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Interpreting gene expression profiles often involves statistical analysis of large numbers
of differentially expressed genes, isoforms, and alternative splicing events at either static
or dynamic spectrums. Reduced sequencing costs have made feasible dense time-series
analysis of gene expression using RNA-seq; however, statistical methods in the context
of temporal RNA-seq data are poorly developed. Here we will review current methods for
identifying temporal changes in gene expression using RNA-seq, which are limited to static
pairwise comparisons of time points and which fail to account for temporal dependencies
in gene expression patterns. We also review recently developed very few number of
temporal dynamic RNA-seq specific methods. Application and development of RNA-
specific temporal dynamic methods have been continuously under the development, yet,
it is still in infancy. We fully cover microarray specific temporal methods and transcriptome
studies in initial digital technology (e.g., SAGE) between traditional microarray and new
RNA-seq.

Keywords: RNA-seq, initial digital technology, microarray, gene expression, differential expression, static and

temporal dynamics

MOVEMENT IN DIFFERENTIAL ANALYSIS WITH NEW-ERA
RNA-seq
The primary goal of whole-transcriptome analysis is to identify,
characterize, and catalog all the transcripts expressed within a spe-
cific cell or multiple tissues, either at a static given stage or across
dynamic time-varying stages. As microarray, there are major two
distinct types of experimental design for identification of differen-
tially expressed genes in RNA-seq (Leek et al., 2006). The first type
of data analysis is to compare simple pairwise group comparisons
from a static sampling experiment where samples are collected
from distinct biological groups without respect to time. In this set-
ting, there are typically two-group comparison and multi-group
comparison (more than two). The second type of experimental
design in gene expression profiling is a temporal experiment with
or without replicates, where samples are collected over a time win-
dow to characterize temporal dynamic spectrum and underlying
developmental or progressive biological mechanisms. In this cate-
gory, large-scale longitudinal data with repeated measurements in
gene expression profiles are also additionally included. Temporal
dynamic studies in disease progression and age- related psychiatry
data (e.g., stimulated aggressive spectrum disorders and neurode-
generative disorders). Otto et al. (2010), Prensner et al. (2011), Lv
et al. (2013), Palmblad et al. (2013) and Sharron Lin et al. (2013)
have been substantially studied more recently following by static
expression profile study as microarray. Hence, it is very timely
crucial to comprehensively review existing methods with pros
and cons and guide future direction on analytical strategy and
application of methods in static and temporal dynamics. Time-
series experiment is largely composed of three different settings,
(I) a single-series time course to study a developmental transient

pattern (Pauli et al., 2012), (II) a multi-series or factorial time
course that interrogates multiple biological reactions to specific
external stimuli at each time point (Jager et al., 2011; Sivriver et al.,
2011), and (III) a periodical time course in cell-cycle or circadian
rhythmic data (Bar-Joseph et al., 2012; Cheng et al., 2013; Lokody,
2014).

In recent studies, some statistical methodologies and corre-
sponding R packages at a static time point in RNA-seq to address
the first type of data have been proposed, such as Fisher’s exact test
(Fisher, 1941), Audic–Claverie statististics (Tino, 2009), DEGSeq
with normal approximation from binomial distribution (Wang
et al., 2010), edgeR (Robinson et al., 2010), and DESeq (Anders
and Huber, 2010) for simple pairwise comparison between one
sample without replicates vs. another sample, or one group vs.
another group when there are replicates for each group.

Recently, DESeq and edgeR have further incorporated multi-
group comparisons (Anders and Huber, 2010; Oshlack et al.,
2010). DESeq is roughly the same principle as edgeR; the main
difference is in the estimation of dispersion for variation of
replicates and in incorporating their own normalization pro-
cedures. More recently, edgeR and DESeq have provided a
generalized linear model (GLM) approach incorporated in their
R packages as a pooling method of samples. A pooling method
is to take all samples and factors (e.g., tissue and replicate
factor) in the model simultaneously and to test a hypothesis
of difference on a major biological interest (tissue difference)
by controlling secondary nuisance factors (variability of repli-
cates). They enable to test RNA-seq gene expression profiles
with a more complicated experimental design having multi-
ple nuisance factors to be controlled in the model as well as
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major biological interest (or more than one) to be tested in
the differential expression (DEX) analysis, for instance, the dif-
ference of age, sex, species, replicates, or other experimental
factors.

