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Alcohol consumption is a known risk factor for hypertension, with recent candidate
studies implicating gene-alcohol interactions in blood pressure (BP) regulation. We used
6882 (predominantly) Caucasian participants aged 20–80 years from the Framingham
SNP Health Association Resource (SHARe) to perform a genome-wide analysis of
SNP-alcohol interactions on BP traits. We used a two-step approach in the ABEL suite to
examine genetic interactions with three alcohol measures (ounces of alcohol consumed
per week, drinks consumed per week, and the number of days drinking alcohol per
week) on four BP traits [systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse
(PP) pressure]. In the first step, we fit a linear mixed model of each BP trait onto
age, sex, BMI, and antihypertensive medication while accounting for the phenotypic
correlation among relatives. In the second step, we conducted 1 degree-of-freedom (df)
score tests of the SNP main effect, alcohol main effect, and SNP-alcohol interaction
using the maximum likelihood estimates (MLE) of the parameters from the first step.
We then calculated the joint 2 df score test of the SNP main effect and SNP-alcohol
interaction using MixABEL. The effect of SNP rs10826334 (near SLC16A9) on SBP
was significantly modulated by both the number of alcoholic drinks and the ounces
of alcohol consumed per week (p-values of 1.27E-08 and 3.92E-08, respectively). Each
copy of the G-allele decreased SBP by 3.79 mmHg in those consuming 14 drinks per
week vs. a 0.461 mmHg decrease in non-drinkers. Index SNPs in 20 other loci exhibited
suggestive (p-value ≤ 1E-06) associations with BP traits by the 1 df interaction test or
joint 2 df test, including 3 rare variants, one low-frequency variant, and SNPs near/in
genes ESRRG, FAM179A, CRIPT-SOCS5, KAT2B, ADCY2, GLI3, ZNF716, SLIT1, PDE3A,
KERA-LUM, RNF219-AS1, CLEC3A, FBXO15, and IGSF5. SNP -alcohol interactions may
enhance discovery of novel variants with large effects that can be targeted with lifestyle
modifications.
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INTRODUCTION
Hypertension afflicts 77.9 million adults in the United States (Go
et al., 2013) and contributes to the public health burden of cardio-
vascular and cerebrovascular diseases (which cause death, induce
functional disabilities, and reduce quality of life) (Roger et al.,
2012). While increased awareness and treatment rates have partly
alleviated the burden of hypertension, only half of all diagnosed
hypertensives achieve their blood pressure (BP) goal (Roger et al.,
2012). Dissecting the genetic and environmental architecture of
BP regulation may inspire targeted lifestyle and pharmaceuti-
cal interventions that improve the prognosis and compliance of
hypertensives. Although BP is a highly heritable trait, the iden-
tification of BP-associated genes has been slow and arduous
compared to other complex traits like lipids. Genome-wide asso-
ciation studies (GWAS) of BP using up to 200,000 individuals
have collectively identified ≈ 50 loci that explain less than 2.5%
of the variance in BP (Adeyemo et al., 2009; Levy et al., 2009;
Newton-Cheh et al., 2009; Padmanabhan et al., 2010; Ehret et al.,

2011; Fox et al., 2011; Ho et al., 2011; Kato et al., 2011; Wain
et al., 2011; Guo et al., 2012). The myriad of factors associated
with BP, such as age, ethnicity, education, socioeconomic status,
weight, physical activity, tobacco use, excessive alcohol consump-
tion, psychosocial stress, and dietary factors (Xin et al., 2001; Go
et al., 2013), complicate the dissection of its genetic underpin-
nings. These demographic and lifestyle factors may modulate the
effect of genes on BP.

In this investigation, we focused on the role of alcohol con-
sumption in the genetic and environmental architecture of BP.
Alcohol consumption is a modifiable and highly prevalent behav-
ior, as 51.5% of US adults consumed at least 12 alcoholic bev-
erages in the past year (http://www.cdc.gov/nchs/fastats/alcohol.
htm). Excessive alcohol consumption can be curbed to reduce the
risk of hypertension (Fuchs et al., 2001; Kodavali and Townsend,
2006); a meta-analysis of 14 randomized clinical trials showed
that reducing alcohol consumption in fairly heavy drinkers (>3
drinks per day) reduced systolic BP by 3.31 mmHg and diastolic
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BP by 2.04 mmHg (Xin et al., 2001). Yet, the effect of light-to-
moderate alcohol consumption remains controversial (Klatsky
and Gunderson, 2008; Leite et al., 2013) with mounting evidence
that the genetic composition of an individual impacts the effect
of alcohol consumption on hypertension risk. Candidate gene
studies of hypertension and BP have implicated several interac-
tions between alcohol and genes [ADH2 (Sen Zhang et al., 2013),
ALDH2 (Chang et al., 2012; Nakagawa et al., 2013; Wang et al.,
2013), SOD2 (Nakagawa et al., 2013), LEPR (Sober et al., 2009),
ApoE (Leite et al., 2013), CYP11B2 (Pan et al., 2010), NADH2
(Kokaze et al., 2004, 2007), GNB3 (Polonikov et al., 2011), and
ADM (Chen et al., 2013)].

