main(int argc, char * argv[]){
20 int total blocks = 2;

22 float test_vec [vec_len];
23 float means [total_blocks];
24 srand(1);

26 float * device_invec = NULL;

28 float * device_meanvec = NULL;

Device);

eToHost) ;
s[i]);

35 return 0;
36 }

FIGURE A3 | CUDA code for computing means across different SNPs.

__global__ void gpu_mean(const float *in_vec, float *out_mean){
_ shared__ float temp_vec[BLOCK_SIZE];
int globalindex = blockIdx.x * blockDim.x + threadIdx.x;

9 temp_vec[threadIdx.x] = in_vec[globalindex];

10 for(int s=BLOCK_SIZE/2; s>0; s>>=1) {

11 if (threadIdx.x<s) {

12 temp_vec[threadIdx.x]+=temp_vec[threadIdx.x+s];

13 }

14 }

15 if(threadIdx.x==0) out_mean[blockIdx.x] = temp_vec[0]/BLOCK_SIZE;
16 return ;

17 }

18

21 int vec_lgn = BLOCK_SIZE * total_blocks;

25 for(int i = 0;i<vec_len;++1i) test_vec[i] = rand()/(RAND_MAX+1.);

27 cudaMalloc((void **) &device_invec, vec_len*sizeof(float));

29 cudaMalloc((void **) &device_meanvec, total_blocks*sizeof(float));

31 cudaMemcpy (device_invec, test_vec, vec_len*sizeof(float), cudaMemcpyHostTo

32 gpu_mean<<<total_blocks, BLOCK_SIZE>>>(device_invec, device_meanvec);
33 cudaMemcpy (means,device_meanvec,total_blocks*sizeof(float),cudaMemcpyDevic

34 for(int i=0;i<total_blocks;++i) printf("GPU Mean at chunk %d: %f\n",i,mean

This is vital to avoid frequent accesses to slow global mem-
ory (such as the in_vec and out_mean variables in our exam-
ple). We organize our problem so that threadblocks are on
a one-dimensional grid, each threadblock mapping to a SNP.
Furthermore, threads within a threadblock map to the indi-
vidual genotypes of a SNP. Hence, line 8 computes the proper
index of the element in in_vec that is required for copying

genotypes from global memory into shared memory, as shown
in line 9. The recursive reduction procedure described above
is carried out in the for loop in lines 10-14. Finally, since we
only need to report one value (the mean), line 15 instructs the
first thread to divide the result of the sum reduction by the
number of genotypes, and store the result in the global variable
out_mean.

www.frontiersin.org

December 2013 | Volume 4 | Article 266 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

Chen and Guo

Discovering epistasis using GPUs

#define BLOCK_SIZE 32

1
2
3 __kernel void mean(

4 _ global float * in_vec,

5 _ global float * out_mean){
6
Z
8

_ local float temp_vec[BLOCK_SIZE];
int threadindex = get_local_id(0);
int globalindex = get_group_id(0)
9 temp_vec[threadindex] = in_vec[globalindex];
10 // add all the elements in log2 time
11 for(int s=BLOCK_SIZE/2; s>0; s>>=1) {

12 if (threadindex<s) {

13 temp_vec[threadindex]+=temp_vec[threadindex+s];

14 }

15 }

16 if(threadindex==0) out_mean[get_group_id(0)] = temp_vec[0]/BLOCK_SIZE;

17 return ;

FIGURE A4 | OpenCL kernel for computing means across different SNPs.

* BLOCK_SIZE + get_local_id(0);

5.1.3 OpenCL

Here we present the same algorithm for computing genotype
means, implemented in OpenCL. One major difference in
OpenCL programs is that code that runs on the GPU (known
as kernel code) is always contained in a file that is sepa-
rate from the host code, whereas in CUDA a programmer
can choose to organize the source code in either fashion.
Because OpenCL programs are structured as such, host code
require substantially more lines of code, as the kernel source
must be read in from a file, and compiled at run time. The
supplementary document provides a listing of the OpenCL

implementation of host code that invokes our example kernel.
Comparing Figure A4 to the kernel function in Figure A3, one
immediately notices that there are only subtle differences in
syntax between the two platforms. Notable differences include
the use of keyword __ kernel that replaces the CUDA key-
word __global__, and the qualifier __global for variables in_vec
and out_mean (CUDA defaults to global memory scope when
no qualifiers are present). Fast _ shared__ memory is scoped
as __local in OpenCL. We obtain the threadblock ID and
thread ID using the functions get_group_id() and get_local_id(),
respectively.

Frontiers in Genetics | Statistical Genetics and Methodology

December 2013 | Volume 4 | Article 266 | 12

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

	Discovering epistasis in large scale genetic association studies by exploiting graphics cards
	Introduction
	Primer on Creating GPU Based Algorithms
	Methods
	EpiGPU
	GLIDE
	Gboost
	cuGWAM
	A Direct Comparison

	Discussion
	Acknowledgments
	References
	Appendix
	A Hands on Tutorial for Computing Means
	Thrust
	CUDA
	OpenCL

