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In this study, we infer the breast cancer gene regulatory network from gene expression
data. This network is obtained from the application of the BC3Net inference algorithm
to a large-scale gene expression data set consisting of 351 patient samples. In order
to elucidate the functional relevance of the inferred network, we are performing a
Gene Ontology (GO) analysis for its structural components. Our analysis reveals that
most significant GO-terms we find for the breast cancer network represent functional
modules of biological processes that are described by known cancer hallmarks, including
translation, immune response, cell cycle, organelle fission, mitosis, cell adhesion, RNA
processing, RNA splicing and response to wounding. Furthermore, by using a curated
list of census cancer genes, we find an enrichment in these functional modules. Finally,
we study cooperative effects of chromosomes based on information of interacting genes
in the beast cancer network. We find that chromosome 21 is most coactive with other
chromosomes. To our knowledge this is the first study investigating the genome-scale
breast cancer network.
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1. INTRODUCTION
Breast cancer is among the most common cancers with world-
wide more than 1,300,000 cases each year (Cancer and Atlas,
2012). Among these cases, ductal carcinoma, a particular sub-
type of breast cancer, represents up to 25% of all newly diagnosed
patients in the United States (Wickerham and Julian, 2013). In
general, breast cancer is derived from epithelial cells that develop
neoplasia in breast tissue. In the malignant case these cells are
invasive and can become metastatic. It is known that the major
cancer hallmarks, common to all mammalian cancer forms, are
related to cell differentiation, proliferation and cell apoptosis pro-
cesses that are associated to the deregulation of the cell cycle and
impairment of DNA repair processes (Hanahan and Weinberg,
2000, 2011a). This makes cancer a disease of pathways (Hanahan
and Weinberg, 2000). Unfortunately, the underlying molecular
interactions of these processes are to-date not well understood
and the corresponding network of the mechanistic interplay and
physical interactions between individual genes, their products,
proteins and metabolites is underexplored. A reason for this lack
of knowledge is due to the fact that most pathways do not have
a chain-like structure, but are complex connected to regulate
particular cellular processes and responses. This makes cancer a
complex disease, difficult to study as it can not be traced back
to an individual component, e.g., a protein in the network. For

this reason, cancer genes need to be understood as being part of a
complex network and the malfunction of a process may be caused
by inadequate interactions (Kitano, 2004). Although major efforts
have been made to identify important interaction partners in var-
ious cancer types (Basso et al., 2005; Madhamshettiwar et al.,
2012; de Matos Simoes et al., 2013a), the actual interaction
structure of genome-scale networks is far from being known.

In general, genes involved in the development and progression
of cancer represent a broad class of proteins such as transcrip-
tion factors, chromatin remodelers, growth factors (e.g., EGFR),
growth factor receptors (e.g., HER2/neu), signal transducers, reg-
ulators of apoptosis and DNA repair genes (Croce, 2008). The
individual key players of cancer progression are classified as (A)
oncogenes, (B) tumor suppressor genes and (C) genomic stabil-
ity genes (Vogelstein and Kinzler, 2004). These genes are playing
a key role in the regulation of the cell-cycle, proliferation and
cell differentiation, and in the regulation of apoptosis (Croce,
2008). Specifically, oncogenes accumulate particular mutations
that lead to a constitutive structural active form of the protein.
In contrast, specific mutations in tumor suppressor genes (e.g.,
APC) lead to an inactivation or decreased activity of the protein.
Stability genes include proteins involved in DNA repair, mitotic
recombination and chromosome segregation (e.g., BRCA1). It
is important to note that cancer genes are mostly identified
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by their genetic alterations such as germline or somatic muta-
tions, which are sequenced from tumor tissues (Sjoblom et al.,
2006). Specifically, mutations in cancer genes can be somatic
or germlime genomic single nucleotide substitutions, deletions,
insertions (Futreal et al., 2004) or mutations of larger DNA
segments that are amplified, translocated, deleted or inserted
(Mitelman, 2000).

Due to complex nature of breast cancer, we are pursuing in this
paper a systems approach (Alon, 2006; Hernandez-Lemus, 2013)
based on gene regulatory networks. Specifically, a gene regulatory
network (GRN) is a description of the complex molecular interac-
tions between individual genes and their products (Hecker et al.,
2009; Emmert-Streib et al., 2012a,b). Statistically, gene regulatory
networks are inferred from large-scale gene expression data from
a variety of cancer tissue samples and many contemporary infer-
ence methods are based on estimates of mutual information (Li,
1990; Steuer et al., 2002; Meyer et al., 2008; Emmert-Streib et al.,
2012a). Generally, biological networks have been analyzed struc-
turally by using entropy-based network measures and other quan-
tities which characterize the underlying graph topology uniquely
(Mueller et al., 2011; Dehmer et al., 2012).

The major goal of this paper is to use the BC3NET method
(de Matos Simoes and Emmert-Streib, 2012) for inferring a
breast cancer gene regulatory network. Specifically, we are
using 351 breast cancer samples from the Expression Project
for Oncology (expO) (http://www.intgen.org/expo/) microarray
database maintained by the International Genomics Consortium
(IGC). For this breast cancer gene regulatory network, we per-
form a systems analysis with respect to its functional and struc-
tural features. Furthermore, we study the role of known general
cancer genes and specific breast cancer genes in the breast can-
cer network. Finally, we investigate cooperative effects between
chromosomes by relating interactions back to their chromosomal
positions.