Interactions between alcohol consumption and genes are bio-
logically plausible, as the intermediate metabolites of alcohol can
alter genes directly and influence their expression through epige-
netic mechanisms (Alegria-Torres et al., 2011). The most com-
mon alcohol metabolism pathway involves two enzymes: alcohol
dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH).
Ethanol is first oxidized to acetaldehyde by ADH, then the
acetaldehyde is converted to acetate by ALDH, and the acetate is
converted to water and carbon dioxide for elimination (National
Institute on Alcohol Abuse and Alcoholism, 2007). Alcohol con-
sumption can lead to acetaldehyde accumulation, which may be
genotoxic (Joenje, 2011) and cause inter-strand crosslinking and
other DNA damage (Lorenti Garcia et al., 2009; Joenje, 2011).
Chronic alcohol consumption can lead to DNA hypomethylation
through reductions in S-adenosylmethionine (Zakhari, 2013).
Alcohol metabolism causes an increase in the NADH/NAD +
ratio and generates reactive oxygen species and acetate, which
can affect histone acetylation (Zakhari, 2013), damage DNA, and
modify proteins (Finkel, 2011).

Most published GWAS ignore gene-alcohol interactions
(Pan et al., 2011). Genome-wide studies incorporating gene-
alcohol interactions may inform alcohol consumption guidelines,
increase the accuracy of models predicting individual hyperten-
sion risk (Yi, 2010), enhance BP gene discovery efforts, and
provide novel insights into the biological mechanisms and path-
ways underlying BP regulation (Thomas, 2010). Thus, we per-
formed a genome-wide analysis of SNP-alcohol interactions on
BP traits using 6882 (mostly) Caucasian participants from the
Framingham SNP Health Association Resource (SHARe). We
used participants 20–80 years old to examine the contribution of
interactions between genetic variants and three alcohol measures
(ounces of alcohol consumed per week, number of drinks con-
sumed per week, and the number of days drinking alcohol per
week) on four BP traits [systolic (SBP), diastolic (DBP), mean
arterial (MAP), and pulse (PP) pressure]. Our aim was to identify
novel BP loci with large interaction effects; discovery of such loci
may facilitate alcohol intervention strategies and achievement of
BP goals in genetically susceptible individuals, thereby reducing
the public health burden of hypertension and its sequelae.

METHODS
SUBJECTS
We analyzed the Framingham SHARe data from dbGaP
(accession number phs000007.v3.p2). The Framingham
Heart Study (FHS) was initiated by the National Heart,

Lung, and Blood Institute to investigate factors associated
with the development of cardiovascular disease in a repre-
sentative sample of the adult population of Framingham,
Massachusetts (http://www.framinghamheartstudy.org/about-
fhs/history.php). Our Framingham analysis set contained three
inter-connected cohorts of mostly Caucasian participants: the
Original cohort, the Offspring cohort, and the Third Generation
(G3) Cohort. The Original Cohort, launched in 1948, included
individuals aged 30–62 undergoing clinical examinations every 2
years (Dawber et al., 1951). The Offspring Cohort, launched in
1971, was formed from the biological descendents of the Original
Cohort, as well as the spouses and offspring of the descendents
(Feinleib et al., 1975). Following the baseline visit, participants
in the Offspring Cohort underwent a second clinical visit 8 years
later with subsequent visits every 4 years. The Third Generation
Cohort, formed in 2002, included biological descendents or
adopted offspring of the Offspring Cohort (Splansky et al.,
2007). We analyzed a date-matched set of individuals aged 20–80
years old. The clinic visit dates from the twenty-sixth visit of the
Original Cohort (May 1999 to November 2001) and the seventh
visit of the Offspring Cohort (September 1998 to October
2001) were closest to each other, with the first visit of the Third
Generation Cohort near the same time (April 2002 to July 2005);
thus, we pooled the BP measurements from the twenty-sixth visit
of the Original cohort (N = 6), the seventh visit of the Offspring
Cohort (N ≈ 3000), and the first visit of the Third Generation
Cohort (N ≈ 3800) to create a sample roughly analogous to a
single-visit family study. Most members of the Original Cohort
were beyond 80 years of age by the twenty-sixth exam. The six
Original Cohort members that we included were part of extended
pedigrees (one was a founder in a pedigree of 307 people). The
average ages were 80, 61, and 40 years for the Original, Offspring,
and Third Generation Cohorts, respectively.