To overcome the small sample size issue in RNA-seq exper-
imental design that is currently common practice, by utilizing
prior information across genes, such as Bayesian approaches, bay-
Seq (Hardcastle and Kelly, 2010), Bayesian model-based DEX
(BM-DE; Lee et al., 2011), shrinkage method (Smyth, 2004; Li
and Tibshirani, 2011; Zhou et al., 2011; Wu et al., 2013), and
more recently, a distribution-free approach and non-parametric
approach (Li et al., 2012; Li and Tibshirani, 2013) have been intro-
duced into the differential analysis of an RNA-seq experiment.
The main goal of baySeq with gamma-Poisson and empirical
negative binomial distribution is to compare two or multiple
groups. Their approaches are based on an empirical Bayesian
approach to estimate posterior probabilities of patterns of dif-
ferential or equal expression for a given gene expression profile
and prior knowledge. Poisson-gamma model approach in baySeq
is to assume that the read count data (or normalized expres-
sion data) are poisson distributed and prior parameters follow
gamma distribution. Another possible model with negative bino-
mially (over-dispersed poisson) distributed data has been also
proposed in the paper since Poisson model fails to account for
the extra variability of biological replicate on samples. The BM-
DE method is another Bayesian approach to apply with yeast data
of strain BY4741 containing two different groups to be com-
pared, in a rich growth medium and a poor growth medium.
This proposed method is on the basis of individual nucleotide
position level read counts other than unified gene level read
counts by accounting for extreme position-specific outliers of
expression on samples. Namely, the method quantified expres-
sion levels of a genomic position within a gene by considering
over-dispersion on different positions in a gene using hierarchi-
cal modeling with beta distribution to allow biological replicates
and dirichlet and gamma prior. They evaluated and demonstrated
the proposed position level method shows better performance
when compared existing methods, DEGSeq proposed by Wang
et al. (2010) and analysis of sequence counts proposed by Wu et al.
(2010).

In RNA-seq, the most recent distribution-free method, a
rank-based non-parametric method proposed by Li and Tib-
shirani (2013) is to identify a set of differentially expressed
transcripts/genes in simple pairwise two-comparison or multiple-
group comparison based on a particular given static stage. Inter-
estingly, their methods also address the identification problems of
altered gene expression in survival data using score statistics and
the multiple resampling procedures as a semi-parametric method
other than Breslow’s method and Cox-proportional model. Cur-
rent static methods have been also compared in comparative
studies to evaluate the performance of proposed methods (Bullard
et al., 2010; Kadota et al., 2012; Kvam et al., 2012). However,
no consensus was achieved and no unanimously conclusive best
method exists, and the work can be expanded to cover generaliz-
ability for various types of RNA-seq data. Thus there is a need for
a better methodology to preserve elegant discrete distributions for
counts other than converting variance-stabilizing transformation

from counts in sequencing experiments to continuous measure-
ments in array-based experiments – although there is no intrinsic
advantage to having discrete numbers rather than continuous ones
in gene expression profiling (Douglas and Wood, 2011; Meyer
et al., 2012).

Rather than preserving an elegant digital measure, i.e., the dis-
creteness of the expression levels of mapped read counts onto a
reference genome, by borrowing statistical methods from microar-
ray through a variance-stabilizing transformation, a linear models
for microarray (LIMMA) procedure has been proposed as another
pooling method. However, when the read counts of expression are
relatively large, methods based on the transformation and con-
sequence of standard normal Gaussian approaches fit very well.
When expression levels have small read counts, such approximated
asymptotic approaches from the transformation of discrete counts
into continuous variable are less accurate. The main drawback of
pooling methods, the GLM, or LIMMA approach for time-series
RNA-seq data is that even if the labels of a sample from one time
point to another time point are reordered, the results would be
identical based on F-statistics. Since the sample size in the RNA-
seq experiment is much smaller than in microarray, identification
of DEX through GLM-based approaches suffers from power issue
of detection.