This paper is organized as follows: In the next section, we
describe all methods and data we are using for our analysis. In
the results section, we present our findings and in the section
“Discussion” we interpret our results. The paper finishes with the
section “Conclusions” with a summary.

1.1. AUTHOR SUMMARY
What types of biological networks have been inferred in the
paper? We use gene expression data from breast cancer samples
and infer a gene regulatory network (GRN).
How was the quality/utility of the inferred networks assessed?
We assess the biological validity of the inferred GRN by using the
Gene Ontology database.
How were these networks validated? The GRN is analyzed com-
putationally and statistical hypotheses testing is employed to
test various hypotheses about the network structure and the
biological function of the investigated GRN of breast cancer.

2. METHODS
2.1. BREAST CANCER GENE EXPRESSION DATA
For our study, we use 351 breast cancer tissue samples from
the Expression Project for Oncology (expO) (http://www.intgen.

org/expo/) microarray database maintained by the International

Genomics Consortium (IGC). ExpO provides breast cancer sam-
ples from histologically determined tumors of various types, see
Table 1 for an overview, whereas the majority of samples (over
80%) is from ductual carcinoma across various grades (1, 2,
and 3) and stages (1, 2A, 2B, 3A, 3B, 3C, and 4). The major-
ity of patients are in the age group between 40 and 70 (238/351
patients). Most of the patient samples have a caucasian ethnic
background (314/351 samples). A total of 136/351 patients were
without family history of cancer and 213/351 were with a fam-
ily history of cancer (two samples have unknown family history
of cancer). 346 samples are from female and 5 from male gender.
The 351 breast cancer Affymetrix hgu133plus2 microarray sam-
ples in CEL format were obtained from the GEO NCBI repository
(accession number GSE2109) (Edgar et al., 2002).

2.1.1. Preprocessing and normalization
We normalize the microarray samples for the selected tissue types
using RMA and quantile normalization (Irizarry et al., 2003)
using log2 expression intensities for each probe set. Because a
gene can be represented by more than one probe sets, we use
the median expression value as summary statistic for different
probe sets. Entrez gene ID to Affymetrix probe set annotation is
obtained from the “hgu133plus2.db” R package. If a probe sets is
unmapped, we exclude it from our analysis. After these prepro-
cessing steps, we have 19, 738 genes and 351 samples we use for
our analysis.

2.2. BC3NET
In order to infer the gene regulatory network for the gene expres-
sion data from breast cancer, we use the BC3NET algorithm

Table 1 | Overview of histological annotations of the 351 samples of

the expO breast cancer gene expression compendium.

Histology description Samples

Ductal carcinoma 270

Lobular carcinoma 39

Invasive ductal carcinoma 7

Mucinous carcinoma 6

Ductal and lobular carcinoma 4

Metaplastic carcinoma 3

Metaplastic squamous carcinoma 3

Cribiform carcinoma 2

Inflammatory carcinoma 2

Intraductal carcinoma 2

Intraductal papillary carcinoma 2

Medullary carcinoma, NOS 2

Adenoid cystic carcinoma 1

Colloid adenocarcinoma 1

Ductal carcinoma in situ (DCIS) with focal comedo carcinoma 1

Intracystic carcinoma 1

Invasive ductal carcinoma, mucinous type 1

Lobular carcinoma in situ 1

Papillary carcinoma 1

Papillary carcinoma (predominantly micropapillary pattern) 1

Unknown 1
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(de Matos Simoes and Emmert-Streib, 2012) to infer a mutual
information based gene regulatory network. In the following, we
denote this network briefly as GBC3Net. The gene regulatory net-
work GBC3Net is inferred from a bootstrap ensemble generated
from a single gene expression dataset D. In the first step of the
procedure mutual information values among all gene pairs are
estimated using the Pearson estimator. In the second step, for each
gene at most one gene is selected for each of the p genes in a given
dataset to contribute at most one edge to the inferred network. In
overall p different null hypotheses for mutual independency are
tested. In the third step we control the type one error by applying
a Bonferroni multiple testing procedure. This results in a network
Gb

k that is inferred for each k of 100 Bootstrap datasets. For each

generated dataset in the ensemble, Db
k, a network, Gb

k, is inferred

using C3NET (Altay and Emmert-Streib, 2010). From {Gb
k}B

k = 1
an aggregated network Gb

w is obtained whose edges are used as test
statistics to obtain the final network G. The test statistic for each
edge is used for a binomial test to test for significance of the con-
nection between gene pairs BC3NET. If a connection between a
gene pair is statistically significant (α ≤ 0.05) they are connected
by and edge, otherwise there is no connection.

2.3. CANCER GENE CENSUS
We use the complete list of the Cancer Gene Census
(CGC) (Futreal et al., 2004) (Version 2011 − 03 − 22, Table_
1_full_2011 − 03 − 22) (http://www.sanger.ac.uk/genetics/CGP/
Census/). The CGC list comprises a total of 457 cancer genes.
From these 457 genes, 435 are present in the expO breast cancer
gene expression data set. The manually curated CGC list contains
genes reported in the literature having cancer associated somatic
or germline non-synonymous substitutions, insertions and dele-
tions in coding regions or splice sites and genes affected by chro-
mosomal rearrangements or copy number variations (Futreal
et al., 2004).