PHENOTYPES
In general, SBP and DBP were measured using a consistent
protocol and a standard mercury column sphygmomanome-
ter (portable Baumanometer 300 Model or wall-mounted
Baumanometer E98169) in the clinic (the protocol descrip-
tions are publicly available on dbGaP). Participants were seated
for at least 5 min before the first BP measurement. Our anal-
ysis phenotype was the average of three BP measurements
(one nurse/technician reading and two physician readings).
MAP was estimated by the sum of two-thirds the (aver-
age) DBP and one-third of the (average) SBP. PP was com-
puted as the difference between (average) SBP and (aver-
age) DBP. Any Original Cohort members unable to complete
the twenty-sixth visit onsite had sitting or supine BP mea-
sured by a power aneroid sphygmomanometer (gauge only)
offsite.

ALCOHOL MEASURES
We analyzed three alcohol measures: ounces of alcohol con-
sumed per week, number of drinks consumed per week, and
the number of days consuming alcohol per week. At each clinic
visit, participants reported their consumption of beer, wine,
and liquor/spirits through a standardized questionnaire (publicly
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available on dbGaP). A drink was defined as a typical serv-
ing size for each particular type of alcoholic beverage, such as
a bottle of beer, a glass of wine, or a mixed drink or shot of
liquor. The ounces of alcohol consumed per week was derived
by Framingham researchers to depict the actual ethanol content
consumed; only a certain percentage of an alcoholic beverage is
ethanol and this varies by beverage type. We calculated the num-
ber of drinks per week by summing the number of drinks per
week from each alcohol beverage category. The number of days
drinking alcohol per week was a lower bound on their drinking
activity: it equaled the maximum days per week an individual
drank any one type of alcoholic beverage. Non-drinkers were
assigned values of 0 for all alcohol measures collected and/or
calculated in their cohort.

GENOTYPES
SNPs were genotyped using the Affymetrix 500k array with the
BRLMM calling algorithm and were filtered to remove Mendelian
errors and gender discrepancies. Genotyped SNPs with call
rates <90%, Hardy-Weinberg p-values < 1E-06, or less than
30 copies of the minor allele were excluded from our analysis.
The dosage files for ∼2.5 million imputed autosomal SNPs were
available from the Framingham SHARe. We excluded SNPs with
imputation quality R2 < 0.30 or less than 30 copies of the minor
allele.

STATISTICAL ANALYSIS
We used the ABEL suite of packages to perform a two-step
score test of the interaction between each SNP and alcohol mea-
sure on each BP trait (Aulchenko et al., 2007). In the first step,
we fit a linear mixed model of each BP trait onto age, sex,
BMI, and antihypertensive medication while accounting for the
phenotypic correlation among relatives; this yielded maximum
likelihood estimates (MLE) of the covariate coefficients, the resid-
ual variance, and the variance-covariance matrix for each BP trait
(Aulchenko et al., 2007). In the second step, we conducted 1
degree-of-freedom (df) score tests of the SNP main effect, the
alcohol main effect, and the SNP-alcohol interaction using the
MLEs of the parameters from the first step (Aulchenko et al.,
2010). We then employed MixABEL to calculate the joint 2 df
score test of the SNP main effect and SNP-alcohol interaction.
Since the 1 df interaction test statistics exhibited substantial infla-
tion (genomic inflation factors up to 1.73), we applied the widely-
accepted genomic control to achieve the expected distribution of
p-values (Devlin and Roeder, 1999). The pre- and post-genomic
control QQ plots are displayed in Figures S4–S7. For the joint 2 df
test we did not perform any adjustment on the test statistics. Loci
containing index SNPs with p ≤ 5E-08 were considered genome-
wide significant, while loci harboring SNPs with p ≤ 1E-06 were
deemed to have suggestive evidence of association with BP.

