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The cost of next-generation sequencing is now approaching that of early GWAS panels,
but is still out of reach for large epidemiologic studies and the millions of rare variants
expected poses challenges for distinguishing causal from non-causal variants. We
review two types of designs for sequencing studies: two-phase designs for targeted
follow-up of genomewide association studies using unrelated individuals; and family-based
designs exploiting co-segregation for prioritizing variants and genes. Two-phase designs
subsample subjects for sequencing from a larger case-control study jointly on the basis
of their disease and carrier status; the discovered variants are then tested for association
in the parent study. The analysis combines the full sequence data from the substudy
with the more limited SNP data from the main study. We discuss various methods
for selecting this subset of variants and describe the expected yield of true positive
associations in the context of an on-going study of second breast cancers following
radiotherapy. While the sharing of variants within families means that family-based designs
are less efficient for discovery than sequencing unrelated individuals, the ability to exploit
co-segregation of variants with disease within families helps distinguish causal from
non-causal ones. Furthermore, by enriching for family history, the yield of causal variants
can be improved and use of identity-by-descent information improves imputation of
genotypes for other family members. We compare the relative efficiency of these designs
with those using unrelated individuals for discovering and prioritizing variants or genes for
testing association in larger studies. While associations can be tested with single variants,
power is low for rare ones. Recent generalizations of burden or kernel tests for gene-level
associations to family-based data are appealing. These approaches are illustrated in the
context of a family-based study of colorectal cancer.
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INTRODUCTION
In the early days of genomewide association studies (GWAS),
the cost of commercial high-density genotyping panels was pro-
hibitive for large-scale epidemiologic studies needed to detect the
modest relative risks (RRs) now known to be associated with most
common variants for complex diseases (Hindorff et al., 2009).
Hence, investigators turned to multi-stage designs, in which only
a sample of subjects were genotyped on such platforms and a
generous selection of the most significant associations were then
tested on an independent sample using custom genotyping tech-
niques. The final analysis typically combined the data from both
stages, with a final significance level chosen to ensure genomewide
significance after allowing for the number of variants tested in the
second. The basic principles were based on a series of papers writ-
ten before the GWAS era (Satagopan et al., 2002, 2004; Satagopan
and Elston, 2003), and subsequent work showed how to optimize
the allocation of sample size and first-stage critical values in the
GWAS context (Wang et al., 2006; Skol et al., 2007). In particular,
Skol et al. (2006) showed that this joint analysis was more power-
ful than treating the design as discovery followed by independent
replication, despite various high-profile journals’ requirements

for an independent replication study (Panagiotou et al., 2012).
Although this became the conventional GWAS design through-
out the first decade of the 21st century, rapidly declining costs
of commercial GWAS chips have made it feasible for many stud-
ies to obtain genome-wide coverage on all available subjects in a
single stage (Thomas et al., 2009a,b). The cost of custom genotyp-
ing for large numbers of hand-picked SNPs was often comparable
to standard high-density panels, and having more subjects with
genome-wide data allowed for more informative analysis of inter-
actions, subgroups, pleiotropic effects, etc. For a general review of
multi-stage designs in genetics, see (Elston et al., 2007).

As we entered the “post-GWAS” era, the focus began to shift
toward rare variants and the use of next-generation sequenc-
ing (NGS) technologies that could in principle (given a large
enough sample size and deep enough sequencing) uncover all
the genetic variation in a region, not just the common SNPs that
have been used to tag the unknown causal variants. In part, this
interest stemmed from the increasing recognition that common
variants were accounting for only a relatively small proportion
of the total heritability of most complex diseases (Manolio et al.,
2009; Schork et al., 2009). Amongst other possible explanations
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for the “missing heritability,” rare variants have been proposed,
based on an evolutionary argument (Gorlov et al., 2011) or
empirical evidence (Bodmer and Bonilla, 2008) that their effect
sizes could be larger, although recent whole-exome sequencing
studies have cast some doubt on this hypothesis (e.g., Heinzen
et al., 2012). Furthermore, since rare variants tend not to be well
tagged by common ones (Duan et al., 2013), use of conventional
GWAS panels would tend to miss associations with rare variants.
Cost currently precludes application of NGS to whole-genome
sequencing on a large scale, so clever study design has again
become important (Thomas et al., 2009a,b). One of the first uses
of NGS was for targeted follow-up of GWAS hits, for which an
alternative to two-stage designs, known as two-phase designs, is a
natural choice. These differ from the two-stage designs described
above in that the set of subjects chosen for expensive data col-
lection (e.g., NGS) are a proper subset of a larger epidemiologic
study rather than an independent sample and that this subset
is selected on the basis of information already available on the
full study (Whittemore and Halpern, 1997; Thomas et al., 2004;
Yang and Thomas, 2011). In the case of NGS, this could involve
stratification jointly on disease status and carrier status of the
associated variant(s). While this would tend to induce a spurious
association between any variants in LD with the GWAS SNPs and
disease even under the null hypothesis that they are not causal,
this bias can be avoided by adjusting for the sampling fractions,
and additional information available in the full study can also
be incorporated. The basic principles were developed in a series
of seminal papers by Norman Breslow with various colleagues
(see Breslow and Holubkov, 1997b; Breslow and Chatterjee, 1999;
Scott et al., 2007; Breslow et al., 2009b, for summaries of this
work). Recently, Schaid et al. (2013a) has provided an excellent
discussion of the use of this approach for targeted follow-up of
GWAS hits by NGS. However, for whole genome or whole exome
sequencing studies, there would be no point in selecting individu-
als based on whether they carried a specific polymorphism, except
to eliminate those known to be carrying a known major mutation.

Most GWAS for discovering common variants associated with
disease traits have been conducted using a case-control design
with unrelated controls. Not only are unrelated individuals eas-
ier to identify and enroll than are entire families (particularly
multiple-case families), but the statistical efficiency for discovery
or association testing per subject genotyped is typically higher
using unrelated controls than using unaffected siblings or other
relatives (Witte et al., 1999). However, with the growing inter-
est in rare variants and the availability of NGS, there has been
a resurgence of interest in using family-based designs (Zhu et al.,
2010; Feng et al., 2011; Ionita-Laza and Ottman, 2011; Shi and
Rao, 2011). Family-based designs may have other advantages
that outweigh their loss of statistical efficiency. By exploiting
information about co-segregation, they may be more efficient at
prioritizing potentially causal variants from non-causal ones for
subsequent testing for association with disease in larger samples.
The ability to exploit Mendelian inheritance may also improve the
imputation of rare variants in untested samples (Li et al., 2009;
Cheung et al., 2013). Finally, family-based designs can exploit
both between- and within-family comparisons in a two-step anal-
ysis for better power while being robust to bias from population

stratification (Lange et al., 2003; Van Steen et al., 2005; Feng et al.,
2007; Murphy et al., 2008). In this paper, we focus on the first of
these advantages, using a design that sequences a subset of family
members initially, ranks the discovered variants in terms of their
likelihood of being associated with the trait using the phenotype
information on the entire family, and then tests for association
in an independent sample. In this sense, the design has elements
of both two-phase and two-stage designs, in that the sequencing
set is a proper subset of a larger family-based study and that an
independent sample is used for replication or combined analysis.

One consequence of the new focus on rare variants is the need
for novel analysis strategies, because testing associations individ-
ually with every variant would have very little power due to the
large multiple comparisons penalty and their rarity. In a sample
of, say, size 200, one might identify about 20 million variants.
Most of these are likely to be unrelated to disease and genotyp-
ing all of them for a large case-control association study would be
neither feasible nor statistically efficient, so some means of identi-
fying those most likely to be causal is needed. Furthermore, under
some models of disease causation, multiple variants in a causal
gene (or pathway) could affect its function, so aggregating vari-
ants within genes may also improve power. To address this need,
a host of “burden” tests have been developed based on counts
of rare variants, weighted in various fashions (see Asimit and
Zeggini, 2010; Cirulli and Goldstein, 2010; Basu and Pan, 2011;
Bacanu et al., 2012; Thomas, 2012, for reviews). However, these
are ill-suited to the situation where a region contains both delete-
rious and protective variants (Hoffmann et al., 2010). A random
effects model that focuses instead on the variance of risk across
variants rather than their mean might therefore be more power-
ful. The first of this type was the Cα test (Neyman and Scott, 1966;
Neale et al., 2011), which tests for overdispersion of case-control
ratios, conditional on the total number of variants. The Sequence
Kernel Association Test [SKAT (Wu et al., 2011; Lee et al., 2012)],
based on a general linear mixed model, tests for association
between similarity of phenotypes and similarity of multi-locus
genotypes across all pairs of subjects. See Schaid (2010a,b) for
a general review of the basic statistical foundations of such tests
and various choices of kernel functions for genetic applications.
Recently, this class of methods has been extended to family stud-
ies (Huang et al., 2010; Schifano et al., 2012; Chen et al., 2013;
Ionita-Laza et al., 2013; Schaid et al., 2013b). Hierarchical mod-
eling approaches offer another approach to the analysis of rare
variants, allowing formal incorporation of external information
for prioritization.

