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INTRODUCTION

Gene-environment interaction (GEI) analysis can potentially enhance gene discovery for
common complex traits. However, genome-wide interaction analysis is computationally
intensive. Moreover, analysis of longitudinal data in families is much more challenging due
to the two sources of correlations arising from longitudinal measurements and family rela-
tionships. GWIS of longitudinal family data can be a computational bottleneck. Therefore,
we compared two methods for analysis of longitudinal family data: a methodologically
sound but computationally demanding method using the Kronecker model (KRC) and a
computationally more forgiving method using the hierarchical linear model (HLM). The KRC
model uses a Kronecker product of an unstructured matrix for correlations among repeated
measures (longitudinal) and a compound symmetry matrix for correlations within families
at a given visit. The HLM uses an autoregressive covariance matrix for correlations among
repeated measures and a random intercept for familial correlations. We compared the two
methods using the longitudinal Framingham heart study (FHS) SHARe data. Specifically,
we evaluated SNP-alcohol (amount of alcohol consumption) interaction effects on high
density lipoprotein cholesterol (HDLC). Keeping the prohibitive computational burden of
KRC in mind, we limited the analysis to chromosome 16, where preliminary cross-sectional
analysis yielded some interesting results. Our first important finding was that the HLM
provided very comparable results but was remarkably faster than the KRC, making HLM
the method of choice. Our second finding was that longitudinal analysis provided smaller
P-values, thus leading to more significant results, than cross-sectional analysis. This was
particularly pronounced in identifying GEls. We conclude that longitudinal analysis of GEls
is more powerful and that the HLM method is an optimal method of choice as compared
to the computationally (prohibitively) intensive KRC method.

Keywords: gene-environment interactions, longitudinal family data, Framingham heart study, interactions in family
data, HLM, SNP-alcohol interactions

networks underlying complex disease risk and enable “profiling”

The advent of genomewide association studies (GWAS) has
revolutionized the field by identifying hundreds of common
genetic variants associated with many common complex dis-
ease traits (http://www.genome.gov). However, an important and
sobering observation is that these identified loci have very subtle
effects, thus explaining only a small fraction of the heritability of
most complex traits (Manolio etal., 2009). It is increasingly rec-
ognized that the near-exclusive focus on main effects has become
a barrier to the identification of additional genes underlying these
disease traits. Greater emphasis is being placed in recent years
on gene—environment interaction (GEI) analyses (Aschard etal.,
2012). The identification of GEIs is important for many rea-
sons (Le Marchand and Wilkens, 2008; Thomas, 2010). GEIs
or more complex pathways involving multiple genes and envi-
ronments can explain part of the missing heritability (McCarthy
and Hirschhorn, 2008; Manolio etal., 2009; Eichler etal., 2010;
Visscher etal., 2012). They can further elucidate the biological

of individuals at highest risk for disease.

Longitudinal family studies have desirable properties for iden-
tifying GEIs by combining the features of repeated measures and
family studies. A conventional longitudinal study involves the
repeated evaluation of one or more measurable traits in a series
of unrelated individuals. Longitudinal data with interesting appli-
cations and examples are extensively described in several books
(Hand and Crowder, 1996; Verbeke and Molenberghs, 2000).
The repeated measurements help reduce error, increase statistical
power, and provide a means to study the pattern and determinants
of systematic changes in a phenotype of interest over time. For the
analysis of longitudinal data, linear mixed-modeling framework
is commonly used either with maximum likelihood estimation
(Laird and Ware, 1982) or with generalized estimating equations
(GEEs; Zeger etal., 1988; Zeger and Liang, 1992). In contrast, a
cross-sectional family study utilizes phenotypic similarities and
differences amongst close relatives to disentangle the genetic and
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environmental contributions to the trait under study (Khoury
and James, 1993). A longitudinal family study further increases
the power to resolve the genetic and environmental determinants
of traits associated with complex diseases and also to study the
corresponding determinants of change in such traits over time
(Burton etal., 2005).