RESULTS
Our analysis sample included 6882 genotyped individuals with
at least one BP measure, one alcohol measure, and non-missing
values of all covariates. Table 1 displays the descriptive statistics
for the Framingham subsample used in the interaction analysis
of each alcohol measure. The ounces of alcohol consumed per

week and the number of days drinking per week were not avail-
able in the Third Generation Cohort; thus the sample size for the
number of alcoholic drinks per week, which was available in the
Third Generation Cohort, was 2.27 times larger than that of the
other alcohol measures. The percentage of alcohol drinkers was
also higher for the number of drinks per week sample while the
mean age (49 vs. 61 years), antihypertensive use (19 vs. 33%), and
mean SBP (120.5 vs. 126.0 mmHg) were lower. Table 2 describes
the pedigrees analyzed for each alcohol measure (Wigginton and
Abecasis, 2005); the pedigree size ranged from 1 to 307 individu-
als in each of the 1166 families available for analysis. Although the
sample size approximately doubled for the drinks per week anal-
ysis, the number of relative pairs increased many-fold due to the
inclusion of all three interrelated cohorts.

Our genome-wide analysis of SNP × alcohol interactions
yielded one significant (p ≤ 5E-08) and 20 suggestive (p ≤ 1E-
06) BP loci (using either the 1 or 2 df test of SNP-alcohol inter-
actions). The number of loci associated with SBP, DBP, MAP, and
PP were 8, 4, 9, and 3, respectively; three loci were associated with
more than one trait. The alcohol measure with the largest sample
size, drinks of alcohol per week, enabled the discovery of 16 of the
21 loci. The Manhattan plots in Figure 1 display the genome-wide
results for the joint 2 df test of the SNP main effect and SNP-
drinks per week interaction on all 4 BP traits. Six loci achieved
significant or suggestive associations for BP traits in the ounces of
alcohol consumed per week interaction analysis, while only 3 loci
reached suggestive association in the number of days drinking per
week interaction analysis.

For each BP trait and alcohol measure, we selected an
index SNP to represent each significant and suggestive locus.
Association results for the index SNPs are displayed in Table 3.
Index SNPs in 19 of the 21 loci exhibited interactions with alcohol
as evidenced by either a suggestive 1 df interaction test or a signif-
icant/suggestive joint 2 df test in conjunction with a nominally
significant (p < 0.05) 1 df interaction test; two PP loci (repre-
sented by rs4953404 and rs12292796) appeared to be driven by
main effects only (1 df interaction tests have p-values > 0.3 as
shown in Table 3) and will be excluded from further discus-
sion (see Figures S8–S14 for the regional association plots for all
the significant and suggestive loci). Twelve loci exhibited qual-
itative interactions by having opposite signs on the coefficients
for the SNP main effect and the SNP × alcohol interaction. The
coded alleles of these SNPs decreased BP for non-drinkers and
increased BP for heavy-drinkers or vice versa (increased BP for
non-drinkers and decreased BP for heavy drinkers). For these 12
loci, the SNP may have protective or harmful effects depending
on alcohol consumption.

Figure 2 displays the regional association plots for the three
loci with the strongest statistical evidence, as well as plots of the
effect of the index SNP as a function of alcohol consumption. SNP
rs10826334 near monocarboxylic acid transporter 9 (SLC16A9)
on chromosome 10 significantly interacted with both drinks per
week and ounces of alcohol per week to influence SBP. Each
copy of the G allele decreased SBP by 3.79 mmHg in individu-
als consuming 14 drinks per week as opposed to the 0.46 mmHg
decrease per copy of the G allele in non-drinkers. Two other loci
harbored index SNPs close to genome-wide significance. SNP
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Table 1 | Descriptive statistics for the BP traits, covariates, comorbidities, and alcohol measures.

Characteristics Oz Alcohol/week No.of days drink/week No.of drinks/week

Sample size 3027 3032 6882

% Male 46.38% 46.41% 46.69%

% Hypertensive 43.11% 43.14% 27.91%

% Taking antihypertensive meds 33.10% 33.11% 19.38%

% Taking cholesterol-lowering meds 20.68% 20.71% 13.34%

% Taking antidiabetic meds 6.48% 6.46% 3.91%

% Smoking regularly in the past year 13.68% 13.69% 15.78%

Age 60.77 ± 9.26 60.77 ± 9.26 49.26 ± 13.63

BMI 28.17 ± 5.30 28.17 ± 5.30 27.46 ± 5.47

SBP 125.95 ± 18.04 125.97 ± 18 120.52 ± 16.45

DBP 73.78 ± 9.36 73.78 ± 9.37 74.84 ± 9.37

MAP 91.16 ± 10.56 91.17 + 10.56 90.07 ± 10.35

PP 52.16 ± 15.76 52.17 + 15.77 49.26 ± 13.63

% Drinking (non-zero value of the specified alcohol measure) 66.34% 60.65% 74.43%