A variety of methods for incorporating genomic context, func-
tional, or pathway annotation data have been discussed in GWAS
contexts (reviewed by Cantor et al., 2010; Thompson et al., 2013).
Examples of prior information might include loci previously
reported, pathway or genomic annotation, expression QTL or
other functional assays, etc. (Rebbeck et al., 2004; Bush et al.,
2009; Karchin, 2009; Nicolae et al., 2010; Wang et al., 2010;
Freedman et al., 2011; San Lucas et al., 2012; Minelli et al.,
2013). Filtering on such variables has become a popular strat-
egy, but risks eliminating many causal variants whose potential
significance has not yet been recognized or loading up the list
of prioritized variants with too many non-causal ones based
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on irrelevant information. The weighted False Discovery Rate
(Roeder et al., 2006; Wakefield, 2007; Whittemore, 2007) and
Gene Set Enrichment Analysis (Chasman, 2008; Holden et al.,
2008) require specification of weights in advance and there is no
obvious way to combine multiple filters. The hierarchical mod-
eling approach described below is more flexible, allowing the
weights given to various biofeatures to be determined empiri-
cally, based on their observed correlation with disease associations
across the ensemble of all variants.

An example of a two-phase design is the Women’s
Environmental Cancer and Radiation Epidemiology (WECARE)
Study of the risk of second breast cancers among survivors of a
first breast cancer, focusing on radiation dose to the contralateral
breast (Stovall et al., 2008; Langholz et al., 2009), various genes
involved in DNA damage response pathways (Begg et al., 2008;
Concannon et al., 2008; Borg et al., 2010; Malone et al., 2010;
Capanu et al., 2011; Quintana et al., 2011; Brooks et al., 2012;
Quintana et al., 2012; Reiner et al., 2013) and their interactions
(Bernstein et al., 2010, 2013); a GWAS is also currently in
progress. The design is a nested case-control study, with two
controls matched to each case on age and year of diagnosis of
the first cancer and study center, and “counter-matched” on
radiotherapy for treatment of the first cancer (Bernstein et al.,
2004). As an illustration of the two-phase design, we are currently
performing whole genome sequencing on a subsample of 201
subjects and whole exome sequencing on several hundred more,
drawn from the 701 cases and 1399 controls, stratified jointly by
case-control status and risk predictors—age at first cancer, family
history (FH), radiation treatment, and time since exposure.

As an example of a family-based design, we are currently
performing deep targeted resequencing of 11 replicated regions
identified by previous GWASs as associated with colorectal can-
cer (CRC), using ∼4200 samples drawn from the Colon Cancer
Family Registries (C-CFR). The C-CFR is an international col-
laboration of registries of families ascertained through CRC
in various ways, some population-based, some from high-risk
genetic clinics, some including population controls or control
families (Newcomb et al., 2007). To date, 10,662 CRC families
have been enrolled, totaling 62,353 individuals, with genetic sam-
ples available on 5113 cases and 9196 unaffected family members
or population controls with epidemiologic risk factor informa-
tion, and FH data on many more (http://epi.grants.cancer.gov/
(CFR/about_colon.html, accessed 3/8/13). For the purpose of
comparing different designs, we have selected some samples
from multiple-case families and some from unrelated cases or
controls in various ways. Ultimately these data would be used
to compare designs empirically in terms of the yield of sig-
nificant findings by subsampling from these real data (e.g., to
assess whether a lower depth of sequencing, narrower regions,
fewer subjects or subjects targeted in different ways would have
sufficed).

The aim of this paper is to review recent developments in
methods for the design and analysis of NGS studies, with a
particular focus on two-phase and family-based designs, and to
illustrate the various issues with simulated data and applica-
tions to power calculations and preliminary data from these two
studies.

RESULTS
TWO-PHASE SAMPLING FOR TARGETED RESEQUENCING
Suppose one has already completed a large case-control GWAS
of unrelated individuals, in which one or more tag SNPs have
been found to be strongly associated with a particular disease. It
is unlikely that the associated SNPs would themselves be causal—
more likely they are simply in LD with the truly causal variant(s).
The aim of a targeted resequencing study is therefore to exhaus-
tively re-sequence the region to identify all variants in the hopes of
discovering these causal ones. Two key decisions are required: how
to select the subsample to be sequenced; and how to prioritize the
variants found in this subsample.

Approaches to prioritization of variants
One obvious method of prioritization would be on the basis of
novelty, i.e., to focus attention on variants that have not been seen
previously (or only rarely) among population controls. With the
growing catalog of sequence variants in public databases like the
1000 Genomes Project, many causal variants are likely already to
have been discovered and those that are novel are likely to be so
rare that there would be very little power testing their associa-
tion individually with disease. Furthermore, most novel variants
are likely to be neutral. Nevertheless, the discovery of a novel
association with disease is important, irrespective of whether or
not the existence of the variant has been previously reported,
but a discovery of a novel variant and its association with dis-
ease is particularly noteworthy. The same applies to filtering based
on differences in allele frequencies between cases and controls
within the sequencing subset (Yang and Thomas, 2011). Thus,
some investigators have decided not to sequence controls, but this
could be ill advised if cases are sequenced in populations not well
represented in public databases or on platforms with different
discovery characteristics (e.g., depth of coverage, quality control
filtering).

Under the hypothesis that a gene may harbor multiple vari-
ants any of which could affect function or that a critical pathway
could be affected by polymorphism in any of the genes in it, a
strategy that aggregates across multiple related variants may be
helpful. Methods section Simulation of Gene- and Pathway-level
Prioritization in the WECARE STUDY describes a simulation of
this strategy based on the WECARE study; results are discussed in
the application below.

Hierarchical modeling (Greenland, 2000) entails adding a
second-level model for the effect estimates of each variant, allow-
ing the magnitude of the effects, their probability of being non-
null, or their covariances to depend upon external information
(“prior covariates”) (Conti and Witte, 2003; Hung et al., 2004;
Chen and Witte, 2007; Hung et al., 2007; Lewinger et al., 2007;
Conti et al., 2009; Hoffmann et al., 2010; Capanu and Begg,
2011; Capanu et al., 2011). Hierarchical models involve a first
(subject)-level model for individual’s phenotypes Yi as a function
of a vector of genotypes Gi =(Giv) at loci v and corresponding
regression coefficients β = (βv), e.g., a general linear model of
the form f [E(Yi)] = G′

iβ, and a second (variant)-level model for
the distribution of these regression coefficients as a function of
prior covariates Zv, e.g., a linear regression model of the form
E(βv) = Z′

vπ (or) perhaps a model for their variances or
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covariances (Thomas et al., 2009a,b). This approach also has the
advantage of allowing for the uncertainty about which effects
should be included in the model within a Bayes model averaging
framework, e.g., by modeling the probability that a variant has no
effect as logit[Pr(βv = 0)] = Z′

vα (Quintana et al., 2012; Quintana
and Conti, 2013). It also allows the data to determine the opti-
mal weights for the various prior covariates rather than having to
specify them a priori; these papers show how the gain in power
from including covariates with high predictive value for classify-
ing causality of variants is offset by very little loss of power from
including covariates with low predictive value (since they are usu-
ally assigned very little weight), in contrast to filtering approaches,
which can lead to substantial loss of power if either sensitivity or
specificity is low.

Joint analysis of SNP and sequence data
The subset of subjects from the substudy with the full sequence
data would probably not provide adequate power for testing asso-
ciations with disease directly, either variant-by-variant or by any
of the aggregation methods described above. How then might
one take advantage of the data from the much larger GWAS from
which the substudy subjects were selected? Three basic strategies
are possible: (i) by genotyping; (ii) by imputation; or (iii) by joint
analysis.

The first of these is the simplest, but most expensive. One sim-
ply does custom genotyping in the main study of the prioritized
variants. Under the hypothesis that any causal variants are likely
to have been discovered by sequencing and that they survived
prioritization, then the genotype data for the main study should
be sufficient and associations can be tested directly, with appro-
priate correction for the effective number of independent tests
performed (Conneely and Boehnke, 2007). A final analysis can
then include a test of whether the novel variants account for the
original SNP association (Yang and Thomas, 2011).

Imputation has become a standard approach for GWAS analy-
sis, so that typically several million common variant associations
are tested by combining the study data from the SNP panel with
population distributions of all common and uncommon variants
from such databases as the HapMap and 1000 Genomes projects
(Asimit and Zeggini, 2012; Howie et al., 2012). For each variant
not on the GWAS panel, one computes the expected allelic dosage
and uses this as the covariate in a logistic regression model; this
strategy is known to be superior to simply using the most likely
genotype, in part because it correctly allows for the uncertainty in
the imputation (Stram et al., 2003). Whether this strategy would
be viable for rare variants is still unknown, but there are two
reasons for concern. First, the strategy relies on linkage disequi-
librium, and rare variants tend to have weaker LD than common
ones (Duan et al., 2013). Second, it also relies on having suf-
ficiently large reference panels, which would not include newly
discovered variants.