To consider the second type of experimental in RNA-seq, these
dynamic processes are more likely to be related to underlying
mechanisms of disease progression and developmental process.
Nevertheless, application and development of method on RNA-
seq data have mostly focused on static two-group or multi-group
comparisons, whereas, more complicated experimental design set-
tings such as temporal dynamics have not been addressed. Due
to the lack of methods to precisely analyze temporal dynam-
ics, as alternative and intuitive solutions, existing (I) pairwise
methods (II) pooling analysis of sample to run all samples simul-
taneously in the model, and (III) clustering analysis to group
co-expressed similar patterns. Mainly, there are three different
types of time course experiment: (1) a single-series of time course
to explore single temporal transient pattern, (2) a multi-series of
time course to simultaneously explore differences on expression
levels among biological conditions in vertical line and expres-
sion patterns over time within a condition to define horizontal
temporal trajectory, as a state-of-art visualization, consecutive pat-
terns of vertical differences by given conditions can be shown in
temporal fashion whether there is at least one pair to be differ-
ent on the multiple conditions over a series of time points. This
multi-series of time course expression profile has been widely per-
formed in stimulus-response time-series experiment to identify
altered expression of multiple responses from different conditions
of stimuli. (3) Another type of time course is periodicity including
cell-cyclic and circadian rhythmic patterns. The periodical time
course data can be also incorporated with multiple factors at a
time. In microarray factorial cell-cycle time-series data, Rosa et al.
(2012) demonstrated identification of treatment, clock, and noise
frequency. Future work on these issues will prompt the develop-
ment of common guidelines to identify and characterize changes
of altered expression over time in RNA-seq, similar to the guide-
lines established for time-series microarrays. In this section, we
describe the fundamental advantages and disadvantages of existing
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methods by focusing on comprehensively illustrating more recent
efforts on static DEX methods and clustering techniques in RNA-
seq. Additionally, various dynamic methods in analog array-based
and initial digital technology [e.g., SAGE (serial analysis of gene
expression)] as RNA-seq has been replacing the older technologies
rapidly.

INVESTIGATING RNA-seq TIME-SERIES DATA USING
EXISTING STATIC DEX METHODS
Most recently published studies of time course experiments in
RNA-seq are inconclusive in terms of statistical viewpoints to infer
temporal patterns (Anders and Huber, 2010; Jiao and Meyerowitz,
2010; Otto et al., 2010; Parikh et al., 2010; Graveley et al., 2011;
Jager et al., 2011; Koike et al., 2012; Pauli et al., 2012). As prompt
and alternative, temporally differential expression (TDE) has been
identified by separately doing pairwise comparison between two
neighboring time points and merging all possible pairwise com-
parisons into either union set (global set) or intersection set
(stringent set) in their studies. Yet, such approaches do not explic-
itly take inherent time dependency structure into account, albeit
it is certain that successive expression profiles are quite corre-
lated during progressive dynamic regulation. Experimental and
molecular genome-wide studies related with dynamic process have
been conducted to explore developmental progression mecha-
nisms on the basis of gene expression profile over time. Time-series
experiment facilitates various different experimental settings as
described in the previous section. More specifically, complicated
factorial time course data with more conditions and factors have
been performed to investigate altered changes on expression after
external stimulation over time. And it is referred to as multi-
series of time course and the conditions can be incorporated into
either general time course or periodical data, namely, a stimulus-
response time course with one or several experimental conditions
at a time (general multi-series of time course) and periodical time
course with multiple conditions (cell-cyclic multi-series of time
course). In general, when analyzing time-series expression pro-
file data, inference of estimates on DEX is not practically feasible
or frequently obtaining very low power owing to few time points
and replicates. Due to the limitation of application to time-series
RNA-seq, it is good practice to perform gene clustering that might
be more efficient in identifying groups of co-expressed temporal
genes, as DEX methods are not competitive due to the power issue.
However, it is also worth noting that clustering techniques are not
designed to assess and order genes on a statistically significant
timing difference between conditions for such complicated time
course data. In addition, as intrinsic issues on clustering methods,
the choice of the proper number of clusters and the visualization
of a large number of genes can be problematic in running data and
interpreting clustering results.