Mean of the alcohol measure specified by the column heading 2.61 ± 3.79 2.29 ± 2.65 5.46 ± 8.01

Range of the alcohol measure 0–38 0–7 0–101

Blood pressures, covariates, and alcohol measures are represented as the mean value ± the standard deviation.

Table 2 | Pedigree information for each analysis sample.

Characteristics Oz Alcohol/week No.of days drink/week No.of drinks/week

Sample Size from the Original/Offspring/Third Generation Cohort 6/3021/0 6/3026/0 6/3027/3849

Number of founders/non-founders 649/2378 650/2382 650/6232

Number of families 1040 1042 1166

Range of Pedigree Size 1–134 1–134 1–307

Parent-child pairs 32 32 4634

Full-sib pairs 1384 1386 5001

Half-sib pairs 63 63 277

Cousin-cousin pairs 798 800 7359

Grandparent-grandchild pairs 0 0 40

Avuncular pairs 153 153 5379

rs9318552 intronic to RNF219 antisense RNA 1 (RNF219-AS1)
on chromosome 13 interacted with ounces of alcohol per week to
influence DBP (p-value = 5.3E-08). In non-drinkers, each copy
of the T allele decreased DBP by 1.72 mmHg. However, in those
drinking 8.4 ounces of alcohol per week (roughly the equiva-
lent of 14 drinks) each copy of the T allele increased DBP by
1.54 mmHg. Thus, the T allele lowered DBP for alcohol con-
sumption below 4.43 ounces of alcohol per week (∼7.4 drinks
per week) and raised DBP for alcohol consumption above this
level. SNP rs13008299 intronic to family with sequence simi-
larity 179, member A (FAM179A) on chromosome 2 interacted
with drinks per week to influence DBP (p-value = 7.2E-08). Each
copy of the G allele decreased DBP by 1.31 mmHg in individu-
als consuming 14 drinks per week as opposed to the 0.36 mmHg
decrease per copy of the G allele in non-drinkers. All three of
these common variants had supporting evidence in the region
and non-negligible effect sizes as shown in Figure 2.

Four loci contained low-frequency (rs648425) and rare
(rs16849553, rs7116456, rs16963349) variants with suggestive
alcohol interactions but these garnered no supporting evidence

from common SNPs in the area (see the regional association
plots in Figures S8–S14). As shown in Table 3, these SNPs had
large estimated effects on BP but also had large standard errors
for these estimates. Three of these were intergenic but SNP
rs16963349 was intronic to WAP four-disulfide core domain 1
(WFDC1), a possible tumor suppressor gene. Common vari-
ants in the remaining suggestive loci were harbored in or near
estrogen-related receptor gamma (ESRRG), K (lysine) acetyl-
transferase 2B (KAT2B), adenylate cyclase 2 (brain) (ADCY2),
GLI family zinc finger 3 (GLI3), zinc finger protein 716 (ZNF716),
slit homolog 1 (Drosophila) (SLIT1), phosphodiesterase 3A,
cGMP-inhibited (PDE3A), keratocan (KERA)—lumican (LUM),
C-type lectin domain family 3, member A (CLEC3A), F-box pro-
tein 15 (FBXO15), and immunoglobulin superfamily, member 5
(IGSF5). The regional association plots for selected suggestive loci
are shown in Figure 3.

Table 4 displays published BP, cardiovascular, alcohol drinking,
and homocysteine/methionine metabolism associations located
within ≈500 kb of our index SNPs. These results were collated
from the NHGRI GWAS catalog (www.genome.gov/gwastudies),
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FIGURE 1 | Manhattan plots of the joint 2 degree-of-freedom test

of the SNP main effect and SNP-drinks per week interaction for

each blood pressure trait. The -log(p-value) of the joint 2 df test of

each SNP was plotted vs. the chromosomal location for all SNPs
genome-wide. Sixteen unique loci were discovered using the four
blood pressure traits.