2.4. DEGREE DISTRIBUTION
In order to assess the global connectivity of the inferred breast
cancer network we estimate its degree distribution for a power-
law distribution (Barabási and Albert, 1999; Newman, 2005). The
degree distribution of a power-law follows

P(k) ∼ k−α (1)

whereas α is the exponent of the power-law distribution.

2.5. GPEA: GENE PAIR ENRICHMENT ANALYSIS
In order to test the enrichment of Gene Ontology (GO)-terms in
the inferred breast cancer network, we are applying a hypergeo-
metric test for edges (gene pairs), instead of genes. For this reason,
this analysis is called gene pair enrichment analysis (GPEA)
(de Matos Simoes and Emmert-Streib, 2012; de Matos Simoes
et al., 2013b).

For p genes there is a total of N = p(p − 1)/2 different gene
pairs. If there are pGO genes for a particular GO-term then
the total number of gene pairs for this GO-term is mGO =
pGO(pGO − 1)/2. Suppose the inferred breast cancer network
contains n edges, of which k are edges are among genes from

the given GO-term. Then a p-value for the enrichment of this
GO-term can be calculated from a hypergeometric distribu-
tion by

p(k|GO − term) =
mGO∑

i = k

P(X = i|GO − term)

=
mGO∑

i = k

(mGO
i

)(N−mGO
n−i

)
(N

n

) (2)

Here the p-value gives an estimate for the probability to
observe k or more edges between genes from the given
GO-term. We access the GO annotation for entrez iden-
tifiers from the Bioconductor (Gentleman et al., 2004)
annotation packages org.Hs.eg.db (v2.9.0) and GO.db
(v2.9.0).

3. RESULTS
3.1. BREAST CANCER GENE REGULATORY NETWORK
Using the expO data set and the BC3NET algorithm, we infer a
breast cancer gene regulatory network (GRN). In the following,
we denote this network briefly as GBC3Net. This regulatory net-
work consists of 19,738 genes and contains 180,171 interactions
(edges) among these genes. With the exception of 15 genes the
overall network is connected, i.e., we can always find a path that
connects a pair of genes with each other. Technically, this means
that the giant connected component (GCC) (Dorogovtesev and
Mendes, 2003) of our breast cancer GRN has a size of 19,723
genes. For this network, we find an average shortest path length
of 4.11 and its edge density is ε = 9.2 · 10−4. Here we measure a
shortest path by means of the Dijkstra distance (Dijkstra, 1959).
Furthermore, we find the degree distribution of the network to
follow a power law distribution with an exponent of α = 3.48.
This indicates that the resulting network is a scale-free network
(Barabási and Albert, 1999) as found for many different types
of biological networks (Bornholdt and Schuster, 2003; van Noort
et al., 2004; Albert, 2005; Basso et al., 2005).

3.2. FUNCTIONAL ANALYSIS OF BIOLOGICAL PROCESSES USING GPEA
In order to evaluate the inferred breast cancer GRN bio-
logically, we use the GO database (Ashburner et al., 2000).
Specifically, we evaluate our network based on functional knowl-
edge about genes that are involved in similar biological pro-
cesses. We are interested to identify which functional modules
are most prominently represented in our inferred breast can-
cer network under the assumption that functionally related
genes are likely to interact with each other. Furthermore, we
want to identify which known cancer genes are represented
(enriched) in those functional modules. This will shed light on
the role and importance of cancer genes in the breast cancer
network.

We conduct this functional analysis of the breast cancer net-
work by using the GPEA (gene pair enrichment analysis; see
“Methods” section) method. The results of this analysis are shown
in Table 2. Briefly, a GPEA analysis identifies GO-terms with an
enriched number of interactions among genes from the same
GO category. We correct for multiple testing using a Bonferroni
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Table 2 | GPEA analysis of the breast cancer gene regulatory network for GO biological processes.

GOID GO term Size Edges p-value CG

GO:0000278 Mitotic cell cycle 776 1031 2.3e-260 54/+
GO:0006414 Translational elongation 108 218 6.7e-259 1

GO:0022403 Cell cycle phase 853 1142 1.1e-257 60/+
GO:0006415 Translational termination 91 191 3.5e-244 1

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 105 195 9.1e-227 2

GO:0045047 Protein targeting to ER 107 196 3.6e-225 2

GO:0072599 Establishment of protein localization to endoplasmic reticulum 108 196 1.4e-223 2

GO:0006613 Cotranslational protein targeting to membrane 107 195 1.4e-223 2

GO:0000184 Nuclear-transcribed mRNA catabolic process, non-sense-mediated decay 118 198 1.1e-211 2

GO:0070972 Protein localization to endoplasmic reticulum 121 197 6.2e-206 2

GO:0006413 Translational initiation 153 226 1.0e-204 4

GO:0000087 M phase of mitotic cell cycle 374 415 2.3e-182 20/+
GO:0000280 Nuclear division 363 391 1.0e-171 20/+
GO:0007067 Mitosis 363 391 1.0e-171 20/+
GO:0000279 M phase 537 573 1.7e-171 33/+
GO:0006612 Protein targeting to membrane 154 200 1.1e-169 4