Joint analysis of the full sequence data on the subsample and
the SNP data on the main study is the most powerful approach
and, like imputation does not involve any further genotyping
costs. In their series of seminal papers on two-phase studies,
Breslow et al. describe three basic analysis approaches: pseudo-
likelihood (PL), weighted likelihood (WL), and semi-parametric

likelihood (Breslow and Cain, 1988; Breslow and Zhao, 1988;
Cain and Breslow, 1988; Breslow and Holubkov, 1997a,b; Breslow
and Chatterjee, 1999; Breslow et al., 2003, 2009a,b; Breslow and
Wellner, 2007). The simplest of these is the WL approach, so for
simplicity, we confine our discussion here to this one (Methods
section Likelihoods for Joint Analysis of Two-phase Studies).
The basic idea is based on Horvitz-Thomson estimating equa-
tions, which use the score function derived from the likelihood
for a logistic regression of disease status in the substudy data
alone, weighting each subject’s contribution inversely by their
sampling probabilities, �i [Yi − pi(β)] Wi Gi = 0, where pi(β) =
expit(G′

iβ) and Wi = Nsi/nsi, si being the sampling stratum to
which subject i belongs and Ns and ns the main study and sub-
study sample sizes respectively. While simple in concept, the
disadvantage is that the only information used from the main
study is the stratum sample sizes. A refinement of this approach
is to replace the empiric weights based on the realized sample
sizes by predicted weights based on a logistic regression of sam-
pling probabilities on additional covariates available for all main
study participants. Recent papers show how this basic approach
can be stabilized by using “calibrated weights” without requir-
ing assumptions about the validity of an imputation model using
influence residuals (Breslow et al., 2009a,b). The utility of this
approach for targeted follow-up of GWAS hits is discussed in
Schaid et al. (2013a).

Optimization of sampling fractions
As with two-stage designs, it is theoretically possible to optimize
the choice of sampling fractions, subject to a constraint on total
cost, but in practice this requires knowledge of the true values of
various model parameters (causal allele frequencies, RRs, LD with
the GWAS SNPs, etc.). Fortunately, the design is often relatively
insensitive to these parameters, so that a balanced design in which
the various strata are represented by equal numbers ns in the
subsample may be nearly optimal (Reilly and Pepe, 1995; Reilly,
1996). In their article on the application of this design to targeted
follow-up of GWAS hits, for example, Schaid et al. (2013a) do not
address optimization, but recommend the balanced design.

As with two-stage designs, the basic idea is either to maxi-
mize power subject to a constraint on total cost or to minimize
the cost required to attain a target power. If the only cost is
sequencing the subsample, then it is sufficient to optimize the pro-
portional allocation of substudy subjects across strata. If instead
one is designing both the main study and substudy de novo or
if custom follow-up genotyping of the main study is planned,
then the relative sample sizes of the two phases also need to be
considered. In either case, there are likely to be multiple hypothe-
ses being tested, so optimization of power for a specific type of
variant may be less helpful than a global optimization. For this
purpose, we have previously considered Asymptotic Relative Cost
Efficiency, a quantity inversely proportional to the total cost times
the variance of the parameter of interest, combining main and
substudy data (Thomas, 2007), but more recently in the con-
text of designs for sequencing using DNA pooling, we aimed to
optimize power subject to a constraint on total cost (Liang et al.,
2012). We adopt a similar approach to optimize designs for test-
ing the 1 degree of freedom Madsen and Browning (2009) rare
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variant burden test (Methods section Optimization of Two-phase
Studies), but this could be easily extended to maximize power
for multi-dimensional hypotheses. Here, we summarize a small
simulation study to illustrate the potential of two-phase designs
(Methods section Simulation of Two-phase Designs).

Results using the simulated sequence data are shown in Table 1
for the full cohort (the “ideal” results if the entire sample could
have been sequenced) compared with two-phase analyses using
(1) imputation, (2) the Horvitz-Thompson WL approach with
sample weights (Horvitz and Thompson, 1952); (3) the Breslow-
Cain PL (Breslow and Cain, 1988); and (4) the Breslow-Holubkov
semi-parametric estimator (Breslow and Holubkov, 1997a,b).
The top half of the table provides results for the Madsen-
Browning index including all variants present in the parent case-
control study, while the bottom half is limited to those seen at
least once in the subsample; for the latter, the risk index would
include different variants for the different designs, so point esti-
mates are not comparable. The last line gives the average estimate,
empirical standard deviation of estimates across replicates, and
the estimated non-centrality parameter (NCP) for the Wald test
if no subsampling were done. Generally, the imputation approach
was the least efficient for all designs, followed closely by WL esti-
mator, while the semi-parametric one the most efficient. Except
for the WL, the optimal sampling design was also the most effi-
cient; the inefficiency of the WL in this case seems to be due
to some small strata receiving very large weights (for example,
500/2 in the low-risk case stratum compared with 500/214 in
the high-risk case stratum, see Footnote b of Table 1). In ear-
lier simulations (not shown) we found relatively little inflation

in the variance estimates or changes in the point estimates as
the number of strata increases (although the number of repli-
cates that failed to converge increased). Further research in the
case of many sparse strata would be helpful, as well as on such
issues as the size of the region to be sequenced and the depth of
sequencing.

Application to the WECARE study of contralateral beast cancers
To illustrate the potential yield from a sequencing substudy, we
consider whole genome sequencing of a subset of 200 genetically
enriched subjects, with the intent of following up a subset of dis-
covered variants by testing their associations in a larger study
of 700 cases and 1400 controls. The sample sizes used for illus-
tration derive from the WECARE study (Bernstein et al., 2004)
described above. The 201 subjects in the top part of Table S1 were
selected by prioritizing young age, positive FH, cases over con-
trols, and among cases, those who received radiotherapy (and for
these, longer latency). These samples are currently being whole-
genome sequenced at an average depth of coverage of 30×. We
used simulation to address the following questions:

1. What is the anticipated yield of variants discovered one or
more times in this sample, as a function of population MAF
and RR?

2. Of those discovered, what proportion would be novel (not in
the 1000 Genomes Project), what proportion would be truly
causal, and both novel and causal?

3. Among the discovered variants in each category (of MAF,
RR, causality, and number of times seen in each series), what

Table 1 | Parameter estimates (SEs) [Wald Z -tests] for the simulated two-phase sequencing data using the imputation, weighted likelihood,

Breslow-Cain pseudo-likelihood, and Breslow-Holubkov semiparametric maximum likelihood estimators.

Analysis method Subsample design

Case-control Balanceda Optimalb

ALL 1422 RARE VARIANTS IN THE FULL STUDY (47 CAUSAL)

Imputation 1.69 (0.96) [1.76] 1.75 (0.86) [2.03] 1.63 (0.79) [2.06]

Weighted likelihood 1.88 (0.96) [1.96] 1.89 (0.91) [2.08] 1.72 (1.13) [1.52]

Pseudolikelihood 1.88 (0.96) [1.96] 2.03 (0.97) [2.09] 2.22 (1.00) [2.22]

Semiparametric ML 2.12 (0.98) [2.16] 2.22 (0.99) [2.24] 2.24 (1.00) [2.24]

Full Study 1.80 (0.69) [2.61]

VARIANTS DISCOVERED IN THE SUBSTUDY ONLY

Average number discovered (causal) 653 (44) 719 (45) 697 (44)

Imputation 1.66 (0.95) [1.75] 1.73 (0.86) [2.01] 1.64 (0.80) [2.05]

Weighted likelihood 2.34 (1.01) [2.32] 1.87 (0.93) [2.01] 1.73 (1.12) [1.54]

Pseudolikelihood 2.35 (1.02) [2.33] 2.01 (1.00) [2.01] 2.27 (0.97) [2.34]

Semiparametric ML 2.56 (1.06) [2.42] 2.19 (1.02) [2.15] 2.29 (0.97) [2.36]

Empirical mean estimates and standard deviations are computed from 1000 replicates with 2000 cases and 2000 controls showing association with at least one

GWAS SNP, subsampling 600 subjects, 50 causal rare variants. These results are contrasted across three sampling designs. Coefficients are in units of log RR

per Madsen-Browning rare variant summary index divided by 1000; for consistency across designs, all rare variants are included in the index in the top portion of

the table; the bottom portion includes just those discovered in the substudy, so point estimates are not comparable across sampling methods. All estimates are

adjusted for the risk index.
a 100 subjects from each of the 6 strata.
b Numbers of subjects in the subsample are fixed across replicates at (2, 20, 214) cases and (74, 116, 174) controls, stratified into 3 groups of risk index from low to

high, based on overall optimization for all replicates combined.
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is the power for testing association in the main study, after
Bonferroni adjustment for the number of markers tested?