the dbGaP database (http://www.ncbi.nlm.nih.gov/projects/
gapplusprev/sgapplus.htm), and the integrated map on the NCBI
SNP website (http://www.ncbi.nlm.nih.gov/snp/) on November 4,
2013. Three of our loci (represented by SNPs rs648425, rs7791745,
and rs16963349 in the MGC27382-PTGFR, GLI3, and WFDC1
regions, respectively) were near significant (p ≤ 5E-08) BP associ-
ations identified in prior investigations of the Framingham Study
(Levy et al., 2007). One additional locus (represented by two
SNPs, rs12773465 and rs7902871, intronic to SLIT1) exhibited
suggestive (p ≤ 1E-06) association in a prior Framingham anal-
ysis (Levy et al., 2007). SNP rs7791745 near GLI3 appears to
represent a novel locus; the R2 measure of linkage disequilibrium
between our index SNP and the previously associated SNP was
less than 0.2 (Johnson et al., 2008; Pruim et al., 2010). No link-
age disequilibrium information was available for the other three
loci to determine if these represented novel BP-associated loci
(Johnson et al., 2008; Pruim et al., 2010).

DISCUSSION
We identified one significant and twenty suggestive BP loci by
exploiting gene-alcohol interactions in the analysis of 6882 par-
ticipants from the FHS. Given that published GWAS with sample
sizes up to 200,000 individuals have collectively identified fewer
than 50 BP-associated loci, the identification of twenty-one can-
didate loci using interactions in a modest sized sample shows the
promise of a more integrative gene and environment approach.
Seventeen of these loci had failed to produce even suggestive evi-
dence for BP in publicly-released findings from Framingham or
other investigations. Our findings may also suggest why alcohol
intake interventions may not reduce BP in all patients; some
patients may be genetically susceptible to the effects of alcohol

on BP and may experience the greatest BP changes with alcohol
intake modifications, while others may have little genetic suscep-
tibility and lack any marked BP response to alcohol consumption.

The interaction between alcohol and the significant locus near
SLC16A9 is biologically plausible. The index SNP (rs10826334)
from this locus was 33 kb away from a variant significantly asso-
ciated with uric acid (Kolz et al., 2009); uric acid has been
associated with hypertension in humans and animal models
(Mazzali et al., 2001; Feig, 2011). Diets rich in alcohol increase
serum uric acid levels (Schlesinger, 2005) which may subse-
quently influence the renin-angiotensin system and reduce nitric
oxide synthase in the macula densa of the kidney (Mazzali
et al., 2001; Soltani et al., 2013), thereby influencing BP. As
shown in Table 4, further support for this locus is provided
by two previously reported associations; index SNP rs10826334
was located between SNP rs6479671 significantly associated with
alcohol drinking (317 kb away; p = 1E-11; see dbGaP database)
and SNP rs10509096 weakly (448 kb away; p = 4E-06) associated
with BP in a previous investigation using the Framingham Study
(Levy et al., 2007).

The gene-alcohol interactions identified in this investigation
may provide insights into mechanisms underlying BP regula-
tion and generate hypotheses to be tested in animal models. For
index SNP rs10826334 in the significant locus near SLC16A9,
the change from the C to G allele changes potential GATA,
NERF1a, and PU.1 transcription-factor-binding motifs (Ward
and Kellis, 2012). Rats fed an ethanol-containing liquid diet for
3 weeks exhibited increased mRNA and protein levels of PU.1 in
the proximal tibia (Iitsuka et al., 2012). Therefore, one poten-
tial mechanism is that alcohol consumption increases levels of
PU.1, fostering increased binding for individuals with the PU.1
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FIGURE 2 | Regional association plots for the three loci with the

strongest statistical evidence, as well as plots of the effect of the

index SNP as a function of alcohol consumption. In the top panel, the
p-value of the 2 df test is plotted vs. the chromosomal location (in
basepairs) with the color scheme indicating the degree of linkage

disequilibrium between each SNP and the index SNP (in purple). These
regional plots were generated using LocusZoom (Pruim et al., 2010);
rs9318552 was intronic to RNF219-AS1 but this gene was omitted from
the plot. The bottom panel depicts the estimated effect of the index SNP
as a function of alcohol consumption.

motif, and altering the expression of an unknown downstream
BP-associated gene.