GO:0000956 Nuclear-transcribed mRNA catabolic process 171 212 1.0e-166 7

GO:0048285 Organelle fission 388 409 1.6e-166 20/+
GO:0019080 Viral genome expression 152 193 6.4e-163 10/+
GO:0019083 Viral transcription 152 193 6.4e-163 10/+
GO:0043624 Cellular protein complex disassembly 157 196 1.8e-161 2

GO:0043241 Protein complex disassembly 162 197 1.3e-157 2

GO:0006402 mRNA catabolic process 183 213 4.3e-156 7

GO:0032984 Macromolecular complex disassembly 183 201 1.8e-142 7

GO:0006401 RNA catabolic process 210 218 1.1e-137 7

GO:0072594 Establishment of protein localization to organelle 212 213 6.1e-131 4

GO:0019058 Viral infectious cycle 228 218 1.4e-123 14/+
GO:0051301 Cell division 480 419 1.3e-112 35/+
GO:0016071 mRNA metabolic process 614 544 1.3e-107 21/+
GO:0006412 Translation 469 376 2.3e-93 16/+
GO:0002682 Regulation of immune system process 893 827 7.1e-91 83/+
GO:0022411 Cellular component disassembly 295 229 8.5e-90 12/+
GO:0001775 Cell activation 763 663 6.4e-88 74/+
GO:0046649 Lymphocyte activation 471 367 2.8e-87 61/+
GO:0045321 Leukocyte activation 556 439 2.3e-84 63/+
GO:0050776 Regulation of immune response 564 435 8.7e-79 43/+
GO:0022415 Viral reproductive process 547 416 3.0e-77 44/+
GO:0007155 Cell adhesion 963 867 1.4e-74 41/+
GO:0022610 Biological adhesion 965 869 2.1e-74 41/+
GO:0060337 Type I interferon-mediated signaling pathway 73 71 8.5e-73 5/+
GO:0071357 Cellular response to type I interferon 73 71 8.5e-73 5/+
GO:0034340 Response to type I interferon 74 71 5.7e-72 5/+
GO:0016032 Viral reproduction 701 546 1.6e-68 46/+
GO:0044764 Multi-organism cellular process 703 547 4.0e-68 46/+
GO:0006396 RNA processing 656 488 1.4e-63 18

GO:0010564 Regulation of cell cycle process 440 295 2.9e-62 45/+
GO:0002684 Positive regulation of immune system process 558 387 1.9e-59 41/+
GO:0006259 DNA metabolic process 880 707 1.2e-56 75/+
GO:0051249 Regulation of lymphocyte activation 296 183 1.5e-56 34/+
GO:0045087 Innate immune response 544 368 1.8e-56 25/+

Shown are the 50 most significant terms (p-values are Bonferroni adjusted). CG is the number of cancer genes present in each term and the “+” indicates the

significant enrichment of a GO-term with cancer genes. The total number of census genes in these 50 GO-terms is 256.
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correction for a significance level of α = 0.05. In order to assess
the role of census genes for the individual GO-terms we counted
the number of census genes present in each GO-term. For the
analysis, we consider a total of 7989 GO-terms from the cat-
egory Biological Process, with a term size larger than 2 and
less than 1000 genes. In total, we find 632 enriched GO-terms
(12.64%). The 50 most significant terms of the GPEA analy-
sis are shown in Table 2. As one can see, the significant terms
describe a variety of biological processes such as mitotic cell
cycle (1031 edges), cell cycle phase (1142 edges), mRNA trans-
lation such as translational elongation (218 edges), termination
(191 edges) and initiation (226 edges), protein targeting to ER
(196 edges), viral transcription (193 edges), protein complex
disassembly (197 edges), regulation of immune system process
(827 edges), innate immune response (368 edges), cell adhesion
(867 edges) and type I interferon-mediated signaling pathway
(71 edges).

Interestingly, the significant biological processes shown in
Table 2 are known to be most affected in breast cancer and many
are recognized as hallmarks of cancer. For example, increased
translational initiation through elevated expression of key genes
such as pS6, p4E-BP1, eEF2K, and decreased pdcd4 are associated
with poor prognosis in hormone receptor-positive breast can-
cer, highlighting the role of translational control in breast cancer
pathogenesis (Meric-Bernstam et al., 2012).

Also, inflammation has been cited as one of the major hall-
marks of cancer and immune infiltration of tumors (principally
by the innate immune system) has been shown to be a key
component in both the initiation, progression, survival rates
and chemotherapy responses of multiple cancer types includ-
ing breast cancer (DeNardo et al., 2011; Hanahan and Weinberg,
2011b). An emerging hallmark of cancer is its ability to evade
the host immune system by paralyzing immune cells such as
CTLs and NK cells through secretion of TGF? or other immuno-
suppressive mediators (Shields et al., 2010). Aneuploidy and
Chromsomal Instability (CIN) are also well known hallmarks of
cancer which highlight the dysregulation of mitotic control and
chromosome segregation in many cancer types. Many mitotic
regulators are known to be overexpressed principally by tran-
scriptional upregulation (Aurora kinases, PLKs) or less frequently
mutated (Bub1, Bub1R, Mps1) resulting in impaired mitotic
checkpoints (reviewed in Kops et al., 2005).