With the popularity of such rich systematic resources and
reduced costs in profiling gene expression, it is clear that the
complicated accompanying experiments will have multiple fac-
tors and parameters, e.g., the transcriptomic experiments with
time window lie in the coming years. To address this type of data,
the formal statistical tests used in temporal analysis will be more
advantageous for understanding the causes and consequences of
various human diseases observed over time in clinical applications

or developmental processes. This manuscript comprehensively
reviews statistical methodologies by focusing on a variety of
dynamic time-series expression profiles in RNA-seq and outlines
important questions in the field, speculating on how these sta-
tistical methods can analyze and interpret time-series expression
profiles in aspects of human disease progression and on the accom-
panying evolutionary implications (Smith et al., 2009; Trapnell
et al., 2010; Bar-Joseph et al., 2012; Oh et al., 2013). These issues
are complex and poorly understood in biomedical research. Static
and dynamic approaches differ markedly in required assumptions
and in determining temporally differentially expressed genes.

It is now well known that a developmental transcriptome is
highly dynamic and that the previous gene expression profile can
affect the subsequent one, which in turn can influence the pattern
of DEX. Currently, one of most popular computational bioin-
formatics tools for researchers in this field for identifying gene-
and transcript-level expression is Cufflinks (Trapnell et al., 2010),
where DEX analyses for simple pairwise two-group comparisons
are allowed to perform by running Cuffdiff; this is not currently
applicable, however, for comparisons with multi-groups and fac-
tors and by running Cuffcomp. In its current version, there is
a time-series option for cell-cycle data, but it can only do sim-
ple pairwise comparisons from one time point to the next. Of
course, based on the DEX union gene set from all possible sim-
ple comparisons, we can roughly identify the temporal expression
of a given time-series; however, the union of marginal tempo-
ral expression does not guarantee overall temporal dynamics in
time-series experiments. Thus dynamic-specific methods in the
identification of temporal patterns across all time points have
not been shown thus far to identify the overall dynamics and
the developmental temporal expression over a time-series when
compared to approaches of simple DEX genes between two-group
comparisons. A fascinating distribution-free method based on the
Wilcoxon rank test and the resampling method proposed by Li
and Tibshirani (2013) can be applied for various types of exper-
imental design. It is very robust when there are outlier samples
of data compared to the previously mentioned recent differential
parametric methods. However, it is also a static-based strategy,
where real datasets were collected: Marioni data with five biologi-
cal replicates, ‘t Hoen data (‘t Hoen et al., 2008) with four biological
replicates, Witten data (Witten et al., 2010) with 29 biological repli-
cates, and simulation studies with a moderate sample size (n = 12)
and a small sample size (n = 5). Unfortunately, most current
RNA-seq experiments have at most three replicates in common
use. Although the cost of sequencing has dropped substantially,
and experimental designs with appropriate replicates, depending
on the hypotheses of the studies, have been suggested in terms
of power and reliable outcomes, there are still very few biolog-
ical replicates available in RNA-seq experiments, either static or
dynamic.

In summary, the initial statistical techniques as indirect tempo-
ral dynamic methods provided a first glimpse into the identifica-
tion of the DEX of gene regulation in RNA-seq in terms of simple
pairwise comparison and multi-group/factor comparison. How-
ever, as interest grows in a variety of species and cell types, and
scientific questions are asked about developmental stages, single
cell-cyclic, and circadian rhythmic regulation. RNA transcriptome
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studies to identify TDE are involved with single-series, multi-
series, and periodicity. Various time course experimental designs
are gradually revealing relevant biological mechanisms and func-
tional pathways in temporal dynamic process as in conventional
microarray. Therefore, the development and application of sta-
tistical methodologies to uncover and capture the TDE across
dynamic time points is timely very critical in RNA-seq. This is
a comprehensive review article of static and dynamic algorithms
by including oscillations in cell-cycle as well as computational
modeling in traditional technologies. The field is advancing so
rapidly that a brief review cannot include all of the work done
in the past 5 years. It is a sampling of a few highlights of sta-
tistical methodologies in differential analysis, from conventional
hybridization-based array experiments that provide a continu-
ous fluorescent-intensity gene-expression profile to attractive new
RNA-seq technology with count-based measurements from tag
sequence in both static and dynamic time course experimental
design settings.