We learned several lessons from this investigation. First,
incorporating gene-environment interactions (GEI) enhanced
the discovery of variants with large effect sizes. Even among non-
drinkers, the estimated effect sizes of three rare/low-frequency
variants ranged from 2.28 to 7.28 mmHg per copy of the coded
allele. For individuals consuming 14 drinks per week (or ∼8.4
ounces of alcohol), variants from eight loci had effect sizes
exceeding 2 mmHg per copy of the coded allele. For significant
SNP rs10826334, each copy of the G allele decreased SBP by
3.79 mmHg in individuals consuming 14 drinks per week. SNP
rs16963349 had the largest effect increasing SBP by 17.56 mmHg
for each copy of the rare C allele among consumers of 14 drinks
per week. This SNP (intronic to WFDC1) is 574 kb from a known
BP variant in the cadherin 13 (CDH13) gene (Levy et al., 2007).
Such large effect sizes based on alcohol consumption have been
previously reported. For 60 year-old non-smoking apoE ε2 carri-
ers in Brazil, Leite et al reported that drinkers had a mean SBP
16.5 mmHg higher than non-drinkers whereas among apoE ε4
carriers there was no difference by drinking status (Leite et al.,
2013). In general, our effect estimates for the significant and
suggestive variants were consistent with those from other pop-
ulations. In older Chinese men that consumed alcohol, BP traits
varied by as much as 3.5 mmHg based on the genotypes at SNPs
in ADH2 and ALDH2 (Sen Zhang et al., 2013). In Japanese men
that drank alcohol daily, the effect of a variant in the NADH2
gene was associated with a 4.77 mmHg increase in SBP (Kokaze
et al., 2004). Thus, incorporating interactions between genes and

environment in the analysis of sequence data may enhance effect
sizes, and hence the statistical power, to discover BP variants from
the whole allele frequency spectrum using reasonable sample
sizes.

The second major lesson was that qualitative (“crossover”)
interactions may be more pervasive than previously thought.
We discovered twelve suggestive loci with interactions that
changed direction of effect with alcohol consumption; in other
words, alcohol consumption determined whether these variants
increased or decreased BP. This further underscored the impor-
tance of incorporating GEI into genetic analyses. Omission of the
SNP-alcohol interaction may mask the association between the
genetic variant and BP (i.e., the effect of the SNP in drinkers may
cancel out the effect of the SNP in non-drinkers) depending on
the distribution of alcohol consumption in the sample. Perhaps
part of the discordance of association results from previous BP
studies can be attributed to differential distributions of environ-
mental factors along with GEIs (Pan et al., 2010). For example,
the CYP11B2 variant shown to interact with alcohol by Pan et al.
(2010) yielded inconsistent results in previous studies of hyper-
tension; some studies reported that the T allele was associated
with hypertension risk while others concluded that the C allele
or no alleles were associated with hypertension (Pan et al., 2010).
The discovery of qualitative interactions also implies that recom-
mendations concerning alcohol consumption and hypertension
risk may need to be personalized based on genotype (Taylor et al.,
2009; Green and Guyer, 2011) or focused on high-risk genetic
subgroups (Hunter, 2005; Murcray et al., 2009; Thomas, 2010).
The incorporation of interactions may increase the accuracy of
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FIGURE 3 | Regional association plots for selected suggestive loci.

models predicting individual hypertension risk (Yi, 2010; Chang
et al., 2012) and may increase the proportion of BP variance
explained by current GWAS findings.

The third lesson was that we cannot discount the impact
of the sample size and age distribution on the consistency of
findings across alcohol measures. The sample size roughly dou-
bled, and the average age decreased by 12 years, when the
Third Generation cohort was added to the other two cohorts
for the drinks per week analysis; this analysis identified 15 loci
that appeared to interact with alcohol as evidenced by at least
suggestive evidence for the 2 df test and nominal (p-value ≤
0.05) significance for the 1 df interaction test. Of these 15
loci that interacted with the number of drinks consumed per
week: three loci (represented by rs10826334, rs991427/rs4494364,
and rs2410182/rs2837253) were also significant or suggestive
for ounces of alcohol per week on the same BP trait; four
loci (represented by rs13008299, rs7116456, rs2735413, and
rs1943940) had p-values less than 1E-04 for at least one of
the other two alcohol measures (with p-value ranks of 25–164

out of the roughly 2.5 million SNPs ordered smallest to largest
for that alcohol measure); three loci (represented by rs648425,
rs10841530, rs9874923) contained SNPs with p-values less than
1E-04 for a different alcohol measure in the 500 kilobase region
to each side of the sentinel SNP; and one locus (represented
by rs16963349) was so rare that association tests could not
be performed using the smaller sample sizes from the ounces
of alcohol consumed per week or the days drinking per week
analyses.