4. Putting all these together, what is the expected overall yield of
novel, causal discoveries?

These calculations are described in Methods section Calculation
of the Expected Yield of Single-variant Tests in the WECARE
Study, based on the distribution of simulated allele frequencies
and RR shown in Figure S1. In a subsample of this size, most
variants with MAF >0.1% would be seen at least once, includ-
ing the most causal variants (Table 2). Restricting to those seen
more than once considerably reduces the number of variants pri-
oritized, as does eliminating those never or seldom reported in
the 1000 Genomes Project sample, but also eliminates most of
the truly causal variants. If, however, the goal is to identify at least
some of the novel causal variants with adequate power to test them
for association in the main study, then this design might still dis-
cover something in the range of 5–20 causal variants out of the
total 1600 simulated, depending on the specific criteria used for
prioritization, and of course depending upon the true simulation
model parameters.

We also simulated gene- and pathway-level burden tests
(Methods section Simulation of Gene- and Pathway-level
Prioritization in the WECARE study; Table 3). These show a
modest improvement in power at the higher levels of aggregation,
but power is still low with these sample sizes. The simulated causal
variants are predominantly rare, so only about 16% of causal ones
are even discovered in this small sample, setting an upper bound
for power for single variant tests. Of the 43 discovered causal vari-
ants (on average across 100 replicates), 19 are prioritized and 3

Table 2 | Expected total number of discovered variants prioritized and

expected number of these that are causal, by minimum number of

copies in the sequencing sample and maximum number of copies in

1000 Genomes Project data.

Maximum copies Minimum copies in

in 1000GP sequencing sample

c = 1 c = 2 c = 3

NUMBER OF VARIANTS PRIORITIZED

c′ = 0 1.5 M 113 K 10 K

c′ = 1 2.6 M 265 K 30 K

c′ = 2 3.4 M 418 K 57 K

NUMBER OF PRIORITIZED VARIANTS THAT ARE CAUSAL

c′ = 0 41 34 27

c′ = 1 113 97 79

c′ = 2 192 168 140

EXPECTED YIELD OF SIGNIFICANTLY ASSOCIATED CAUSAL

VARIANTS FROM SECOND STAGE*

c′ = 0 0.7 1.0 1.6

c′ = 1 2.1 2.9 4.2

c′ = 2 3.8 5.1 7.0

*Bonferroni corrected α = 0.05 (i.e., in addition to these causal variants, 0.05

non-causal variants are expected to be declared significant).

of these are found to be significantly associated in the full study
sample, for an average power of 1.1%. Of course the correspond-
ing proportions were much smaller for null variants, yielding only
3 false positives in total out of 31 million. (The elevated “false pos-
itive” rate for single variant tests compared with the target 0.05
is due to null variants in strong LD with other causal variants.)
Similar comparisons yielded 2.9, 5.7, and 4.6% power for gene-
regions, genes, and pathways respectively, with type I error rates
at or below the target level. The improvement at the region and
gene levels probably reflects the increasing benefit from pooling
similar variants, while the failure of the pathway burden test to
yield even better power may be due to an increasing proportion
of truly null genes or variants diluting the effect of the positive
ones. These results are based on prioritization at each level at
α1 = √

0.01/p where p is the number of tests (variants, genes, etc.
discovered in the subsample); while optimization of these values
is possible, the results seem to be relatively insensitive across a
broad range of choices. The specific results are somewhat more
sensitive to the specific model parameters, only one being pre-
sented here, but the general patterns remained consistent across
all values we considered.

Sequencing is still underway but preliminary results from
the first 93 samples from Table S1 suggest that the major-
ity of subjects (mainly contralateral cases with early onset
and/or family-history positive subjects) carry at least one
functionally significant, clinically relevant or predicted disease-
causing mutation, based on external annotation criteria includ-
ing Human Genome Mutation Database (Stenson et al., 2009),
ClinVar [http://www.ncbi.nlm.nih.gov/clinvar,] MutationTaster
(Schwarz et al., 2010) in both known and unknown breast can-
cer candidate genes and pathways, and >50% carry at least two
and 10% carry three or more. The next step is to see whether these
variants are differentially distributed between WECARE cases and
(unilateral breast cancer) controls or population rates, whether
they are associated with radiotherapy (suggesting an interaction
effect), and to test these variants in the full WECARE study
sample.

FAMILY-BASED DESIGNS FOR PRIORITIZATION
Several investigators have recently reported approaches to effi-
cient selection of individuals for sequencing in family-based
designs. Cheung et al. (2013) described an approach for tar-
geted sequencing of regions exploiting already available linkage
information to optimize imputation to other family members,
but without using phenotype information, whereas Wang et al.
(2013) described an approach for whole genome sequencing
using phenotype and kinship information. We simulated various
family-based designs for whole genome sequencing to address the
following questions:

1. What criteria should be used to select families and members
for sequencing substudies?

2. What criteria should be used to prioritize variants for subse-
quent association testing?

3. How do family-based designs for sequencing compare with
those using unrelated individuals in terms of probability
of discovering novel variants, classifying variants by their
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Table 3 | Simulated results of hypotheses tested in the main study for various levels of aggregation in the planned WECARE Study; means

over 100 replicate simulations.

Test True negatives True positives

Total Discovered Prioritized Significant Total Discovered Prioritized Significant

Pathway 87.4 87.3 0.2 0.00 12.6 12.6 1.1 0.6 (4.6%)

Gene 1016 1006 8.4 0.00 33.7 33.4 5.6 1.9 (5.7%)

Gene-region 2925 2318 32.8 0.05 97.5 79.6 12.9 2.9 (2.9%)

Single variant 31,218 6558 156 3.10 273 43.0 19.4 3.1 (1.1%)

Based on 100 pathways with an average of 10 genes each, each gene having on average 10 exonic variants (r = 1), 20 regulatory variants (r = 2), and 30 other variants

surrounding the gene (r = 3) with σP2 = 1.0, πP = 0.125, σG2 = 0.25, πG = 0.25, σV 2 = exp[−ηRv − 0.25ln(qv /.01)] where η1 = −1.0, η2 = −1.5, η3 = −2.0,

logit(πv ) = ζRv − 0.25ln(qv /.01) where ζ1 = −0.5, ζ2 = −1.5, ζ3 = −2.5.

likelihood of being causal, and power for testing association
with disease?

We consider a two-phase design that uses a subset of individuals
from a family study chosen on the basis of their phenotypes and
relationships to each other for discovery and screening, followed
by association testing in the full pedigrees. If enough family-based
samples are available, replication using additional family-based
samples is preferable to using a different sampling scheme because
one would like the spectrum of variants (e.g., MAFs and RRs)
being tested in the second stage to be comparable to those dis-
covered in the first. We compare the relative efficiency of this
family-based design with a conventional two-stage case-control
design with comparable costs.

We evaluated these designs by simulating 4-generation pedi-
grees with 22 members in each. We sampled haplotypes from
the same simulated population described earlier and randomly
dropped genes through the pedigrees, generating phenotypes
with randomly selected rare variants as causal with the same RR
distribution and retaining those pedigrees with some minimum
number of cases (Methods section Simulation of Family-Based
Designs). To address the first question, families with various
numbers of affected individuals were ascertained, and from each
of these we selected individuals to sequence in various ways (e.g.,
two cases of at least second-degree relationship to each other
and one unaffected individual). We then tabulated the following
statistics for causal and non-causal variants by the relationship of
the cases to each other.

• Rule-based criterion: the number of families for which all
affected members carry the variant and no unaffected ones did
among the subset sequenced;

• Likelihood ratio (LR) criterion: the ratio of the retrospective
likelihoods under the simulated penetrances and allele fre-
quencies vs. the null penetrance (the average rate in the ascer-
tained families); while similar to the lod score used in linkage
analysis, here a single-locus likelihood is used to test associa-
tion with a directly-observed variant, not markers in LD with
an unobserved locus;

• Bayes factor (BF) criterion: similar to the likelihood ratio, but
based on the marginal probabilities under the simulated prior
distributions of penetrances and allele frequencies;

• Score test criterion: the score test derived from the retrospective
likelihood, evaluated under the null hypothesis.

(Methods section Family-based Criteria for Prioritization of
Variants). The score test was evaluated both at the single-variant
and the regional level, the latter using the family-based SKAT tests
(Schifano et al., 2012; Chen et al., 2013; Ionita-Laza et al., 2013;
Schaid et al., 2013b). The other tests were used only for ranking
variants individually. The score test essentially relates the pheno-
types of the entire pedigree to the genotypes of those who have
been sequenced using the inverse of the kinship matrix to weight
them. If linkage information is available, then a direct test of asso-
ciation with imputed genotypes is possible (Cheung et al., 2013),
allowing for residual phenotypic correlations

Figure 1 shows the mean score statistics per family for those
with a total of 4 affected individuals in which either an affected
sib pair with an affected first cousin or a discordant sib pair with
an affected cousin have been sequenced. These were derived for
an 11-member sub-pedigree for which exhaustive enumeration of
all possible genotypes and phenotypes was feasible. As expected,
variants with the largest scores for causal variants (top panel)
and the highest probabilities of being causal (bottom panel) were
those where both cases were carriers and (if sequenced) the con-
trol not. Having the control affected somewhat lowers the average
score, but not as much as having an additional case being a carrier
increases it, essentially because we are considering a relatively rare
disease (population prevalence 5%).