3.2.1. Cancer census genes and cell cycle
To study the relationship of the identified functional modules and
known cancer genes, we utilize the manually curated cancer gene
census (CGC) list (Futreal et al., 2004) consisting in total of 435
cancer genes. For each GO-term, we count the number of present
cancer genes (last column in Table 2) and perform a hypergeo-
metric test to determine the enrichment of cancer genes. From
the 50 tests for each GO-term in Table 2, we find 32 to be enriched
with cancer genes; after a Bonferroni correction for a significance
level of α = 0.05. These GO-terms are highlighted by a “+” in
the last column in Table 2. Furthermore, the 50 most significant
GO-terms comprise in total 4743 genes, of which 238 are cancer
genes (54.71% = 256/435). Also this gene set comprising all 50
GO-terms is significantly enriched with cancer genes.

In Figure 1, we show a subnetwork of our breast cancer GRN
that includes only genes belonging to the biological process term
cell cycle (GO:0007049). This network component contains a total
of 345 interactions among 728 genes of which 51 genes are known
cancer genes (Futreal et al., 2004). Among these 51 cancer genes,
we find BRCA1 and BRCA2 that are multifunctional proteins
playing a major role in DNA repair processes.

Interestingly, our breast cancer GRN shows proximities of
some well characterized interactions. For example, Figure 1
shows a close association of BRCA2, MSH2, and MSH6.
These proteins are known to interact in the BRCA1 Associated
Surveillance Complex (BASC), a large multicomponent DNA
damage sensing complex containing proteins with roles in recog-
nition of abnormal DNA structures or damaged DNA, suggesting
that BASC may serve as a sensor for DNA damage (Wang et al.,
2000). Additionally Figure 1 shows a close association between
FANCA and BLM. Both proteins again have been shown to
interact in a multiprotein complex and participate in genomic
maintenance (Meetei et al., 2003). Within the 1st level neighbors
shown in Figure 2 there also appear to be interesting associ-
ations. For example, p53 is proposed to closely associate with
C1QBP a protein modulated EGF-induced cancer cell chemo-
taxis and metastasis in Severe Combined Immunodeficiency
(SCID) mouse models, suggesting that p53 loss of function could
result in C1QBP-mediated metastatic events (Zhang et al., 2013).
Conversely, p53 also showed close association with PFN1 a pro-
tein shown to have antiproliferative function in MDA-MB-231
cells (Zou et al., 2010).

3.3. LOCAL LANDSCAPE OF BREAST CANCER GENES
Next, we investigate 10 well-known genes that are frequently
observed in inherited breast cancer. Specifically, germline muta-
tions in BRCA1, BRCA2, TP53, PTEN, CHEK2, ATM, NBN (also
denoted by NBS1), RAD50, BRIP1, and PALB2 are known to be
associated with a high risk for breast cancer (Walsh and King,
2007). Interestingly, all of these genes, except RAD50, are also
in the cancer census gene list (Futreal et al., 2004) and it is
known that these genes are playing an important role in genomic
integrity such as DNA repair pathways.

In order to study the local interaction landscape of these 10
breast cancer genes, we extract their 1st degree neighbors from
our breast cancer network GBC3Net. Figure 2 shows the resulting
subnetwork, which we denote by G1st. As one can see, we obtain
one large network component in G1st that includes seven cancer
genes (BRCA1, BRCA2, CHEK2, ATM, NBN (NBS1), BRIP1, and
PALB2) and three smaller components that contain only a single
cancer gene (TP53, PTEN, and RAD50).

Overall, G1st consists of 116 genes and 209 interactions.
We would like to emphasize that despite the fact that in G1st

(Figure 2), e.g., TP53 is not connected to BRCA1, there is a path
in our breast cancer network GBC3Net. The reason for this is
that G1st contains only the 1st degree neighbors of the 10 breast
cancer genes in GBC3Net in order to obtain a (small) subnet-
work that can be visualized sensibly. Extracting the subnetwork
from GBC3Net that would connect all 10 cancer genes with each
other along shortest paths consists of 107 genes and has an
average shortest path length of 4.31. In Table 3 we show the
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FIGURE 1 | Subnetwork of the breast cancer GRN for the biological process cell cycle (GO:0007049). This subnetwork includes 51 census cancer genes,
e.g., BRCA1 and BRCA2. The census cancer genes are highlighted in red. Overall, the shown network consists of 728 genes and 1671 interactions.

length of the shortest paths that connect these 10 breast cancer
genes.

Biologically, the interconnectivity between the genes in G1st

shown in Figure 2 reflects the combined roles of these individual
genes in DNA damage signalling and repair, which is a major fea-
ture of cancer predisposition in breast cancer. For example, both
BRCA1 and BRCA2 play key roles in co-ordination of homolo-
gous recombination events following double strand break repair
(DSBR) (for review see Powell et al., 2011). Whilst BRCA1 and
BRCA2 are considered “high risk” the other five members of this
network component are considered “moderate risk” with a two-
to fourfold increased breast cancer risk relative to the general pop-
ulation (10%) (Hollestelle et al., 2010). BRIP1 (also known as
FANCJ or BACH1) and PALB2 physically interact with BRCA1
and BRCA2 to orchestrate helicase unwinding of DNA and to
promote RAD51-mediated strand invasion functions in DSBR. A
common DNA damage network between the BRCA and Fanconi
anaemia (FA) pathways has been proposed and three FA genes,
FANCD1, FANCN, and FANCJ, are identical to the BRCA genes
BRCA2, PALB2, and BRIP1 (reviewed in Wang, 2007). ATM acts
as a sentinel kinase detecting and signalling DSBs through phos-
phorylation of a plethora of other proteins including NBS1 (to

