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Asthma is characterized by lung inflammation caused by complex interaction between
the immune system and environmental factors such as allergens and inorganic pollutants.
Recent research in this field is focused on discovering new biomarkers associated with
asthma pathogenesis. This review illustrates updated research associating biomarkers
of allergic asthma and their potential use in systems biology of the disease. We focus
on biomolecules with altered expression, which may serve as inflammatory, diagnostic
and therapeutic biomarkers of asthma discovered in human or experimental asthma
model using genomic, proteomic and epigenomic approaches for gene and protein
expression profiling. These include high-throughput technologies such as state of the
art microarray and proteomics Mass Spectrometry (MS) platforms. Emerging concepts
of molecular interactions and pathways may provide new insights in searching potential
clinical biomarkers. We summarized certain pathways with significant linkage to asthma
pathophysiology by analyzing the compiled biomarkers. Systems approaches with this data
can identify the regulating networks, which will eventually identify the key biomarkers to
be used for diagnostics and drug discovery.
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INTRODUCTION
Asthma is a chronic immunological disorder of lung character-
ized by reversible airway obstruction, airway inflammation and
increased airway hyperresponsiveness in response to provocative
challenge. Physiological changes of the disease include the accu-
mulation of inflammatory cells, especially the eosinophils, goblet
cell metaplasia of lung epithelium with a mucus secreting phe-
notype (Laitinen et al., 1985). The worldwide incidence rate of
asthma has been estimated to be 2.65 to 4/1000 per year and is
more common among children with age less than 5 years where
it ranges from 8.1 to 14/1000 per year (Gergen and Weiss, 1995).
This case study also says that according to report presented by
National Health and Nutrition Examination Survey (NHANES-
2), this prevalence is higher in African-Americans (12.27) than
in Caucasian (10.47) respectively. In Asia, adult asthma preva-
lence rate ranges from 3.6% in Hongkong, 2.4% in India, 0.1%
in Singapore, 2.4% in Taiwan, and 2.91% in Thailand (Subbarao
et al., 2009). Thus, asthma is arguably a major health problem
worldwide deteriorating the quality of life of individuals affected
and places a burden on their family and even the society. Indirect
losses are due to disability, absenteeism and health care manage-
ment. Focus of the present asthma biomarkers has been in the
risk assessment before diagnosis, to determine the stage, grade of
the disease during diagnosis and monitoring therapy or recur-
rent disease in the later stage of treatment. The biomolecules
that undergo cellular, biochemical or molecular alterations in
asthma patients vs. healthy subjects that are measurable in bio-
logical samples such as Broncho alveolar lavage Fluid (BALF),

Nasal lavage fluid (NLF), blood or lung tissues may be consid-
ered as asthma biomarkers. These biomarkers are used for disease
diagnosis and prognosis. A few native proteins that are targets for
“hit” by a drug to achieve desirable therapeutic effects are another
class of biomolecules which are known as “drug targets.” There
has been a continuous quest for developing diagnostic biomarker
to differentiate “allergic asthma” from other pulmonary inflam-
mations and also to develop more biologic drugs by targeting
biomolecules playing a key role in regulating asthma pathogenesis
which may be more effective than traditional chemical drugs such
as steroids (Murugan et al., 2009). Current research is focused
on identifying key regulators and molecular pathways, which are
associated in asthma pathogenesis. Systems approaches includ-
ing genomics, proteomics, epigenomics and further integrating
these attempts provide deeper understanding of the disease prog-
nosis (Strimbu and Tavel, 2010). In this mini review, we gave
a brief overview of different systems level approaches studied
related to asthma biomarkers and we further focused on path-
ways, biological processes and molecular functions of these classes
of biomarkers.