This trade-off is explored further in Figure 2 for various types
of relatives sequenced. Here, we fix the total number of individ-
uals being sequenced at 100 across the designs being compared
(e.g., 25 pedigrees with four members each sequenced, 33 with 3,
50 with 2 each, or 100 singletons). Although, as expected, hav-
ing more families with fewer individuals sequenced increases the
absolute discovery probabilities (not shown), the relative differ-
ence comparing causal and null variants goes the other direc-
tion, and the relative probability of prioritization also increases
for more subjects per pedigree and fewer pedigrees sequenced,
for a considerable increase in the overall relative probability of
discovery and prioritization.

Comparing designs with two individuals sequenced per pedi-
gree shows little difference in the probability of discovery across
the relationships among the pairs (Figure 2), but shows that the
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FIGURE 1 | Mean scores for causal variants (top panel) and ratio

of frequencies of causal to non-causal variants (bottom panel)

in simulated 11-member pedigrees with at least 4 affected

members. In each panel, results are shown for a design

sequencing an affected sib pair and affected cousin by the number
of carriers of the variant allele (left) or an affected first cousin pair
and an unaffected sib by the number of carriers among cases and
controls (right).

conditional probability of prioritization given discovery and the
joint probability of discovery and prioritization is better for more
distant relatives.

Obviously, the more stringent the cutoff for any of these
criteria, the fewer the variants that would be prioritized, but non-
causal variants tend to be eliminated much faster than causal

variants (Figure S2), so the challenge is to choose a threshold that
minimizes the false positive proportion, subject to the total num-
ber of variants that can be tested in subsequent replication efforts.
The relative performance of the various prioritization criteria
is illustrated in Figure 3 as Receiver Operating Curves, varying
these thresholds. Although the BF criterion is the best overall in
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FIGURE 2 | Relative probabilities of discovery, prioritization, and both

between causal vs. null variants for different criteria for selecting

members for sequencing in simulated 11-member pedigrees with at

least 4 affected members. Top panel, all designs; bottom panel, detail for

designs with only two members sequenced. (Codes for top panel: S, sib; C,
cousin; 2, first cousin once removed; U, uncle; G, grandparent; P, parent;
Upper case, affected, lower case, unaffected; hyphen, affected but not
sequenced.)

terms of the area under the curve, it is the most computationally
intensive and the score test is nearly as good and much faster to
compute.

RELATIVE EFFICIENCY OF FAMILY- vs. POPULATION-BASED DESIGNS.
We compared the power of a two-stage family-based design with
that of a conventional case-control design. The overall power for

any design with independent tests in the two stages is simply
the product of the powers for the two stages (Methods section
Calculation of Power for Two-stage Designs). The probabili-
ties of discovery, prioritization, and replication are illustrated
in Table 4 for a range of design parameters—total sample sizes,
proportions allocated to stage 1, numbers of copies required
to be judged a discovery, and the minimum threshold required
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FIGURE 3 | Receiver operating curves comparing different prioritization schemes.

Table 4 | Some near-optimal multi-stage family-based and case-control designs (The first row of each block is the one with the highest ARCE

among those investigated; the second is the one with better power among those with similar costs.)

Total sample Proportion allocated Minimum copies Criterion for Proportion of causal Total number Power for all causal Total cost ARCEd)

sizea to stage 1 (%) for discovery prioritizationb discovered (%) prioritizedc all novel) variants (millions) (×1000)

FAMILY-BASED DESIGNS (COSTS: $1000/FAMILY, $5000/SEQUENCE, 5¢/GENOTYPE)

1800 30 12 3.0 38 3,591 17% (9%) $12.3 0.252

2400 30 14 3.0 13 3,894 21% (13%) $16.8 0.241

FAMILY-BASED DESIGNS (COSTS: $5000/FAMILY, $1000/SEQUENCE, 5¢/GENOTYPE)

2100 50 12 4.0 56 346 19% (12%) $13.8 0.264

2400 50 12 4.0 59 378 21% (13%) $15.8 0.260

CASE-CONTROL DESIGNS (COSTS: $100/SUBJECT, $5000/SEQUENCE, 5¢/GENOTYPE)

7000 20 12 0.001 62 5,502 16% (9%) $17.8 0.171

9000 20 14 0.001 65 5,862 20% (12%) $23.1 0.164

CASE-CONTROL DESIGNS (COSTS: $500/SUBJECT, $1000/SEQUENCE, 5¢/GENOTYPE)

6000 40 16 0.0001 70 823 17% (11%) $8.1 0.416

7000 40 16 0.0001 74 912 20% (13%) $9.4 0.407

aNumber of 22-member pedigrees for family-based designs; number of cases, number of controls for case-control designs.
bMinimum score test for family-based designs; minimum p-value for case-control designs.
cAssuming 1000 causal variants out of a total of 20 million.
d Total number of true positives, inversely weighted by the square root of MAF, divided by total cost.

for prioritization—under two different cost structures. (The full
range of choices considered is shown in Figure S3.) Obviously,
as the number required for discovery is lowered or the threshold
for prioritization is raised, fewer variants in total would be pri-
oritized, leading to a less stringent multiple comparisons penalty,
but at some point the overall power decreases because too many
of the truly causal variants are either not discovered or not pri-
oritized. Although the overall power (the proportion of all causal
variants discovered, prioritized, and replicated) for any of these
designs is only about 20% (for a sample size of 1000 families),
the majority of those not found are either very rare or have very
small effect sizes. Of particular interest are the numbers of novel

variants (those not in the 1000 Genomes Project database) that
are discovered, prioritized, and replicated. Since these too are
predominately rare, power for them is even lower, but depend-
ing upon the total number that actually exist, they could still
represent a substantial yield of true positive findings.

These comparisons are provided for the “optimal” designs of
each type and one alternative design that yields better power
at modestly larger cost. Assuming costs of $1000 per family for
enrollment and obtaining pedigree phenotypes, $100 per sub-
ject enrolled in a case-control design, $5000 per whole-genome
sequence, and $0.05 per subject-genotype, the optimal family-
based design turns out to require 540 pedigrees in stage I and
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1260 in stage II at a critical value of the score test for prioritizing
variants of 3.0; this yields 167 true-positive replicated associations
out of 1000 simulated at a cost of $12 M. The corresponding opti-
mal case-control design would require 1400 case-control pairs
in stage I, 5600 in stage II at a critical value of α1 = 0.001 in
stage I, for a yield of 159 true positive replicated associations
at a cost of $18 M (about 2/3 the cost-efficiency of the family-
based design). Of course, with different cost ratios, these optimal
designs would change, as illustrated in Table 4 for the case where
enrollment costs are 5 times larger and sequencing only $1000
per whole genome. In this instance, case-control designs turn out
to be the more cost-efficient. For this simulated MAF distribu-
tion, only 175 of the 1000 causal variants would be novel, but in
every situation considered, the power for discovering such rare
variants is still more than half that for all causal variants. No strik-
ing differences were seen between the spectrum of RRs and MAFs
discovered, prioritized, and replicated by the two types of designs
with sample sizes chosen to yield similar overall power.

APPLICATION TO THE COLORECTAL CANCER FAMILY REGISTRIES DATA
Included in the Colorectal Cancer Family Registries are a few
large families for whom all available family members have
either been genotyped for previously replicated GWAS SNPs or
whole exome sequence variants. We analyzed one of these—
a large Australian pedigree comprising 145 individuals with a
total of 7 colorectal, 1 Lynch syndrome, and 9 other cancer
cases. Genotypes for 32 GWAS-associated SNPs were available
for 49 of the members, including 5 of the CRC and Lynch
cases and 4 of the other cancers. These data were used to
illustrate the effect of subsampling. We selected individuals
under various criteria, calculated LR, BF, and score statistics
using only the SNP data for these selected individuals [but all
the phenotype information (Visscher and Duffy, 2006)], and
compared these results to those from the complete genotype
data to see which criteria best distinguish variants that are
“truly” associated (based on the complete data) from “false”
positives.

Figure 4 shows the correlation of each statistic computed using
all available genotype data (as the “gold standard”) with those
using only the subsample of genotypes (averaging over 10 repli-
cate subsamples). For the CRC and Lynch syndrome phenotype,
we compared subsets of 1–4 cases and 0–3 controls out of the
5 available cases and 44 available controls. These showed little
improvement in correlation for any of the test statistics from
adding more than about 2 cases. Adding the genotypes for one
or two unaffected members somewhat improved the correlation
for LRs and BFs when there were 2 or more cases, but sur-
prisingly worsened the correlation when only a single case was
included; this may simply reflect instability due to the small num-
ber of cases in total. Results were somewhat more stable when all
9 cancer cases with available genotypes were considered, allow-
ing comparisons of larger subsamples of cases. Adding more
than about 3 cases did not materially improve the correlation
and adding 1–3 controls improved the correlations only mod-
estly, again reducing them when a single control was added to a
single case. The bottom panel shows that the more distant rela-
tive pairs were more informative about distinguishing apparently

associated from non-associated SNPs (based on the complete
data).