initiate end processing of DSB ends as part of the MRN complex)
and CHEK2 to initiate the enforcement of cell cycle arrest. Whilst
RAD50 and p53 constitute separate modes in this regulatory
network, they are nevertheless integrated into DSBR signalling,
notably the MRN end processing of DSBs and transcriptional
regulation of cell cycle arrest, respectively. PTEN, a substrate of
ATM with functions related in DNA damage repair signalling
(Bassi et al., 2013), also has distinct tumor suppressor roles in
modulation of PI3K activity and phosphatidyl inositol signalling.

3.4. CLOSENESS AND GENE NEIGHBOR DEGREE OF CENSUS CANCER
GENES

In this section we study the closeness between cancer genes in
the breast cancer GRN. For the set of 435 cancer census genes
(Futreal et al., 2004), present in the breast cancer GRN, we define
census gene pairs that have a significant shorter shortest path
length compared to all shortest path length of the entire net-
work. The null distribution is obtained by the distribution of all
shortest paths between all (197232 − 19723)/2 = 194, 488, 503
gene pairs. For each of the (4352 − 435)/2 = 94, 395 census gene
pairs a p-value is estimated by the fraction of shortest path length
from all gene pairs that are shorter as the observed shortest path
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FIGURE 2 | Shown is the 1st degree neighbors subnetwork, G1st,

of the cancer genes BRCA1, BRCA2, TP53, PTEN, CHEK2, ATM,

NBN (NBS1), RAD50, BRIP1, and PALB2 (highlighted in red),

extracted from GBC3Net. Note that we also included RAD50,
despite the fact that RAD50 is not present in cancer census
gene list.

of the census gene pair. We consider a multiple testing correction
using the Benjamini and Hochberg procedure for α = 0.05.

As a result, we find 148 significant census gene pairs (0.15%),
involving 188 (43.21%) cancer census genes, that have significant
shorter shortest paths. Aside from this, we find a total of 51 net-
work components of directly connected census genes. The largest
network component of directly connected census genes is 21 and
11 genes with the remaining components with ≤8 genes.

3.5. COOPERATION BETWEEN CHROMOSOMES
Finally, we study the relation between the genetic context and
the structural connectivity of our breast cancer network GBC3Net.
We study this relation in the following way. First, we investigate
the overall frequency of a gene pair being located on the same
chromosome or located on different chromosomes. We find that,

in average, 20.43% of the interactions in the breast cancer net-
work connect genes that are located on the same chromosome.
Hence, 79.57% of the interactions connect genes on different
chromosomes. Interactions between genes on separate or the
same chromosome can be seen as trans-interactions and cis-
interactions, in analogy to the trans- and cis-regulation of genes
(Cheung et al., 2010). However, we would like to emphasize that
there is a crucial difference between both types of connections.
For a “regulation”, the transcription of a gene is regulated by a
cis- or trans-acting transcription factor, whereas an “interaction”
means any type of biochemical binding, not limited to transcrip-
tion regulation, but also including protein-protein interaction,
phosphorylation, ubiquitination or others.

In our next analysis, we test if there are chromosome pairs
that contain a statistically significant number of interactions.
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Table 3 | Length of the shortest path between pairs of breast cancer

genes (Bgene1 and Bgene2).

Bgene1 Bgene2 Shortest path length

CHEK2 BRIP1 2
BRCA1 BRIP1 3
BRCA2 CHEK2 3
BRCA2 NBN 3
BRCA2 BRIP1 3
ATM NBN 3
NBN PALB2 3
BRCA1 BRCA2 4
BRCA1 CHEK2 4
BRCA1 PALB2 4
BRCA2 PTEN 4
BRCA2 RAD50 4
BRCA2 PALB2 4
TP53 PALB2 4
PTEN CHEK2 4
PTEN NBN 4
PTEN RAD50 4
CHEK2 ATM 4
CHEK2 NBN 4
CHEK2 RAD50 4
CHEK2 PALB2 4
NBN BRIP1 4
RAD50 BRIP1 4
RAD50 PALB2 4
BRIP1 PALB2 4
BRCA1 PTEN 5
BRCA1 ATM 5
BRCA1 NBN 5
BRCA1 RAD50 5
BRCA2 TP53 5
BRCA2 ATM 5
TP53 PTEN 5
TP53 CHEK2 5
TP53 ATM 5
TP53 NBN 5
TP53 RAD50 5
TP53 BRIP1 5
PTEN ATM 5
PTEN BRIP1 5
PTEN PALB2 5
ATM RAD50 5
ATM BRIP1 5
NBN RAD50 5
BRCA1 TP53 6
ATM PALB2 6

That means we calculate the number of interactions, e.g., between
chromosome 2 and 21, denoted as s2,21, and apply a statistical
hypothesis test to see if this number is larger than expected by
chance, i.e., srand|2,21. In order to obtain the a sampling distribu-
tion for the general null hypothesis