However, analysis of longitudinal phenotypes in family data is
much more challenging due to two sources of correlations: corre-
lations across longitudinal measurements and correlations among
related individuals within families. Most approaches for longi-
tudinal family data are computationally demanding when many
subjects are involved, particularly when they need to be executed
a large number of times as in the analysis of GWAS data (Kerner
etal.,, 2009). Analysis of GEIs in longitudinal family data further
increases the computational burden. In this paper, we compared a
methodologically sound but computationally demanding method
using the Kronecker model (KRC) with an alternative but com-
putationally more forgiving method using the hierarchical linear
model (HLM).

MATERIALS AND METHODS

STUDY SAMPLE

In this study, we used the Framingham Heart Study (FHS) SNP
Health Association Resource (SHARe) data, as obtained through
the database of genotypes and phenotypes (dbGaPs). The FHS is
the oldest prospective longitudinal cohort study of cardiovascular
risk factors in the USA. To identify the factors that contribute to
cardiovascular disease, FHS began in 1948 with the recruitment
of an original cohort of 5,209 men and women who were 28—
62 years of age at entry (Dawber etal.,, 1951). Clinic examinations
took place approximately every 2 years. In 1971, a second genera-
tion of study participants, 5,124 children and spouses of children
of the original cohort were enrolled (Feinleib etal., 1975). Clinic
examinations took place approximately every 4 years. Enrollment
of the third generation cohort of 4,095 children of offspring cohort
participants began in 2002 (Splansky etal., 2007). This study
obtained informed consent from participants and approval from
the appropriate institutional review boards.

GENOTYPE DATA

Genotype data from the FHS SHARe project include
approximately 550,000 SNPs that were genotyped using
AffymetrixGeneChip® Human Mapping 500 k Array Set and the
50 k Human Gene Focused Panel. Genotyping involved 10,775
samples (some duplicates) from the three generations of partici-
pants (including over 900 pedigrees). Genotype calls were made
with the BRLMM algorithm. The genotyping data for the 10,043
samples from 9,354 participants that passed the Affymetrix crite-
ria were additionally checked for sex consistency and consistency
with family structure, resulting in genotyping data for 9,274 par-
ticipants in FHS SHARe. More detailed information is available
elsewhere (Cupples et al., 2009).

STATISTICAL ANALYSES
Longitudinal family studies have more complex phenotypic corre-
lation structure than cross-sectional family studies or longitudinal

studies of unrelated individuals, as phenotypes are repeatedly mea-
sured among related individuals. Repeated measurements for the
same individual are temporally correlated. Phenotypes on related
individuals at each time are subject to familial correlations due
to shared genetic and environmental effects. Furthermore, phe-
notypes of related individuals at different time points are also
correlated due to both factors.

To account for these sources of correlation, we compare two
approaches that belong to the mixed modeling framework (Laird
and Ware, 1982), one known for its theoretical soundness and
the other known for its computational speed. Our first approach
models the full variance—covariance of a phenotypic vector as
a Kronecker (KRC) product of two variance-covariance matri-
ces: Zvisit®9famﬂy, where Xy is the covariance matrix across
visits and Qpmiy is the covariance matrix across family mem-
bers. Because this methodology has a desirable property that two
sources of correlation independently contribute to the overall
covariance structure (Galecki, 1994), the KRC is a methodolog-
ically sound approach for analysis of longitudinal family data.
However, the KRC belongs to the curved exponential family,
which makes estimation and testing even more computation-
ally demanding than the unstructured covariance matrix (Roy,
2008). Our second approach is a three-level HLM. Multilevel
models are appropriate for data that are organized at more
than one level (i.e., nested data). The HLM is also called a
mixed model with nested random effects (Berry etal., 2007).
We assume that repeated measurements (at the lowest level 1)
are nested within individuals (at the next level 2), who are
further clustered within families (at the highest level 3). Due
to this nested structure, the HLM is computationally more
feasible.