Because only common variants were available in the Australian
data, we also performed similar simulations on 15 large pedi-
grees that had previously been included in a linkage scan (Cicek
et al., 2012) and had whole exome data available on 2–3 CRC cases
from each. Not surprisingly, in this small dataset, no genomewide
significant associations were found by the score test with any
of the 359,744 single nucleotide variants (SNVs) called at least
once (a third of these were called only 3 or fewer times) or with
100-SNV bins with the regional score SKAT test, nor were the
regional tests particularly correlated with the maximum single-
SNV tests or with prior annotation. Additional simulations (not
shown) based on the real sequence data and simulated pheno-
types (conditional on the total number of cases in each pedigree)
confirmed that 15 families would be far too few to find any sig-
nificant causal effects, even if IBD information were used. The
design of a larger NGS study is described in the concluding
section.

DISCUSSION
One of the advantages of family-based designs is that Mendelian
inconsistencies can be used to check for genotyping errors
(Pompanon et al., 2005). This has, of course, long been rec-
ommended as a routine quality control check in linkage and
family-based GWAS studies. This advice becomes even more
important when dealing with NGS data because of its inherently
higher error rate as a function of depth of sequencing and qual-
ity control filters applied (Faye et al., 2013). Further research
on approaches to using pedigree information to improve variant
calling would be helpful.

In a similar vein, Mendelian inheritance could be exploited for
improved imputation of variants in unsequenced family mem-
bers. On obvious way to proceed would be to first use stan-
dard imputation procedures with external reference populations
(Howie et al., 2012), treating each subject with GWAS SNP data
as independent to obtain preliminary genotype probabilities at
the sequenced variants. These could then be combined with the
observed genotype calls for the sequenced family members using
Mendelian transmission probabilities to obtain refined genotype
probabilities (Burdick et al., 2006). While proceeding variant-
by-variant in this manner is relatively straightforward, it fails
to take LD patterns among the variants into account, but a
similar strategy could be applied to haplotypes (Cheung et al.,
2013). Such a two-step approach was used in simulations for
the Genetic Analysis Workshop 18 (http://www.gaworkshop.org/
gaw18/index.html). Ideally, a unified approach that would inte-
grate the two sources of information in a single step would be
preferable. In addition to imputation, identity-by-descent infor-
mation could be used to inform the selection of subjects for
sequencing (Cheung and Wijsman, 2013) and directly as a local
genetic similarity kernel in family-based SKAT tests.

Homozygosity mapping in families has proven to be a valu-
able technique for mapping recessive alleles (Kruglyak et al.,
1995; Chahrour et al., 2012). Design issues for sequencing stud-
ies for such traits are likely to be somewhat different from those
considered here and would be useful avenue for further research.
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FIGURE 4 | Correlation across 32 GWAS SNPs between the

statistics computed from the complete genotype data and those

computed using only the genotypes for various subsets of

members; top left: 5 genotyped CRC and Lynch syndrome

cases; top right: 9 cases of any cancer. Bottom: prioritization

statistics by degree of relationship for apparently associated or
unassociated variants based on the complete data. Data from a
single 145-member Australian pedigree with a total of 8 CRC or
Lynch syndrome cases and 15 cases of any cancer and a total of
49 subjects genotyped.

Another possibility is to use a two-step analysis of the same
data, exploiting between-family comparisons to prioritize vari-
ants and within-family comparisons to test the most promising
ones, in the spirit of Van Steen et al. (2005). Because these two
tests are independent, one then need only correct the signifi-
cance level for the number of variants passed to the second stage.
For quantitative traits, regression of the offspring phenotypes on
the mean of the parents’ genotypes provides a simple first-step
test. For disease traits, one would have to include control trios,
nuclear families with varying proportions of affected offspring,
or external control individuals to have the variability in phe-
notypes needed for the first-step test. Practically, however, this
approach would require having access to the DNA for case-parent
trios (which might not be available for late-onset diseases like
cancer) and sequencing of the parents rather than the cases for
the first stage; not only would this double the sequencing costs
over a more conventional design that sequences only the cases,
but it might seem counter-intuitive since the parents may not

themselves be affected (even though at least one of each pair must
carry any variant that case does). One could of course reverse the
two steps, but this would require sequencing the entire trio in the
first step and the final inference would not be robust to popu-
lation stratification. In further simulation studies (not shown),
we found that use of external controls tends to be more powerful
than between-family comparisons for the first step, but is more
susceptible to population stratification bias; this is not a threat
to validity if used in the first step, but could reduce power if too
many false-positives are passed to the second step, inflating the
multiple testing penalty. The two-step analysis approach consis-
tently yielded better power than a two-stage case-control design,
however.

Two-stage and two-phase designs are also amenable to con-
siderable cost-efficiency gains by using DNA pooling techniques
(Sham et al., 2002) in the first stage, thereby allowing one to
sequence many more subjects than would be feasible if one were
to sequence individuals. Of course, only aggregate allele frequency
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information (Huang et al., 2010), not individual genotypes, are
then available [unless one uses molecular bar-coding techniques
(Craig et al., 2008)], but these can still be used for discovery of
novel variants (Lee et al., 2011) or case-control comparisons of
pool allele frequencies (Johnson, 2007; Macgregor et al., 2008;
Zhao and Wang, 2009). Further cost-efficiencies are possible by
constructing pools of pools, with bar-coding of the sub-pools
(Smith et al., 2010). Optimization of designs using DNA pool-
ing has been described by Liang et al. (2012), but extension to
family-based studies remains a challenge (Lee, 2005).

We conclude by describing how these considerations influ-
enced the design of a planned whole-exome sequencing study
within the colorectal CFR. We are planning a three-stage family-
based design, in which the first stage would use already avail-
able sequence information for prioritizing about 1000 genes.
This would be followed by two stages of replication, each with
probands from about 1000 multiple case families and 1000 con-
trols. The first stage would exploit existing control data from
the 1000 Genomes Project, while the second and third stages
would use individually matched population controls. Because
our hypothesis is that causal genes may harbor multiple rare
variants—not necessarily the same across families—the two repli-
cation stages would perform full resequencing of the entire coding
and flanking regions of the prioritized genes, 1000 genes in stage
2, 100 genes in stage 3. For the same reason, we have decided to
use a family-based design for all three stages, since variants dis-
covered in multiple-case families may not be well represented in
unselected series of population-based cases. After analysis of the
sequencing data from each stage, additional genotyping of the
prioritized variants would be done on all other available fam-
ily members for analyses using a conditional segregation analysis
(Hopper et al., 1999). Three criteria would be used for pri-
oritization at every stage: a family-based test of co-segregation
with disease for each variant separately and for entire genes; a
gene-based test of association comparing cases and controls; and
filtering based on bioinformatics predictors. The first of these
uniquely exploits the information available from a family-based
design and can be used to rank genes on the probability they carry
at least one causal variant, using an aggregate assessment of the
impact of all rare variants in the gene. The three comparisons
would be unified through hierarchical modeling, in which both
the family-based and case-control comparisons would be incor-
porated in the likelihood for the first (individual)-level model,
and the bioinformatics predictors would be incorporated in the
second (variant)-level model. Similar issues are currently being
discussed in the design of a large-scale sequencing study for the
WECARE project. Since this is not a family-based study, the key
decision there is how best to select the subset for sequencing in a
two-phase design.

METHODS
All simulations were based on the same population of 10,000
haplotypes of length 250 Kb generated by the COSI program
(Schaffner et al., 2005) with the population history parame-
ters provided in their Table 1. This population contained 5125
unique variants, of which 4557 had minor allele frequencies
(MAF) <0.05, 95% less than 0.01, 79% less than 0.001.

SIMULATION OF TWO-PHASE DESIGNS
We postulated a disease model involving multiple rare variants
drawn from the simulated haplotype population with the prob-
ability of having any effect and the expected size of the effect
depending inversely on the MAF (Figure S1). We then sampled
pairs of haplotypes at random from this population, computed
their risk under this model, and assigned case-control status, con-
tinuing in this manner until the target number of 1000 cases and
1000 controls were obtained for the parent GWAS, and tested
these data for association with all common SNPs (MAF >5%).
If a significant association is found with one or more SNPs, the
replicate was retained for the sequencing substudy.

For the subsample, we first constructed a risk index based on a
multiple logistic regression of disease state on all non-redundant
GWAS SNPs and stratified the phase 1 subjects into three strata of
high, medium, and low risk (with cutpoints at the 25th and 75th
percentiles). We compared case-control, balanced, and optimal
sampling of 600 subjects total out of the available 4000 (Methods
Section Optimization of Two-phase Studies). For these subjects,
we retained all variants, including the causal ones but also many
more irrelevant ones.