H0 : si,j = srand|i,j (3)

we randomize the gene labels in the breast cancer network E
times. We would like to note that the indices i and j in srand|i,j

indicate that the sampling distribution is different for each chro-
mosome pair because it takes the varying size of the chromosomes
into account. For each randomization, e ∈ E, we calculate the
number of interactions se

i,j between each chromosome pair (i, j ∈
{1, 2, . . . , 22, X, Y}. From this, we estimate p-values by

pi,j =
∑E

e = 1 I(se
i,j > si,j)

E
. (4)

Here, I(), is the indicator function which gives a value of “1” if its
argument is true and “0” otherwise. We would like to emphasize,
first, that the way we estimate the p-values for each chromosome
pair (i, j) uses its own, individual sampling distribution given by
the values of {se

i,j}. Second, utilizing the connection structure of
the inferred breast cancer network in combination with a gene
label resampling conserves not only the total number of inter-
actions among genes, but also the structural properties of the
network. Furthermore, the uneven number of genes on the 24
chromosomes is considered by this procedure as well. In total,
we perform 300 = (242 − 24)/2 + 24 tests for chromosome pairs
for the 24 chromosomes. In order to adjust for multiple testing,
we apply a Benjamini and Hochberg (1995) correction control-
ling the FDR for a significance level of α = 0.05. This guarantees a
false discovery rate of FDR ≤ α (Dudoit and van der Laan, 2007).
For our non-parametric estimation of the p-values, we used E =
100,000.

From our analysis, we find seven chromosome pairs that are
statistically significant, shown in Figure 3B. Interestingly, 6 of the
7 significant pairs involve chromosome 4 and 21 and the remain-
ing significant link represents a self-interaction on the Y chromo-
some. The results of our analysis shed light on the cooperation
of genes as measured by the prevalence of significant interactions
between chromosome pairs. From this perspective, visualized in
Figure 3A, one sees that only a rather limited number of chro-
mosomes contribute to this cooperation on the chromosome
level.

In terms of intra-chromosomal gene co-regulation many low-
penetrance breast cancer susceptibility loci are found to be located
in non-protein-coding regions, suggesting their involvement in
gene expression regulation. For example, Smits et al., have shown
how the human MCS5A polymorphisms associated with breast
cancer risk are located at both sides of a looped structure and
functionally interact to downregulate transcriptional activity, a
phenomenon which is conserved with rat Mcs5a [14]. In addi-
tion Akulenko and Helms have showed that out of 300 pairs of
genes which showed co-methylation (but not nescessarily also co-
repressed), 187 pairs were located on the same chromosome and
were shown to be related to similar functional processes in the
same pathways [15]. In fact they concluded that co-methylation
“anti-correlated” with genomic distance [15]. Like most cancers,
breast cancers are comprised not only of cancerous epithelia but
also of numerous other contributory cell types which are involved
in various stages of tumor initiation, progression and metasta-
sis. There are instances where Loss of Heterozygosity (LOH) from
genomic regions on the same chromosomes has been reported
in breast cancer epithelial but furthermore LOH from adjacent
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FIGURE 3 | (A) Statistically significant cooperations between
chromosome pairs are highlighted by a link. The Benjamini and
Hochberg (BH) adjusted p-values for these links are shown in the

Table (B). The significance level for this analysis was α = 0.05,
which guarantees that FDR ≤ α holds for the set of all significant
links.

regions could be detected in both breast cancer epithelia and
breast cancer stromal cells from within the same tumors [16].

4. DISCUSSION
In this study, we investigated a breast cancer gene regulatory net-
work with respect to its structural and functional features. The
network itself has been inferred from the application of BC3Net to
a large-scale gene expression data set of breast cancer patients pro-
vided by the International Genomics Consortium (IGC) (expO
data set).

From conducting a GPEA for GBC3Net, we found significant
enrichment of GO-terms that represent biological processes for
translation, immune response, cell cycle, organelle fission, mito-
sis, cell adhesion, RNA processing, RNA splicing and response
to wounding. These biological processes are well described by
cancer hallmark pathways (Hanahan and Weinberg, 2000, 2011b;
Vogelstein and Kinzler, 2004; Berretta and Moscato, 2010) and
known for playing central roles in differentiation, proliferation
and immune system functional processes. In order to relate these
processes to known cancer genes, we used the cancer census gene
list (Futreal et al., 2004). Interestingly, our analysis revealed that
32 of the 50 most significant GO-terms are also enrichment with
known cancer genes (see Table 2).

From studying a subnetwork of GBC3Net limited to cell cycle
genes, we found 51 known cancer genes. Among these 51 can-
cer genes the most prominent breast cancer genes BRCA1,
BRCA2, and Chk2 were present. BRCA1 is multi-functional pro-
tein involved in DNA damage repair, cell cycle checkpoint acti-
vation, ubiquitination and in the regulation of gene expression
(Zhu et al., 2011). Chk2 is a tumor suppressor which func-
tions as a protein kinase involved in DNA damage and cell-cycle
arrest (Matsuoka et al., 1998). Although our GPEA analysis
is restricted to the underlying biological knowledge gathered
in the GO database, it provides a good overview of the most

prominently represented biological processes present in the breast
cancer network.