For both KRC and HLM approaches in the analysis of lon-
gitudinal family data, we use SAS PROC MIXED (Littell, 2006).
For a Kronecker product covariance, SAS provides three options:
unstructured with compound symmetry (UN@CS), unstruc-
tured with order 1 autoregressive (UN@AR(1)), and unstructured
with unstructured (UN@UN). In our KRC analysis, we use an
unstructured matrix for longitudinal correlation and a compound
symmetry matrix for familial correlations. In our HLM approach,
we use an autoregressive-moving-average (1,1) covariance matrix
for longitudinal correlations and a random intercept for familial
correlations(Littell, 2006). When there is no longitudinal data (i.e.,
a cross-sectional dataset within a single visit), the KRC model with
a compound symmetry matrix for familial correlation is mathe-
matically identical to the HLM approach with a random intercept
for familial correlations.

To identify GEIs, we consider the following three models for
the expected response trait (Y):

Model 1 :E[Y] = a + B C + BeE,
Model 2 :E[Y] = a + B.C + B E + B¢ G, and
Model 3 :E[Y] = o + B C + BeE + By G + Bge GE,
where B. is the common covariate effect, B is the environ-

mental main effect, By is the genetic main effect, and By is
the GEI effect. For both KRC and HLM approaches described
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previously, we obtain maximum likelihood (by running SAS
version 9.3 PROC MIXED with METHOD = ML) separately
using each of the three mean models. Instead of the Satterth-
waite and Kenward—Roger degrees of freedom methods, we use
EMPICAL option for the estimated variance—covariance matrix
of the fixed-effects parameters by using the asymptotically con-
sistent estimator (Huber, 1967; White, 1980; Liang and Zeger,
1986). To test the genetic main effect (Ho: By = 0), we use
the likelihood ratio test based on model 1 and 2, which fol-
lows a chi-squared distribution with 1 degrees of freedom (df)
under the null hypothesis. To test the GEI effect (Ho: Bge = 0),
we use the likelihood ratio test based on model 2 and 3 where
both models include the genetic main effect. Finally to jointly
test genetic main and GEI effects (Ho: Bg = Bge = 0) proposed
by Kraft etal. (2007), we use the likelihood ratio test based on
model 1 and 3, which follows a chi-squared distribution with
2 df under the null hypothesis. The SAS code is available upon
request.

To compare the two methods of analysis and to further investi-
gate whether longitudinal analysis enhances identification of GEIs,
we create a dataset that optimize the use of the “original” cohort
that was measured 27 times and the “offspring” cohort that was
measured seven times (as of when we obtained the FHS SHARe
data from dbGaP). We create a dataset that include all seven off-
spring visits and the corresponding seven visits of the original
cohort (matched by the closest visit dates). In addition, for practi-
cal reasons related to missing data and time required to complete
the analyses, we reduce our dataset to include the most recent
five of these seven visits, effectively reducing our dataset to multi-
generation families measured at 5-visits. For this investigation,
we consider three sets of analyses: 1-visit data (the most recent
visit), 3-visit data (by excluding alternate visits), and all 5-visit
data. We analyze high density lipoprotein cholesterol (HDLC)
concentration in blood serum. We use amount of alcohol (ounces)
consumed per week as an interacting covariate. In addition, age,
sex, body mass index (BMI), and use of anti-lipid medications
are used as common covariates in the analysis of all three datasets
described above.

Our analysis is restricted to chromosome 16, where cross-
sectional analysis based on a single visit yielded significant results.
Out of 15,259 SNPs on chromosome 16, we exclude SNPs that

have Hardy—Weinberg equilibrium (HWE) P-value less than 10~°,
resulting in 14,026 SNPs. HWE P-values are computed based on
founders only using PLINK (Purcell et al., 2007), as recommended
for family studies. Due to a very long computational time, analysis
with KRC for the 5-visit data set is further restricted to a subset of
67 SNPs.

RESULTS

Table 1 presents select characteristics of the longitudinal family
data that were used for the analysis. Sample size varied across the
three datasets used for the analysis: 3,012 subjects for 1-visit, 3,946
unique subjects for 3-visits and 4,190 unique subjects for 5-visits.
Our analysis dealt with partially missing longitudinal phenotypes,
as indicated by the varying sample sizes. The characteristics were
consistent across the three datasets. One notable exception was the
use of anti-lipid medication, which was 21% in the 1-visit dataset
and about 9% in the 3-visit and 5-visits datasets. Given that the
1-visit data corresponded to the last visit, this is expected because
a medication use in longitudinal studies tends to increase over
time.