MOLECULAR BIOMARKERS IN ALLERGIC ASTHMA
GENOMIC APPROACH
Genomic studies have reported large number of candidate
biomarkers through both high and low throughput techniques.
Experiments were done on human, mouse, monkey and rat
model systems by comparing the expression of genes through
challenging them with inhalant allergens and monitoring at
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different time intervals or by using resistant and susceptible
strains of animals. Microarray based experiments reported hun-
dreds of differentially expressed genes and hence plethora of
information. Different samples like bronchial epithelial cells,
eosinophils, CD4+ T-cells, mouse lung tissues have been
employed in the experimental designs. The genes which showed
significant differential expression were found to be linked with
airway remodeling, production of mucus, macrophages and shift-
ing the immune response toward Th2 phenotype thus enhancing
asthma exacerbation (Laprise et al., 2004; Woodruff et al., 2007;
Siddiqui et al., 2013). In most microarray experiments the differ-
entially expressed genes were further validated either by RT-PCR
or western blot. Genome Wide Association Study and Candidate
gene approach have identified several regions on human chro-
mosome which are linked to asthma phenotype. Nucleotide
substitution in promoter region and ORF of IL4 receptor, IL13,
HLA-II alleles, RANTES and CC-chemokine ligands were found
to be strongly associated with asthma (Toda and Ono, 2002). We
have compiled fifteen biomarkers from Database of Allergy and
Asthma Biomarkers (DAAB)1 having more than two citations and
listed in Table 1, out of which 11 were obtained from genomics.

In genomic studies of asthma several genes have been
found to be significantly induced, of which some significant
biomarkers are Chemokine ligands (CCL8, CCL5, CCL11, and
CCL24), SERPINs (SERPINB2, SERPINB4, and SERPINA1) and
CarboxypeptidaseA3. These three genes have not been studied
earlier in detail however they have the potential of being used
as asthma biomarkers. Chemokine ligands are potent attractants
of Th2 lymphocytes at the site of lung inflammation in atopic
asthma (Lukacs, 2001). SERPINS are members serine protease
inhibitors family which inhibit neutrophil protease cathepsin G
and mast cell chymase and protects the lower respiratory tract
from damage caused by proteolytic enzymes. Thus, it can be used
as potent diagnostic marker of asthma attack (Zou et al., 2002).
Carboxypeptidase A3 is an asthma associated protease identi-
fied in lung epithelium and is a significant mast cell marker and
was found to be upregulated in 42 non-smoking asthma patients
(Woodruff et al., 2007). Retnla, also known as Fizz (found in
inflammatory zone) protein is an inducible product of bronchial
epithelial cell. This is considered as a marker of alternatively acti-
vated macrophages and highly polarized Th2 responses. In Retnla
deficient mice the severity of atopic response is increased dra-
matically, whereas the IL13 response is suppressed by Retnla in
airway hyper-responsiveness (Pesce et al., 2009). NOS2A is a gene
that encodes inducible nitric oxide synthase, iNOS which produce
nitric oxide (NO) from T lymphocytes in response to proin-
flammatory cytokines in an asthma model (Ricciardolo et al.,
2004). This NO assists in the development of reactive nitrogen
species such as peroxynitrites leading to cellular injury in the
airways (Gabazza et al., 2003). NOS2A was found to be upreg-
ulated in bronchial biopsies in a microarray study (Laprise et al.,
2004) and a (CCTTT)n polymorphism in the promoter region
was associated with asthma phenotype studied in White pop-
ulation (Pascual et al., 2008) and some SNP’s were found on
asthmatic children having Latino and Caucasian ancestry (Islam

1http://bicresources.jcbose.ac.in/ssaha4/daab/.

et al., 2010). These genes together with other mediators con-
tribute to epithelial cell activation and dysfunction (Dougherty
et al., 2010).

PROTEOMIC APPROACH
Proteomic approaches are widely used to identify the expression
level and modification of proteins to understand the pathophysi-
ology of asthma. Proteomic signatures of lung parenchyma, BAL
fluid, Immune cells (CD3+T cells or CD4+ T cells) from human
or animal model have been used in different studies after exper-
imental allergen challenge or after natural exposure to inhalant
allergens. The advancement of proteomic techniques from ear-
lier 2D gel based approach to recently more advanced LC-MS/MS
based analysis resulted in precise identification of candidate pro-
teins involved in asthma inflammation. In Table 1 we have listed
six proteins identified in asthma proteomics studies, which can
be analyzed in more detail to use them as clinical biomarkers.
Similarly in asthma proteomics, a number of protein biomarkers
have been identified, three of these potential biomarkers include
AMcase (Chia, Chi3l3, Chi3l4, Chi3l1, and ChiT1), Calcium
binding protein (S100A8 and S100A9), and Arginase (Arg1 and
Arg2). These three proteins and their corresponding genes need
further investigation at system level to reveal their use as potential
diagnostic biomarkers.