Finally, we conducted a joint analysis of both phases. We tested
association with the Madsen and Browning (2009) index—the
number of rare variants weighted inversely by the square root of
their allele frequencies—as the rare-variant covariate of interest,
treated as continuous, using the WL, PL, and semi-parametric
likelihood methods described in Methods Section Likelihoods for
Joint Analysis of Two-phase Studies. We found that the risk index
used for sampling was a confounder of the Madsen-Browning rare
variant index, due to LD among the variants included in each, due
to differences between the weights in the Madsen-Browning index
and the simulated weights, and due to having used the disease sta-
tus to construct the risk index, so all results were adjusted for the
sampling risk index. This entire process was repeated 1000 times.

LIKELIHOODS FOR JOINT ANALYSIS OF TWO-PHASE STUDIES
Following the general notation used by Breslow and Holubkov
(1997a,b), we let V represent a set of GWAS SNPs in a region
found to be associated with disease Y, and X represent the causal
variant(s) in LD with the GWAS SNPs, to be discovered by
sequencing the region on a subsample of subjects. For this pur-
pose, we defined the causal variable X to be the Madsen-Browning
index. The imputation strategy entails simply fitting a regression
model for X|V to the substudy data, and then using X̂(V) as the
covariate for Y|X in the full study. Proper inference would, how-
ever, require that the uncertainty in the imputation be taken into
account in the analysis of the main study data. We now describe a
formal likelihood approach to accomplish this.

If the first stage is a case-control sample, then the full likeli-
hood would be the retrospective probability

L1(α, β, γ) = Pr(V|Y) =
N∏

i = 1

∑
x

Pr(Vi, Xi = x|Yi)

=
N∏

i = 1

pγ(Vi)
∑

x pβ(Yi|x)pα(x|Vi)∑
ν pγ(ν)

∑
x pβ(Yi|x)pα(x|Vi)
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and the likelihood for the second stage sample S would be

L2(α, β) = Pr(X|Y, V, S) =
∏
j∈S

pβ(Yi|Xi)pα(X|Vi)∑
x pβ(Yi|x)pα(x|Vi)

The full likelihood would then be L(θ) = L1(α, β, γ)L2(α, β)

where θ = (α, β, γ). In practice, however, both V and X are
highly multidimensional and we wish to avoid having to spec-
ify their joint LD distribution parametrically. When we do not
assume functional forms of pα (X|V) and pγ(V) the likelihood
above becomes suitable for semiparametric maximum likelihood
(SPML) estimation. Both Breslow and Holubkov (1997a,b) and
Scott et al. (2007) have developed profile likelihoods by maxi-
mizing out the high-dimensional parameters pα(X|V) and pγ(V),
with a different parameterization. We followed a recent formu-
lation of the problem from Scott et al., in which the estimating
equations for β and the constraints for nuisance parameters π are
described in a “log-likelihood”

l∗(β, π) =
∑

y, v, x

nyvz log p∗
yv(x; β, π) +

∑
y, v

Nyv log πyv

−
∑
y, v

nyv + log(N+vπyv − Nyv)

where π1v = 1 − π0v,Nyv = Nyv − nyv, and

p∗
1v(x; β, π) = expit

[
x′β + log

(
N+v − N1v

π1v

)
− log

(
N+v − N0v

π0v

)]

By iterating between maximizing a logistic likelihood with fixed
offsets containing π and updating π using its constraint equa-
tions, we can obtain semiparametric (SPML) efficient estimates
of β. The SPML approach has the advantage of being flexible
about the distribution of covariates X and V while retaining good
efficiency. However, the derivation of the semiparametric estimat-
ing equations was complex enough that it appeared only after
two approximation methods—the WL and the PL—had been
published. The WL approach weights individual score functions
from model pβ(Y|X) inversely proportional to the sampling prob-
abilities. In our implementation, the original Horvitz-Thompson
weights Nyv/nyv were used, although an improvement might be
to use predicted weights 1/Pr(S =1|Y,V,Z) that could incorpo-
rate auxiliary information Z from the full cohort (say, from a
logistic model), or better yet, the calibrated weights described in
Breslow et al. (2009b). The PL approach was first developed in
Breslow and Cain (1988), representing an alternative that uses
first phase information. Following their seminal paper, we work
with a PL based on pβ, δ(Y|X,V,S), which incorporates the param-
eter of interest β and the nuisance log-odds δ for Y = 1 in stratum
V = v. They insert estimates δ̂v = log(N1v/N0v) into the PL and
then solve for β. Schill et al. (1993) proposed to estimate δ and
β simultaneously; this method, although not implemented here,
has been reported to yield similar results as the Breslow and Cain
(1988) version.

OPTIMIZATION OF TWO-PHASE STUDIES
Our general strategy for optimization of any of these two-phase
designs aims to solve the following problem. Suppose we have col-
lected phase I data on N subjects and seek to selectively assemble
data on at most n subjects based on available information. The
available information from phase I, mainly observations of Y and
V, is summarized by the cell sizes Nyv. What we wish to optimize
are the cell-specific sampling fractions, denoted by syv = nyv/Nyv.
A natural choice of objective function might be to aim for more
precise parameter estimates per unit cost, for example using the
Asymptotic Relative Cost Efficiency (Thomas, 2007). However,
while this goal could be readily achieved for a scalar parameter
as in Reilly (1996), it is less clear when more than one param-
eter is estimated. In this work, we chose our objective function
to be the non-centrality parameter of the likelihood ratio test for
H0 : β̂= 0 vs. H1 : β̃ �= 0, with β̃ being the subset of interest in β.
This objective is equivalent to a linear combination of informa-
tion matrix entries, and is thus a good summary of the standard
error estimates. We denote the entire parameter vector including
β and other nuisance parameters as θ. It has been shown (Self
et al., 1992; Brown et al., 1999) that the non-centrality param-
eter can be computed as λ = 2Eθ A[i(θA) − l(θ̂A)], where l(.) is
the log-likelihood function, θA is the true parameter vector under
the alternative hypothesis, and θ̂0 is the parameter vector that
maximizes EθA[l(θ)] under the null hypothesis. A slightly dif-
ferent form, λ′ = λ − v with ν being the degrees of freedom of
the test, is also reasonable. In this particular problem, we used
l∗(.) shown in the previous section in place of l(.). It has been
shown (Scott and Wild, 1989; Scott et al., 2007) that the pro-
file log likelihood l∗(.) is amenable for standard likelihood ratio
tests.

This problem setting requires Nyv, Pr(X|Y,V), β0 (true value of
β) to be either known or pre-specified. To obtain these quantities,
we simulated 1000 data sets as described in section Simulation of
Two-phase Designs, and consider these data sets as the underly-
ing “super-population.” Then we used the estimates of Pr(X|Y,V),
β0 and the average values of Nyv from this super-population as
the input to the optimization procedure. Hence we used a fixed
optimal design for all simulation replicates, using the SPML.
Compared to solving the optimization problem for each replicate,
this strategy represents a solution to the “expected” problem.

CALCULATION OF THE EXPECTED YIELD OF SINGLE-VARIANT TESTS IN
THE WECARE STUDY
The estimates in Table 2 were derived using only the MAF distri-
bution from the simulated haplotype population. The expected
carrier probabilities in each age, FH, and disease stratum were
computed from the assumed distribution of RRs over a grid of
MAF and RR values using standard Mendelian inheritance meth-
ods. We computed the probability of observing c copies of a
variant in the subsample from the Poisson distribution for each
MAF and RR bin, summing the expected counts over all sampling
strata, and in a similar manner, we computed the probability of
observing c′ copies among 1000 population controls. The total
yield of discovered novel variants is then the sum over these bins
of the number of variants in each bin times the probability of
seeing >c and <c′ copies.
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For association testing in the main study, we computed the
NCP for the Mantel-Haenszel test (stratified by age and FH) for
each bin and then computed power by reference to the cumula-
tive normal distribution with Bonferroni correction for either the
total number of discovered variants or only the number of novel
variants. These are again summed over all RR and MAF bins to
estimate the expected yield for various values of c and c’ given in
Table 2.