Results were compared between Kronecker (KRC) and HLM
approaches for all three hypothesis tests (1 df genetic main effect,
1 df interaction effect in the presence of the genetic main effect,
and 2 df joint tests of main and interaction effects) and also for all
three data sets. In the 1-visit data, we empirically confirmed that
our KRC model provided identical results as our HLM approach
for all three hypothesis tests. As shown in Figure 1, the results
[—log(P) values] between KRC and HLM approaches correlated
very well for all three tests and for both 3-visit and 5-visit data,
providing correlation of over 0.96 in all 6-cases.

Our analysis was run using a cluster of multiple Linux comput-
ers. However, to compare CPU time of the two approaches in the
three datasets, a subset of analysis with the two approaches was
repeated using the identical Linux computer. CPU time with the
HLM approach was averaged over 1,500 SNPs for all three datasets.
CPU time with the KRC approach was averaged over 1,500, 77, and
6 SNPs for 1-, 3-, and 5-visit data, respectively. As shown in Table 2,
analysis with the HLM approach was faster than analysis with the
KRC approach for all three datasets. This advantage in CPU time
was increasingly more pronounced as the data included more vis-
its. Under the identical Linux computer, HLM was 85 times faster

Table 1 | Descriptive statistics of the longitudinal family data used in the analysis.

Characteristics 1-visit 3-visits 5-visits
Unique individuals, n 3,012 3,946 4,190
Observed data, n 3,012 9,620 16,480

Male, n (%) 1,397 (46.38%) 4,496 (46.74%) 7703 (46.74%)
Anti-lipids med use, n (%) 624 (20.72%) 921 (9.57%) 1,462 (8.87%)
Age, years 60.75 + 9.25 55.53 + 11.68 55.89 + 11.64
BMI, kg/m? 28.16 £ 5.31 27.26 £ 5.01 2728 + 4.99
Alcohol, oz./week 2.61+£3.79 281 +4.1 2.73 £4.06
HDLC, mg/dL 53.74 £ 1705 5157 £ 15.75 51.05 £+ 15.65

www.frontiersin.org

January 2014 | Volume 5 | Article 9| 3


http://www.frontiersin.org/
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

Sung etal.

Interactions for longitudinal family data

A G Main: 3 Visits B GXE Interaction: 3 Visits C Joint G and GXE: 3 Visits
o S <
ey
- o
o o o
o o o O 0% 0
x x o 14 o
¥4 ¥4 o % X 6° )
£ (4 £
g 6 o ° S « 8o °
o ¥ 0ol o o o °
g ) M 8 0§
T T o T
o 4 cor=0.97 cor=0.96 o £ cor=0.97
L= O (=
0 2 4 [ 2 3 4 5 [ 2 4 6
-log P from HLM ~log P from HLM ~log P from HLM
D G Main: 5 Visits E GXE Interaction: 5 Visits F Joint G and GXxE: 5 Visits
a0
o
o (o) 8
o ©
= & o o°
O O O
£ ¢ 5 & ¢ > ®
& § - 5 08°
E & o E o
o <« o o a &,
g ° 8 s ° 8 00
I [ 1
3]
— &P
o cor=0.99 o oébc @ cor=0.98 o .0 cor=0.98
e° o)
o o
o
k= ©- (=g °
[} 2 4 [ 8 [] 2 4 6 [ 0 2 4 [ 8
-log P from HLM —log P from HLM -log P from HLM
FIGURE 1| —log(P) values using the HLM (x-axis) versus —log(P) effects, B for GEI effects, and C for joint 2 df genetic and GEI effects).
values using the KRC (y-axis) for 3-visit and 5-visit data sets. Similarly, the 2nd row corresponds to the 5-visits results (D for genetic
Results from both methods were identical for 1-visit data (not shown). main effects, E for GEI effects, and F for joint 2 df genetic and GEI
The 1st row corresponds to the 3-visit results (A for genetic main effects).

for the 3-visit data (1.42 sec vs. 1.43 min per SNP) and 1,000 times
faster for the 5-visit data (2.5 sec vs. 42.3 min per SNP).