AMcases are human chitinases induced via Th2 specific IL13
mediated pathway in aeroallergen challenged lung epithelium
and macrophages as means of host defense. Th2 inflamma-
tion in asthma can be improved by targeted neutralization of
these human chitinases (Zhu et al., 2004). A K(Lys)17R(Arg)
polymorphism was identified in AMcase gene by genotyping
study conducted on 322 pediatric asthma patients at University
of Berlin and Freiburg (Bierbaum et al., 2005). Chi3l3 (Ym1)
and Chi3l4 (Ym2) are other non-chitinolytic chitin binding
proteins, have close linkage with asthma. Certain corticos-
teroids and leukotrienes receptor antagonist were shown to sup-
press the elevated pulmonary level of this protein (Zhu et al.,
2004).

Calcium binding protein (S100A9/A8) form complex and
inhibits macrophage activation and immunoglobulin synthesis by
lymphocytes. Its homodimer also acts as a chemotactic agent for
leukocytes and has pro-inflammatory activity on endothelial cell
and inflammatory cells (Zhou et al., 2001). It is found in neu-
trophil cytoplasm and released upon cell activation (Cookson,
2002). This protein was found to be highly upregulated in endo-
toxin mediated response in non-smoking population challenged
with endotoxin (Michel et al., 2013).

In asthmatic lung, Arginase expression is increased via Th2-
induced, STAT6-dependent mechanism (Zimmermann et al.,
2003). This affects arginine metabolism, and contribute to asthma
pathogenesis through inhibition of NO generation and alter-
ations of cell growth and collagen deposition (Shi et al., 2001).
Association between four SNP’s in this gene and atopic asthma
were identified by genotyping 433 asthmatic case-parent triads in
a public hospital of Mexican city (Huiling et al., 2006).

BPIFA1 (also known as SPLUNC), is highly expressed in the
upper airways and nasopharyngeal regions and thought to be
involved in inflammatory responses to irritants in the upper
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Table 1 | List of asthma biomarkers cited in two or more times in Database of Allergy and Asthma Biomarkers (DAAB).

Gene Symbol Name of the genes/proteins Sample Organism Approach References

ARG1 Arginase 1 BAL macrophages, BAL Fluid Mouse, human GHL, PHL Siddiqui et al., 2013 [GH]
Wu et al., 2005 [PH]
Torrone et al., 2012 [PH]
Cloots et al., 2013 [GL]
North et al., 2009 [PL]

BPIFA1 Palate lung nasal epithelial
clone

BALFluid and nasal lavage fluid Human PHL Wu et al., 2005 [PH]
Ghafouri et al., 2006 [PH]
Chu et al., 2007 [PL]

CPA3 Carboxypeptidase A3 Airway epithelial cells, bronchoscopy
tissue sample

Human, mouse GHL Woodruff et al., 2007 [GH]
Laprise et al., 2004 [GH]
Balzar et al., 2011 [GL]

CCL8 Chemokine (C-C motif)
ligand 8

Left lung tissue, BAL macrophages Mouse GHL Park et al., 2008 [GH]
Siddiqui et al., 2013 [GH]
Fu et al., 2013 [GL]

Chi3l3 Chitinase 3-like3 BALFluid Mouse PHL Greenlee et al., 2006 [PH]
Zhao et al., 2005 [PH]
Louten et al., 2012 [PL]

Chi3l4 Chitinase 3-like 4 BAL macrophages, BAL Fluid, Human, mouse GHL, PHL Siddiqui et al., 2013 [GH]
Webb et al., 2001 [GL]
Greenlee et al., 2006 [PH]
Zhao et al., 2005 [PH]
Louten et al., 2012 [PL]

CLCA3 Calcium activated chloride
channel -3

Airway epithelial cells, left lung tissue Mouse GHL Woodruff et al., 2007 [GH]
Park et al., 2008 [GH]
Zhou et al., 2001 [GL]

Cxcl15 Chemokine (C-X-C motif)
ligand 15

BAL Fluid Mouse PH Greenlee et al., 2006 [PH]
Zhao et al., 2005 [PH]

IL10 Interleukin 10 Lung tissue, CD4+T Cell Mouse, human GHL López et al., 2011 [GH]
Hansel et al., 2008 [GH]
Lyon et al., 2004 [GL]

IL13 Interleukin 13 CD4+T Cell, Human GHL, EL Hansel et al., 2008 [GH]
Durham et al., 2011 [GH]
Kanoh et al., 2011 [GL]

MUC5AC Mucin 5AC Bronchoscopy tissue sample, Left
lung tissue

Mouse GHL Laprise et al., 2004 [GH]
Park et al., 2008 [GH]
Ordonez et al., 2001 [GL]