There were a few limitations in this investigation. Alcohol con-
sumption may have been underreported, a phenomenon com-
mon among excessive drinkers. The number of drinks per week,
the alcohol measure available in the greatest number of par-
ticipants, is imprecise due to the variability of ethanol content
by alcoholic beverage type (beer, wine, hard liquor, etc.). Our
analysis was largely restricted to individuals of European ances-
try; race was not collected in the Original Cohort and 20% of
the Offspring Cohort, thus race was missing for 9.8% of the
6882 individuals analyzed. In addition, one participant reported a
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non-Caucasian race in the ounces of alcohol consumed per week
and days drinking alcohol per week subsamples, with 58 individ-
uals (from 44 families that also contained 1146 Caucasian par-
ticipants) reporting non-Caucasian races in the drinks per week
sample. We analyzed all individuals but adjusted for population
stratification through the genomic control method. Candidate
gene studies in Japanese, Chinese, and Brazilian populations have
reported gene-alcohol interactions (Kokaze et al., 2004, 2007;
Pan et al., 2010; Chang et al., 2012; Chen et al., 2013; Leite
et al., 2013; Nakagawa et al., 2013; Sen Zhang et al., 2013; Wang
et al., 2013). Thus, by broadening the investigation of interac-
tions between alcohol and genes to other ethnic groups, we may
be able to capitalize on population-specific variants, different
distributions of alcohol consumption, and different linkage dis-
equilibrium patterns. We adjusted for antihypertensive use as a
dichotomous yes/no predictor; the type of medication, as well
as the genetic composition of an individual, may determine the
treatment response. In our investigation, the 1 df interaction test
suffered from substantial genomic inflation. The genomic con-
trol method we used to correct the 1 df interaction tests appeared
to overcorrect the tail of the p-value distribution which should
harbor true associations (see Figures S4–S7). Thus, we were
overly conservative, potentially missing some real associations.
Likewise, by not adjusting the 2 df test we may be reporting false
positives.

Although we restricted this analysis to a single visit from each
participant, we plan on following up with a longitudinal anal-
ysis of gene-alcohol interactions using the Framingham SHARe
data. All our findings, both the cross-sectional and longitudi-
nal, require further validation and replication in an independent
sample. Lastly, we did not account for genetic variants influenc-
ing alcohol metabolism (particularly ADH2, ALDH2). Different
variants of the ADH and ALDH enzymes work at different effi-
ciencies, thereby determining the concentration of intermediate
metabolites such as acetaldehyde in the body following a given
amount of ethanol consumption. A slow ALDH enzyme can cause
acetaldehyde accumulation compared to the wild-type ALDH
variant (National Institute on Alcohol Abuse and Alcoholism,
2007). Thus, by testing SNP-alcohol interactions in individuals
with and without the slow ALDH variants, we can test whether
the interaction effects of the novel variants are larger when
acetaldehyde accumulates. This may help refine the metabo-
lite or mechanism through which the alcohol interactions are
occurring.

In summary, reliance on genetic main effects may impede dis-
covery of novel variants with large effects that can be targeted with
lifestyle modifications. GEIs have to potential to increase the clin-
ical translatability of genetic findings and elucidate mechanisms
underlying BP regulation.
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Figure S4 | Quantile-quantile plots of the 1 df SNP-alcohol interaction tests

for SBP. Plots are presented for all three alcohol measures (drinks per

week, days drinking per week, and ounces of alcohol per week) before

and after the genomic control adjustment.

Figure S5 | Quantile-quantile plots of the 1 df SNP-alcohol interaction tests

for DBP. Plots are presented for all three alcohol measures (drinks per

week, days drinking per week, and ounces of alcohol per week) before

and after the genomic control adjustment.

Figure S6 | Quantile-quantile plots of the 1 df SNP-alcohol interaction tests

for MAP. Plots are presented for all three alcohol measures (drinks per

week, days drinking per week, and ounces of alcohol per week) before

and after the genomic control adjustment.

Figure S7 | Quantile-quantile plots of the 1 df SNP-alcohol interaction tests

for PP. Plots are presented for all three alcohol measures (drinks per week,

days drinking per week, and ounces of alcohol per week) before and after

the genomic control adjustment.

Figures S8–S14 | Regional association plots for loci with suggestive or

significant associations by the 1 df interaction test or the joint 2 df test.

Plots are ordered by chromosome and position, with symbol color

indicating the strength of the linkage disequilibrium (r-squared value)

between the plotted SNP and the index SNP.
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