SIMULATION OF GENE- AND PATHWAY-LEVEL PRIORITIZATION IN THE
WECARE STUDY
To compare the power of single-variant and burden tests, we
selected variants from the haplotypes in a multi-level fashion as
follows. We defined 100 pathways p, each comprising 1–20 genes
g, further subdivided into three regions r (e.g., “exons,” “introns
and promoter regions,” and “more distant enhancer regions”).
Starting and ending locations of each gene and is sub-regions
were selected at random and all variants v within these regions
were included. Pathways, genes, and variants were selected as
causal with probabilities πP, πG, and πv respectively, where πv

for variant v depends upon the type of region and its MAF. Thus,
a variant has a causal effect only if all three levels are designated
as causal. Each causal variant was assigned a log RR βv as a sum of
pathway, gene, and variant-level effects, each being the absolute
value of a normal deviate with zero mean and variance σ2

P, σ2
G,

and σ2
v , respectively, σ2

v also depending upon the type of region
and MAF. We drew two haplotypes at random for each poten-
tial subject and computed the genetic log RR as the sum of the
βvs for each variant they carried. Subjects were assigned at ran-
dom to an age stratum and then to disease (unaffected, unilateral,
bilateral) and FH strata with probabilities depending upon their
age and genetic RR. This process was continued until the tar-
get number of subjects in each age, FH, and disease stratum was
obtained and a random subset of these was designated as the
sequencing sample. In the real WECARE study, we prioritized
the youngest cases, those with a positive FH, and radiotherapy
subjects with the longest latency for sequencing. In this way, we
selected 201 subjects out of the total of 2199 available for sequenc-
ing; the distribution of the entire study sample and the sequencing
subsample by age, FH, and laterality is provided in Table S1.

For the analysis, we scanned the subsample to identify all vari-
ants seen at least twice. All single variants that were seen more
frequently than expected (by an amount depending on the num-
ber of comparisons) based on the general population MAFs and
similarly all pathways, genes, or regions that were seen more
frequently than expected were prioritized. These are tested for
case-control association in the main study, using a Cochran-
Mantel-Haenzsel (CMH) test, stratified by age and FH, with
Bonferroni adjustment for the number of comparisons at each
level.

SIMULATION OF FAMILY-BASED DESIGNS
Family-based simulations used a fixed pedigree structure of 4 gen-
erations with two offspring in each generation for a total of 22
members in 7 nuclear families. We sampled two haplotypes at
random for each of the founders from the simulated haplotype
population and dropped them at random without recombination

through the non-founders. As before, we chose causal variants
and their RRs depending upon MAF, computed the genetic log
RR as the sum of the βvs for each causal variant a subject carries,
and assigned disease status accordingly, adjusting the intercept to
yield a population prevalence of 5%. Families with the required
number of cases (set to 4 for most of the results reported here)
were retained and the process continued until 1000 such fami-
lies were ascertained. Various criteria were used to select a subset
of family members whose genotypes were to be retained for
analysis (the “sequencing subset,” e.g., two affected individuals
of at least second-degree relationship and one unaffected mem-
ber), while retaining the phenotype information for the entire
pedigree.

For each of the causal and a random sample of the non-causal
variants, we computed the likelihood ratio, Bayes factor, and score
statistics (described below) and tabulated these values for differ-
ent configurations of genotypes among the sequenced members
and their relationships to each other. For the rule-based prioriti-
zation, we also tabulated the number of variants found in at least
fmin families and the number of these that were prioritized by
having the target genotype configuration (e.g., both cases being
carriers and the control not). The distributions of causal and
non-causal variants for each criterion are shown in Figure S2 as
a function of the threshold for prioritization; plotting one curve
against the other yields the ROCs displayed in Figure 3.

FAMILY-BASED CRITERIA FOR PRIORITIZATION OF VARIANTS
Rule-based criterion
Variants were classified on the basis of the number of families in
which all sequenced cases carried the variant and any sequenced
controls did not.

Likelihood ratio criterion
Following the principles described in Petersen et al. (1998), we
estimated the probability that any particular variant is causal
under a given genetic model by accumulating likelihood ratio
contributions (comparing the likelihoods of the data under the
alternative hypothesis that a particular variant is causal to that
under the null hypothesis that it is not causal) across families.
Letting Y denote the phenotypes of all family members (includ-
ing those not sequenced), Gbs the observed sequence data, βv the
genetic RR and qv the minor allele frequency for variant v, the
likelihood ratio is

LRv = Pr(Gobs
v |Y; βv, qv)

Pr(Gobs
v |qv)

= Pr(Gobs
v |Y)

Pr(Gobs
v ) Pr(Y)

where Pr(Gobs
v , Y) = ∑

Gunobs
v

Pr(Y |Gv) Pr(Gv). These calculations
were done evaluating the likelihood under the simulated RR and
minor allele frequency for each variant under the alternative
hypothesis and under the induced marginal population risk for
the null hypothesis.

Bayes factor criterion
The likelihood ratio criterion requires a maximization of the like-
lihood under the alternative hypothesis, which can be unstable
for rare variants. To avoid this, Petersen et al. (1998) compute a
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Bayes factor by averaging over a prior distribution of MAF and
RR. Bayes Factors are computed as the ratio of these marginal
probabilities of the joint genotypes of the sampled individuals
under the true model to that under the null. Of course, we do
not know the true values of either β or q, or even their true
probability distributions, so we used the simulated probability
distributions for Pr(q) and Pr(β|q), averaging over a random sam-
ples of 100 parameter values drawn from their null and alternative
distributions.

Score test criterion
We computed the score statistic Tv for a single variant v derived
from a multivariate logistic model for the phenotypes of the entire
pedigree and the genotypes of the sequenced subset as

Tv = �f tfv = �f (Yf − pf 1)′K−1
f (Gfv − qfv1)

= �f [�i∈Nf �j∈Sf (Yfi − pf )K
ij
f (Gfjv − qfv)]

where Yf is the vector of phenotypes for family f, pf is the family-
specific disease prevalence, Kf is the kinship matrix, Gfv the vector
of genotypes for variant v, and qfv is the mean of Gv among the
sequenced members. The Gfv − qfv deviations are set to zero for
untyped individuals, but the inclusion of the kinship terms for
typed-untyped pairs allows their phenotypes to contribute. This
statistic has mean zero under the null hypothesis and asymptotic
variance var(Tv) = �f tfv

2. For the purpose of prioritizing vari-
ants we used the score test Tv

2/var(Tv) for each variant and select
the top-ranked ones at some cutoff. This provides a pure within-
family comparison, but those families for which all sequenced
individuals are no carriers or all are carriers become uninfor-
mative. A more powerful test that exploits both between- and
within-family information replaces the pf and qfv by and, the cor-
responding means over all families. The regional (SKAT) test for
all variants in region R is simply [�f (�v ∈ Rt2

fv)]2 / �f (�v∈Rtfv
2)2.

CALCULATION OF POWER FOR TWO-STAGE DESIGNS
Using family-based simulation described above, we tabulated the
average number of families in the simulated sample in which
each variant was seen at least once and the NCP as the mean
of the simulated score statistics by bins of MAF and RR. To
compare designs with different stage 1 sample sizes and discov-
ery thresholds, we rescaled the numbers of families carrying a
given variant by the ratio of proposed and simulated sample sizes
and recomputed the probability of discovery by reference to the
Poisson distribution in each bin. In a similar manner, we com-
puted the probability of prioritization at stage one at threshold
λmin in each bin by rescaling the NCPs by the ratio of sample
sizes and referred them to the non-central chi square distribu-
tion. To extend our simulation results to the whole genome, we
multiplied the predicted number of simulated null variants meet-
ing our discovery and prioritization criteria by 20,000,000/1000.
The total number of variants carried forward to stage 2 is then
simply the sum over all MAF and RR bins of the product of
the number of variants in the population times the probabilities
of discovery and prioritization. Power for stage two was com-
puted in a similar manner by rescaling the NCPs by the stage

2 sample size and referring it to the non-central chi square dis-
tribution with Bonferroni correction for this number of tests
carried forward. Thus, the yield of causal variants discovered,
prioritized, and replicated is the sum of the number of variants
in the population times the probability of discovery, prioritiza-
tion, and replication over all MAF and RR bins. In each MAF
bin, we also computed the Poisson probability that a variant
would not have been seen at least twice in 1000 population con-
trols and computed the power for novel variants in a similar
manner.

Calculations for case-control designs were similar, except that
no simulation was required. The probability of discovery could
be computed directly from the Poisson distribution in the com-
bined case and control sample and the NCP s for the chi square
test for allelic association computed in the usual way for a 2×2
contingency table of allele counts by case-control status.
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Figure S1 | Simulation parameters for models 1 and 2: top: probability of

causality and mean RR for causal variants as a function of MAF; bottom:

frequency distribution of non-causal and causal variants as a function of

MAF.

Figure S2 | Yield of prioritized variants as a function of the number of

families required for prioritization, the minimum Bayes factor, and the

minimum score.

Figure S3 | Two-stage designs using Bayes factors for prioritization. Top

panel, varying number of variants required for discovery (1–4) and

minimum BF for prioritization; bottom panel, detail of left-most portion,

varying the sample size for replication N = 20(×2)10880. The colors

indicate the proportions of simulated causal variants that are discovered,

prioritized, and discovered.

Table S1 | Sample sizes used to illustrate power calculations for a

two-phase design for the WECARE study (note that the actual sequencing

sample is further stratified by radiotherapy and latency for the purpose of

studying gene-radiation interactions, factors not considered in these

simulations). *UBC, unilateral breast cancer (controls); CBC, contralateral

(second asynchronous) breast cancer (cases)
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