NOS2A Nitric oxide synthase Bronchoscopy tissue sample Mouse GHL, EL Laprise et al., 2004 [GH]
Torrone et al., 2012 [E]
Pascual et al., 2008 [GL]

Retnla Resistin like alpha Lung eosinophil, BAL macrophage Mouse GHL Siddiqui et al., 2013 [GH]
Tumes et al., 2009 [GH]
Doherty et al., 2012 [GL]

SERPINB Serpin peptidase inhibitor,
clade B

Bronchoscopy tissue sample, airway
epithelial cells

Human, mouse GHL Woodruff et al., 2007 [GH]
Laprise et al., 2004 [GH]
Karaaslan et al., 2012 [GL]

S100A9 Calcium binding protein A9 CD3+T cell Human PHL Wu et al., 2005 [PH]
Jeong et al., 2007 [PH]
Lee et al., 2013 [PL]

G, Genomics; P, Proteomics; E, Epigenetics; BAL, Broncho alveolar lavage; H, High-throughput; L, Low-throughput.
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airways (Barnes et al., 2008). A Sialylated form of BPIFA1 was
observed as post translational modification and was identified as
being predominant in nasal lavage fluid (NLF) of allergy rhinitis
patients (Ghafouri et al., 2006).

EPIGENOMIC APPROACH
Epigenomics has emerged as a promising field, and have
addressed the gaps in our current understanding of the interac-
tion between nature and nurture in the development of asthma.
Epigenetic modification can alter the DNA structure (by methy-
lation, acetylation), the chromatin structure (by altering the
Scaffolding protein) and by small non-coding RNAs. It was
found that reduced Histone Deacetylase (HDAC) activity and
increased Histone acetyl transferase (HAT) activity jointly pro-
motes the expression of multiple inflammatory genes associated
with asthma, however inhaled steroids reduce HAT activity to
the normal level (Ito et al., 2002). External stimuli such as aller-
gen exposure, cigarette smoke, traffic exhaust and folate rich diet
cause methylation mediated silencing of genes like IFNγ, Fox-
P3, IL2, iNOS and hypomethylation mediated activation of genes
like IL6, IL4, IL8, and Acyl CoA thus increasing the Th2 phe-
notype assisting in the development of asthma (Durham et al.,
2011). Usually IFN-γ and FOX-P3 undergo H4 acetylation and
demethylation mediated activation to prevent post natal asthma
and in-utero atopicity, respectively (Lovinsky-Desir and Miller,
2012). In the promoter region and other cis-acting element of
two important Th2 cytokines like IL4 and IL13 demethylation
causes recruitment of STAT6 and GATA3 thereby enhancing their
expression (Miller and Ho, 2008). In addition to that small non-
coding RNA plays a crucial role in fine epigenetic tuning of genes
which are key factors in asthma pathophysiology (Durham et al.,
2011). These include let-7, miR-9, miR-21, miR-125, miR-146a,
miR-147, and miR-155. For example let-7 families of micro RNA
and mi R-155 are found to inhibit expression of IL 13. This
miRNA was found to block the IL13 R alpha 1 and ultimately
lower the expression of STAT 6 thus controlling the Th2/Th1 bal-
ance in macrophages (Kumar et al., 2011 and Martinez-Nunez
et al., 2011). An overexpression of miR21 and an underexpres-
sion of miR1 were demonstrated in IL-13 induced transgenic
mice. This miR-21 was also found to control expression of IL12,
a molecule responsible for Th2 mediated cellular response (Lu
et al., 2009). A G/C polymorphism in miRNA146a gene locus
resulted in a functional variant that in turn can significantly mod-
ulate expression of genes such as TNF-α, IL-6, Cox-2, iNOS, and
RANTES that are closely linked with asthma pathophysiology
(Jiménez-Morales et al., 2012). This polymorphism was found to
have statistically significant association with a pediatric Mexican
cohort.

Integrated approaches
We have compiled the asthma biomarkers from different
approaches including genomics, proteomics and epigenetics and
have found little overlap amongst them as shown in Figure 1A.
Detailed molecular information of all asthma related biomarkers
are stored in DAAB. All the genes compiled from the high-
throughput experiments have significant value (p = 0.05) of fold
change, validated further by low-throughput techniques such as

PCR, blotting and hold significantly close association with asthma
pathophysiology.