To investigate whether longitudinal analysis enhances statistical
significance, we examined the —log(P) values using longitudinal
data (with 3-visit and 5-visit) and those using one visit only. We
found that either longitudinal analysis (3-visit or 5-visit) provided
smaller P-values, thus leading to more significant results, than the
cross-sectional analysis (with 1-visit). In particular, as shown in
Table 3, the gain in statistical significance was particularly pro-
nounced for identifying GEIs. For example, the number of SNPs
with P-value <1 x 10> for identifying GEIs was 8, 10, 31 from 1-,
3-, and 5-visit data, respectively. Similar pattern was also found for
jointly identifying the main and interaction effects. Figure 2 shows
results from the 1-visit data set and those from the 5-visit data set.
In Figure 2, more SNPs are above the diagonal line: 53, 54, and
55% of SNPs had smaller P-values from the 5-visit data for identi-
fying main effect, interaction effect, and joint effects, respectively.
Similar pattern was also found between results from the 3-visit
data and those from the 1-visit data (not shown; available upon
request).

DISCUSSION

Complex traits such as blood pressure and cholesterol vary with
age and depend on both genetic and environmental factors. For
such traits, longitudinal studies are valuable to disentangle genetic

and environmental effects. Longitudinal studies also enable the
prospective measurement of time-varying factors that are not
included in typical genetic studies. The use of longitudinal data in
studies of GEls is particularly appealing because some of the power
lost in the analysis of GEIs may be recaptured by the use of longitu-
dinal data. As time-varying covariates are measured with improved
precision in longitudinal studies, longitudinal data analysis can
enhance the identification of GEIs. With additional features of
family studies that utilize phenotypic similarities and differences
among relatives to disentangle the genetic and environmental risk
factors, longitudinal family studies can further increase the power
to resolve the genetic and environmental determinants of traits
associated with complex diseases.

Table 2 | CPU time for running analysis with three mean models at
each SNP.

Model 1-visit 3-visits 5-visits
Kronecker model 0.55s 143 m 42.33 m
Hierarchical linear model 0.41s 142's 254 s

Hierarchical linear model runs were averaged over 1,600 SNPs. KRC run times
were averaged over 1,500, 77 and 6 SNPs for 1, 3, and 5 visits, respectively.
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Table 3 | Number of SNPs with P-values below thresholds.

Genetic main effect

Gene-environment interaction effect

Joint main and interaction

1-visit 3-visits 5 visits 1-visit 3-visits 5-visits 1-visit 3-visits 5-visits
P<1x105 0 1 1 10 31 9 10 26
P<1x106 0 1 1 0 16 3 1 15
P<1x1077 0 1 1 0 6 0 1 4
A G Main B GXE Interaction (o] Joint G and GxE

=logP from 5 visits
~logP from 5 visits

~logP from 5 visits

—logP from 1 visit

—logP from 1 visit

FIGURE 2 | More visits are better for identifying interactions. The x-axis shows —log(P) values using the 1-visit data set, and the y-axis shows —log(P)
values using the 5-visit data set. More SNPs (53, 54, and 55% of SNPs in A-C, respectively) are above the diagonal line.

—logP from 1 visit

However, analysis of longitudinal family data is known to be
more challenging due to two sources of correlations arising from
repeated measures and family relationships. One may use two-step
modeling, in which the repeated measurements are first reduced to
a single summary measure per subject by applying some form of
data reduction procedure. For example, either quantitative change
in a phenotype between the first and last measurements or a slope
from a regression model for each individual can be used as a sum-
mary measure (Gee etal., 2003). These summary measures may
then be analyzed with a standard method for cross-sectional family
data. However, such two-step modeling has been shown to be less
efficient than single joint modeling that makes use of all the data
simultaneously (Gauderman etal., 2003). Moreover, unlike joint
modeling, most two-step modeling approaches fail to properly
account for uncertainty in the value of the summary measures
when fitting the second step. The linear mixed-effect modeling
framework that we used in this paper makes use of all the data
simultaneously and therefore is preferable (Laird and Ware, 1982).