Currently, the analysis of genes involved in breast cancer is a
very active field and resources have been established that provide
a collective overview of such genes (Mosca et al., 2010). In our
study, the manually curated census gene list (Futreal et al., 2004)
has been used to gain functional insights of the involved biolog-
ical processes. In previous studies, these cancer genes have been
analyzed for a variety of cellular networks, e.g., protein interac-
tion networks (Jonsson and Bates, 2006; Rambaldi et al., 2008)
and manually curated signaling networks (Awan et al., 2007). For
instance, a structural network analysis of the degree, betweenness
and closeness of differentially expressed cancer genes, mapped
on a protein interaction network, was performed by Hernandez
et al. (2007). However, the main problem with such an approach
is that the interactions in a protein network, e.g., measured by
yeast-two-hybrid (Y2H), are outside of a disease context of the
corresponding physiological state. On the other hand, one of the
main advantages of gene regulatory networks is that they are mea-
sured in the physiological context under investigation. This should
enable a more relevant analysis. A gene regulatory network also
provides novel candidates for experimental investigations such
as the hub genes that are highly enriched e.g., by membrane
receptors (Table 4).

The impact of cancer progression driving gene mutations is
explained by causing the malfunction of a protein, binding site
alteration that causes a loss or constitutive deregulated function.
Another major aspect of cancer progression is genome instability
that causes larger mutation events, e.g., copy number variations,
duplications, gene loss and translocation events of large genomic
regions. Such processes can lead to the deregulation of genes and
their related functions causing an amplification, downregulation
or a complete shut-down of gene expression leading to a func-
tional gain or loss. In order to relate the inferred interactions in
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Table 4 | Census cancer genes ranked by degree in all-census-pair

shortest path network.

Entrez Deg. Symbol Name

ID nodes

81137 725 OR7E104P Olfactory receptor, family 7,
subfamily E, member 104
pseudogene

100132767 524

2623 462 GATA1 GATA binding protein 1
(globin transcription factor 1)

387601 432 SLC22A25 Solute carrier family 22,
member 25

353135 415 LCE1E Late cornified envelope 1E

284187 384

256646 334 C15orf55 Chromosome 15 open
reading frame 55

219409 334 GSX1 GS homeobox 1

9362 326 CPNE6 Copine VI (neuronal)

283933 319 ZNF843 Zinc finger protein 843

9127 311 P2RX6 Purinergic receptor P2X,
ligand-gated ion channel, 6

285877 303 POM121L12 POM121 transmembrane
nucleoporin-like 12

9758 292 FRMPD4 FERM and PDZ domain
containing 4

3166 292 HMX1 H6 family homeobox 1

60506 290 NYX Nyctalopin

348808 288 NPHP3-AS1 NPHP3 antisense RNA 1

4584 287 MUC3A Mucin 3A, cell surface
associated

284805 283 C20orf203 Chromosome 20 open
reading frame 203

163778 262 SPRR4 Small proline-rich protein 4

155 256 ADRB3 Adrenoceptor beta 3

286023 252 FLJ40288 Uncharacterized FLJ40288

64405 251 CDH22 Cadherin 22, type 2

1813 248 DRD2 Dopamine receptor D2

149647 245 FAM71A Family with sequence
similarity 71, member A

253868 238 C20orf166-AS1 C20orf166 antisense RNA 1

our breast cancer network back to their genetic origin, we stud-
ied chromosomal effects. From this analysis, we found that in
average 20.43% of the interactions in the breast network connect
genes that are co-located on the same chromosome. Furthermore,
we found only seven chromosome pairs, involving eight different
chromosomes, that are more densely connected than expected by
chance. Specifically, we observed the chromosomes 4, 13, and 21
to connect to two or more chromosomes and the chromosomes 2,
7, 15, 20, and Y to connect to exactly one chromosome. A putative
explanation for this observation may be the amplification of the
genes in a chromosome that would lead to a higher probability for
interactions occurring within and between chromosomes.

On a more general note, one may wonder if the inferred gene
regulatory network is “complete” or if parts of it, e.g., important
driver gene(s) and their interactions, may be missing. Here it is

crucial to realize that for our analysis, we used only observational
data from cancer tissues. That means, the data were not generated
in a controlled manner ensuring a sufficiently strong signal for
all relevant biological components of the system. For this rea-
son, it is possible that parts of the true breast cancer network
were missed. Also, our network inference method BC3Net aims
at inferring the strongest signal (network) within a given data set.
However, from comparing information about our inferred gene
regulatory network and independently conducted experiments
one could get valuable information about such “missing parts” in
order to come up with an experimental design that might fill-in
these gaps. Hence, even information that is missing in our breast
cancer network could be utilized for a future experimental design
of follow-up studies.

5. CONCLUSIONS
Complex disorders like breast cancer require a systems level
analysis. For this reason, network-based approaches provide a
practical means to elucidate the biological function of processes
from large-scale genomic data (Emmert-Streib and Dehmer,
2011). This also opens a venue for translation bioinformat-
ics and personalized medicine, which depend crucially on the
availability of robust, genome-scale analysis methods (Gonzalez-
Angulo et al., 2010; Chan and Ginsburg, 2011; Chin et al.,
2011).

5.1. DATA SHARING
We provide the gene expression data and the inferred breast can-
cer GRN from our analysis in the R-package BreastCancerGRN,
available from CRAN.
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