Furthermore, we have listed fifteen genes in Table 1, which
have been cited for two or more times in DAAB database. Asthma
is dependent on many factors and thus it develops as a conse-
quence of crosstalk among different pathways. Thus, we analyzed
all the genes in our dataset compiled from several literatures
in order to identify the pathways containing these biomark-
ers. Figure 1B shows cytokine pathways, ROS metabolism, NO
metabolism and certain other metabolic pathways were signif-
icantly enriched (Detailed information of Figure 1B is shown
in Table A1). In addition, Gene ontology of the biomarkers is
shown in Figures 1C,D (Detailed information of GO terms are
shown in Tables A2, A3). Cytokine activity, growth factor activ-
ity and Arginase activity were found to be significantly enriched
in molecular function analysis. With respect to biological process
inflammatory response, immune response and cell proliferation
were found to be considerably predominating.

The most significant pathway triggering asthma has been the
adipocyte signaling pathway. A few significant genes such as
ACSL3, IL13, IL9, IL4, IL2, IL10, IFNA1, SOCS1, PON1, APOB,
SOCS3, SCD, and NR1D1 were found to be the component
of this pathway and associated with asthma pathogenesis (Tilg
and Moschen, 2006; Diego et al., 2012). Adipokine or adipocy-
tokine are cytokines secreted by the adipose tissues. These include
Th2 cytokines and chemokines such as MCP1, RANTES, which
are potent attractants of mast cells. There are also several clini-
cal observations suggesting the role of obesity with asthma and
one of the major conclusions so far has been the action of
adipocytes derived cytokines which inhibit the activity of T-
regs thus decreasing the tolerance (Theoharides et al., 2008).
Cytokines such as TNFα, IL6 secreted by the adipocytes are
important mediators of asthma. These molecules also affect vas-
cular function by modulating nitric oxide and superoxide release.
Some molecules such as leptin, adiponectin are the most abun-
dantly expressed adipocytokines and are involved in classical
cytokine pathway thus showing an asthmatic phenotype (Guzik
et al., 2006).

Another significant pathway has been the ROS signaling path-
way which is characterized by production of free radicals from
molecular oxygen due to recruitment of activated inflammatory
cells and associated with mitochondrial dysfunction that result in
variety of physiological changes including increased airway reac-
tivity, tissue injury and mucus production (Zuo and Clanton,
2005). Presently certain metabolites such as malondialdehyde, 8-
isoprostane, exhaled NO, thiobarbituric acid are used as markers
to measure the disease severity in sputum or exhaled air (Zuo
et al., 2013). Several genes including MPO, PRDX6, SOD1, and
CYBB as molecules involved in asthmatic responses and linked to
ROS generation and hold the potential of using as biomarkers.

An additional significant pathway uncovered has been the Urea
cycle and arginine metabolism. iNOS, ARG1, and ARG2 belong
to this pathway and have also been found to be induced sig-
nificantly in several genomic, proteomic, and epigenetic studies
(North et al., 2009; Breton et al., 2011; Cloots et al., 2013). In
asthmatic airway inducible NOS in inflammatory cells cataly-
ses the production of NO from L-arginine, which results in the
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FIGURE 1 | (A) Venn diagram showing asthma biomarkers identified in three
different approaches of Genomics [G], Proteomics [P] and Epigenetic [E]
studies with overlaps among the intersects. (B) Significant pathways; (C)

enriched gene ontology molecular functions, and (D) biological function

terms are listed which are linked with asthma biomarkers (Pathway and Gene
Ontology analyses were done using Pathway studio 7.12, Ariadane Genomics,
Rockville, MD, USA). Pathways are significant where (−log10P) ≥ 1.3 (0.05%
significance).

formation of reactive nitrogen species (RNS) that alters pro-
tein function by nitration of tyrosine residues thereby mediating
inflammation and injury. In asthmatics upregulation of Arginase
limits the availability of L-arg to iNOS thus generating perox-
ynitrite and concomitant nitration of proteins. It also enhances
the level of L-ornithine which promotes airway remodeling by
collagen deposition and excess cell proliferation (Ghosh and
Erzurum, 2011).