In this paper, we evaluated two linear mixed-effect models
for analysis of longitudinal family data. We compared P-values
using two models, as they are the most commonly used mea-
sure for the association analysis in GWAS setting. Our P-values
are based on the likelihood ratio tests for the fixed effects that
correspond to the genetic main and GEI effects. As suggested
by the reviewer, we note that the mixed-effect models are also
widely used in quantitative genetics research (Lynch and Walsh,
1998; Mrode and Thompson, 2005). Both heritability estimation

(Hopper and Mathews, 1982) and variance component analysis
(Amos, 1994) in human genetics research are based on a lin-
ear mixed-model that includes a random-effect accounting for
unobserved polygenic effects. The restricted maximum likeli-
hood (REML) approach is also commonly used for the estimation
of variance components (random effect parameters; Patterson
and Thompson, 1971). In addition to SAS, packages such as
ASREML (Gilmour etal., 1995) and BLUPf90 (Misztal, 2008) can
be used for the REML estimation of the random effect param-
eters. Also using linear mixed model and the REML approach,
the GCTA software has been recently developed to estimate trait
variation with GWAS data in order to address the “missing her-
itability” problem (Yang etal, 2011). A more comprehensive
investigation using these packages for the GEI analysis of longitu-
dinal family data would be valuable for improving computational
efficiency.

There are several limitations in our work. First, the correlation
structure of our Kronecker (KRC) modeling was an unstructured
matrix for longitudinal correlation and a compound symmetry
matrix for familial correlations (UN@CS). A more appropriate
model would be order 1 autoregressive for longitudinal correlation
and a compound symmetry for familial correlations [AR(1)@CS].
Because SAS does not provide this option, other packages includ-
ing those described in the previous paragraph may be more flexible
to evaluate various models. Second, we used an autoregressive—
moving—average (1,1) covariance matrix for longitudinal correla-
tions and a random intercept for familial correlations in our HLM
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approach. We chose this because, under no longitudinal data, the
KRC model with a compound symmetry matrix for familial cor-
relation is mathematically identical to the HLM approach with
a random intercept for familial correlations. Instead of a ran-
dom intercept, use of kinship matrix may be a better approach to
account for familial correlation. Third, our investigation is entirely
practically driven. We implicitly assumed that the KRC model
is the appropriate model due to its theoretical soundness and
evaluated whether the computationally faster HLM approach pro-
vides comparable results. Because of this, model selection criteria
such as AIC or BIC have not been used to evaluate the differ-
ences in model performances. The “sandwich” estimate option
that we used for the variance—covariance matrix of the fixed-effects
parameters is known to provide robust and asymptotically consis-
tent estimator under miss-specified models (Huber, 1967; White,
1980; Liang and Zeger, 1986). However, as the reviewer noted,
the estimates of fixed effects are still a function of the estimated
variance components and may change with the random effects
specification.

This study provided empirical findings that longitudinal anal-
ysis is more powerful and that the HLM is an optimal method
of choice as compared to the computationally more intensive
Kronecker (KRC) modeling. Our previous work (Shi etal., 2009)
presented a proof of concept that the longitudinal approach using
HLM can be more powerful than a cross-sectional analysis. The
alternative KRC modeling is computationally very intensive. To
the best of our knowledge, this is the first paper that provides
systematic comparison between HLM and KRC approaches. Our
most important finding was that the HLM provided very compa-
rable results but remarkably faster than the KRC, making HLM the
method of choice. Our second finding was that longitudinal anal-
ysis provided smaller P-values, thus leading to more significant
results, than the cross-sectional analysis. The gain in statistical sig-
nificance from longitudinal analysis may be due to the increased
number of (repeated) observations. However, the increased sam-
ple size alone does not explain why the significance gain was more
pronounced for identifying GEIs. GEIs are more difficult to iden-
tify and prone to have large standard errors; this is exactly where
longitudinal data appear to be more powerful because the repeated
measurements help reduce error, thereby increasing statistical
power. As our findings were based on an empirical evaluation
using data on a single chromosome, they may not be generalized
to all situations. As greater emphasis is being placed in recent
years on GEI analyses (Aschard etal., 2012), a more comprehen-
sive investigation would strengthen our findings in this timely
topic.
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