CONCLUSION
In the last few decades efforts to understand the pathophys-
iogy of allergic asthma has been intensified to a great extent
because of increased mortality and morbidity. The aim of the
present review is to focus on genes or their products which
can be used as biomarker for allergic asthma. Occurrence of
allergic asthma involves multiple genes, environmental factors
and epigenetic mechanisms. Presently the potential difficulties
to diagnose this disease are due to (i) remarkable overlap in

2www.elsevier.com/online-tools/pathway-studio/biological-database.

symptoms of other pulmonary diseases, (ii) high interindividual
and interpopulation variation at genetic level leads to changes
in the uniformity of molecular marker, and (iii) absence of dis-
criminative molecular markers, specific to atopic asthma, since
most of the biomarkers currently used or in clinical trial are
indicative of asthmatic inflammation irrespective of atopic back-
ground. Some of the common features of asthma exacerbation
are eosinophilic inflammation, collagenitis, mucus deposition
and extracellular matrix formation. However, these are com-
mon characteristics of other lung inflammations such as Chronic
Obstructive Pulmonary Disease (COPD) or, non-allergic asthma.
Therefore, the genes involved in these phenotypes may also be
induced in all kinds of lung inflammations. To develop diagnostic
markers exclusively for “allergic asthma” it is necessary to iden-
tify upstream components of the molecular pathways initiated
immediately after allergen sensitization. Researchers can use these
biomarkers for screening and risk assessment before the disease
assumes severity by (i) identifying polymorphisms in wide pop-
ulation and (ii) correlating them with the alteration of signaling
pathways that ultimately lead to allergic asthma. Since application
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of single biomarker approach to asthma research may not be
realistic, newly identified biomarkers can be integrated in a multi-
dimensional way to strengthen the treatment. Our mini review is
focused on biomarker discovery by systemic approach using high-
throughput “OMICS” platforms including genomics, proteomics
and epigenetics and further some of them are well-studied in
low-throughput experiments. Application of systems biology as
a discipline provides a way to investigate the pathophysiology
of asthma by giving a closer look to the system components, its
dynamics and response to any kind of perturbation in the pop-
ulation level. Systemic approaches may emerge as a promising
strategy to zoom into the global mechanism and identify fea-
tures specific to asthma for developing better diagnostics and
therapeutics.
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APPENDIX

Table A1 | The list of pathways that play key role in asthma pathogenesis, as evident from the biomarkers identified by genomics, proteomics

and epigenomics approaches.

Name of the pathway Total Expanded of Overlap Percent Overlapping entities p-value (−logP)

entities entities overlap value

Adipocytokine signaling 52 780 13 1 ACSL3, IL13, IL9, IL4, IL2, IL10,
IFNA1, SOCS1, PON1, APOB,
SOCS3, SCD, NR1D1

0.001809 2.742605

ROS metabolism 43 74 3 4 PRDX6, SOD1, CYBB 0.004493 2.347436

ActivinR -> SMAD2/3
signaling

23 23 2 8 INHBA, INHA 0.010913 1.962064

Urea cycle and arginine
metabolism

86 110 3 2 NOS2A, ARG1, ARG2 0.013536 1.868503

Translation control 86 984 13 1 CCL11, EGFR, IL13, IL9, IL4, IL2,
IL10, CCL21, IFNA1, SOCS1,
VEGFC, SOCS3, GNB2

0.013549 1.86809

ActivinR/BMPR -> SMAD1/5/9
signaling

27 27 2 7 INHBA, INHA 0.014876 1.827505

Apoptosis regulation 69 613 9 1 IL13, IL9, IL4, TGFB1, IL2, IL10,
IFNA1, INHBA, INHA

0.022869 1.640747

Mast cell activation 64 529 8 1 PTGS2, IL13, IL9, IL4, IL2, IL10,
IFNA1, ALOX15

0.027347 1.563092

Skeletal myogenesis control 70 569 8 1 EGFR, TGFB1, SOCS1, INHBA,
CYBB, VEGFC, INHA, SOCS3

0.039923 1.39878

NK Cell Activation 59 523 7 1 IL13, IL9, IL4, IL2, IL10, IFNA1,
TYROBP

0.067085 1.173375

EDG2 -> ELK-SRF signaling 33 78 2 2 EGFR, GNB2 0.102033 0.991259

T cell activation 81 1100 11 1 SGPP1, PTGS2, IL13, IL9, IL4,
IL2, IL10, CTLA4, IFNA1,
ALOX15, CNN1

0.129288 0.888442

GFR -> FOXO3A signaling 7 94 2 2 EGFR, VEGFC 0.138723 0.857852

DopamineR2 ->
AP-1/CREB/ELK-SRF signaling

47 95 2 2 EGFR, GNB2 0.141106 0.850455

CholinergicRm ->
CREB/ELK-SRF signaling

41 107 2 1 EGFR, GNB2 0.170351 0.768655

GRM1/5 -> CREB signaling 39 110 2 1 EGFR, GNB2 0.177823 0.750012

Melanogenesis 51 682 7 1 INMT, CCL11, EGFR, CCL21,
PRDX6, VEGFC, GNB2

0.190612 0.71985

Adherens junction regulation 41 692 7 1 EGFR, TGFB1, INHBA, VEGFC,
CDH11, INHA, DSP

0.20054 0.697799

GFR -> NCOR2 signaling 27 130 2 1 EGFR, VEGFC 0.228743 0.640652

GFR ->
AP-1/CREB/CREBBP/ELK-
SRF/MYC
signaling

50 156 2 1 EGFR, VEGFC 0.296227 0.528375

The data was generated using Pathway studio 7.1, Ariadane Genomics, Rockville, MD, USA. The column names are: Name of the pathway; Total entities; expanded

entities; overlap; percent overlap; overlapping entities; p-value and −log10 p-value.
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Table A2 | The list of Gene Ontology Molecular Function (GOMF) terms that are significant in asthma pathogenesis, as evident from the

biomarkers identified by genomics, proteomics and epigenomics approaches.

Name of the GOMF Total Expanded Overlap Percent Overlapping entities p-value (−logP)

terms entities number overlap value

of entities

Cytokine activity 217 217 13 5 Ccl8, Cxcl15, CCL11, IL13, IL9, IL4, IL2, IL10,
CCL21, IFNA1, INHBA, INHA, SCGB3A1

3.30E–13 12.48204

Growth factor activity 198 198 8 4 IL9, IL4, TGFB1, IL2, INHBA, VEGFC, INHA,
TFF2

3.10E–07 6.509308

Arginase activity 2 2 2 100 ARG1, ARG2 1.08E–05 4.967132

Hematopoietin-
interferon-class
(D200-domain) cytokine
receptor binding

47 47 4 8 IL13, IL9, IL4, IFNA1 1.78E–05 4.750718

Chemokine activity 56 56 4 7 Ccl8, Cxcl15, CCL11, CCL21 3.57E–05 4.446842

Protein binding 7274 7274 41 0 Muc5ac, Serpinb3c, Apoa1, ACSL3, Igh-6,
IGHG1, PTGS2, EGFR, ORM1, IL13, IL4,
TGFB1, IL2, IL10, CTLA4, NOS2A, SERPINA1,
SOCS1, SOD1, ARG2, APOB, CYBB, TIMP4,
FCGR2B, POSTN, FOXP3, CDH11, INHA,
S100A9, SOCS3, TYROBP, VIM, TCF21, FBN1,
C4BPA, AATF, SCNN1G, HSPA1B, ITIH1,
LCN1, GNB2

7.37E–05 4.132694

Protein
heterodimerization
activity

268 268 6 2 EGFR, TGFB1, INHBA, APOB, CYBB, INHA 0.000265 3.576101

Metallopeptidase activity 178 178 5 2 CPA4, MMP12, ADAM33, ACE, ADAM8 0.000314 3.502791

Complement binding 9 9 2 22 CFB, C4BPA 0.000383 3.417369

Chitinase activity 11 11 2 18 Chi3l3, CHIA 0.000582 3.235176

High-density lipoprotein
binding

11 11 2 18 Apoa1, PON1 0.000582 3.235176

Hydrolase activity, acting
on carbon-nitrogen (but
not peptide) bonds, in
linear amidines

11 11 2 18 ARG1,ARG2 0.000582 3.235176

Endopeptidase inhibitor
activity

118 118 4 3 SERPINA1, SERPINB2, CSTA, ITIH1 0.000639 3.194323

Protein binding, bridging 60 60 3 5 DSP, CSTA, COL11A1 0.001039 2.983192

Peptidase activity 633 633 8 1 Slpi, CPA4, MMP12, SERPINA1, ADAM33,
ACE, CFB, ADAM8

0.001171 2.93128

Phospholipid binding 64 64 3 4 Apoa1, PON1, APOB 0.001254 2.901838

Cholesterol transporter
activity

16 16 2 12 Apoa1, APOB 0.001256 2.901021

Serine-type
endopeptidase inhibitor
activity

150 150 4 2 Serpinb3c, SERPINA1, SERPINB2, ITIH1 0.001558 2.807388

Antioxidant activity 20 20 2 10 PRDX6, SOD1 0.001972 2.705175

Antigen binding 79 79 3 3 Igh-2, Igh-6, IGHG1 0.002296 2.63899

The data was generated using Pathway studio 7.1, Ariadane Genomics, Rockville, MD, USA. The column names are: Name of the GOMF terms; Total entities;

expanded entities; overlap; percent overlap; overlapping entities; p-value and −log10 p-value.
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Table A3 | The list of Gene Ontology Biological Process (GOBP) terms that are significant in asthma pathogenesis, as evident from the

biomarkers identified by genomics, proteomics and epigenomics approaches.

Name of GOBP terms Total Expanded Overlap Percent Overlapping entities p-value (−logP)

entities number overlap value

of entities

Inflammatory response 293 15 5 5 Ccl8, Cxcl15, CCL11, PTGS2, ORM1,
IL13, IL9, IL4, TGFB1, IL10, NOS2A,
CCL21, CYBB, ALOX15, S100A9

4.54E–15 14.34325

Immune response 604 16 2 2 LILRA6, Ccl8, Cxcl15, IGHG1, CCL11,
IL13, IL9, IL4, IL2, IL10, CTLA4,
CCL21, FCGR2B, CFB, C4BPA, CHIA

1.24E–11 10.90786

Negative regulation of immune
response

14 4 28 28 TGFB1, CTLA4, FCGR2B, FOXP3 5.90E–08 7.229314

Negative regulation of
interferon-gamma biosynthetic
process

4 3 75 75 INHBA, FOXP3, INHA 8.79E–08 7.055796

Anti-apoptosis 198 8 4 4 IL2, IL10, SOD1, ALOX15, SOCS3,
SERPINB2, AATF, HSPA1B

9.69E–08 7.013485

Regulation of cell proliferation 135 7 5 5 PTGS2, EGFR, TGFB1, NOS2A,
ADAM33, INHA, SCGB3A1

1.18E–07 6.929752

Response to drug 295 9 3 3 Apoa1, PTGS2, MMP12, TGFB1,
SOCS1, SOD1, CYBB, TIMP4, SOCS3

1.62E–07 6.791126

Positive regulation of B cell
proliferation

23 4 17 17 Igh-6, IL13, IL4, IL2 5.12E–07 6.290996

Negative regulation of T cell
proliferation

26 4 15 15 TGFB1, IL10, CTLA4, FOXP3 8.58E–07 6.066354

Response to cytokine stimulus 77 5 6 6 PTGS2, SERPINA1, SOCS1, TIMP4,
SOCS3

2.73E–06 5.563052

Response to estradiol stimulus 79 5 6 6 PTGS2, TGFB1, ERPINA1, SOCS1,
SOCS3

3.11E–06 5.50781

Skeletal system development 147 6 4 4 TGFB1, INHBA, POSTN, CDH11,
INHA, FBN1

3.98E–06 5.400395

Positive regulation of epithelial
cell proliferation

44 4 9 9 EGFR, MMP12, TGFB1, VEGFC 7.50E–06 5.125108

Response to lipopolysaccharide 99 5 5 5 PTGS2, SERPINA1, SOCS1, TIMP4,
SOCS3

9.43E–06 5.025503

Organ regeneration 49 4 8 8 Apoa1, TGFB1, SOCS1, SOCS3 1.16E–05 4.936449

Cell–cell signaling 275 7 2 2 IL13, IL2, IL10, CCL21, INHBA, INHA,
S100A9

1.35E–05 4.869351

Response to hypoxia 184 6 3 3 TGFB1, NOS2A, SERPINA1, ACE,
SOCS3, SCNN1G

1.44E–05 4.842389

Positive regulation of
folliclE-stimulating hormone
secretion

3 2 66 66 INHBA, INHA 2.38E–05 4.62283

Positive regulation of regulatory
T cell differentiation

3 2 66 66 IL2, FOXP3 2.38E–05 4.62283

Response to external stimulus 23 3 13 13 INHBA, PON1, INHA 3.75E–05 4.426548

The data was generated using Pathway studio 7.1, Ariadane Genomics, Rockville, MD, USA. The column names are: Name of the GOBP terms; Total entities;

expanded entities; overlap; percent overlap; overlapping entities; p-value and −log10 p-value.
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