DIFFERENTIAL ANALYSIS WITH TIME COURSE METHODS IN
MICROARRAY
Time course cDNA microarray experiments have been widely
used to study temporal profiles of cell dynamics from a genomic
perspective and to discover the associated gene regulatory relation-
ship. The output gene expression matrix in a hybridization-based
microarray is basically a large-scale dataset filled with numbers
related to the signal fluorescent intensity between each gene and a
sample on the chip. These raw data are pre-processed in a lower
analysis, such as background detection, normalization, probe set
summarization, and filtering out genes or outlier samples with
specific criteria. For instance, the coefficient of variation is used to
filter out genes which are less than the user-set cut-off value, and
the missing values between genes and samples are estimated by
imputing methods. The potential outlier samples with bad qual-
ity control measures are discarded beforehand. Some exploratory
approaches, such as box-plot, mean-difference plot, correlation-
plot, and principal component analysis, can be performed as
diagnostic measures of outliers in a visualization manner. After
such exploratory analyses, genes and samples that are of good
quality and more meaningful of targets for further exploration are
kept for downstream analyses, including identification of DEX at
a static or dynamic mechanism in cellular responses over time.
Once a certain set of genes are identified to be of interest for
further investigation, grouping of clusters of genes with similarly
co-expressed regulation patterns and analysis of pathway and gene
ontology can be performed to identify biologically meaningful
information and biologically related and interacting gene regula-
tory networks, e.g., in disease with respect to a normal control
sample at a static time point or across a time-series or develop-
mental time stages or covering expressions that are periodically
regulated across the cell-cycles.

When replicated time course microarray data are available, var-
ious statistical approaches and modifications are employed. This
category of approaches, ANOVA (Ahdesmaki et al., 2007; Grav-
eley et al., 2011; Swan et al., 2011), has been extended to work
with longitudinal data, where the microarray measurements lie in
multi-dimensional space with the coordinates to a time point to

be a correlated structure. It is a sequence of data points resulting
from measurements which are recorded at successive moments,
either equally evenly spaced in time or at irregular time points.
However, replication of time-series or longitudinal sampling is
costly if the number of time points is comparatively large. For this
reason, many published time course datasets in microarrays have
suffered from a relatively small number of samples compared to
variables of genes when developing powerful methods. In this case,
intuitively clustering-based approaches are applied first; model-
specific approaches in small sample sizes have been also applied
for ranking temporal biomarker genes and examining such tem-
poral expression patterns. Basically, clustering-based approaches
select genes whose patterns are similar to each other to find groups
with co-expressed patterns, an unsupervised approach, as we do
not have prior knowledge of gene expression patterns. For this
purpose in microarray, some groups (Chu et al., 1998; Eisen et al.,
1998; Ahdesmaki et al., 2007) have proposed a hierarchical clus-
tering method, and (Tamayo et al., 1999; Saban et al., 2001), and
(Burton et al., 2002) presented self-organizing maps and model-
based clustering methods. Bar-Joseph et al. (2003) and Ramoni
et al. (2002) performed Bayesian model-based clustering. Schliep
et al. (2003) suggested the HMM clustering method.

When characterizing temporal features in a time course data,
there are some drawbacks to merely considering clustering meth-
ods, in that they make no explicit use of the replicate information
and they use all the slides or means of the replicates. That is, the
clustering technique does not reveal what genes are differentially
expressed among different experimental conditions and temporal
patterns of such DEX sets. Another limitation in gene clustering
methods for time course data is that clustering does not provide
such ranking for the individual genes based on the magnitude of
change in expression levels over time, which scientific researchers
frequently want to investigate. Large microarray data sets with
20K ∼ 40K genes are very common; however, clustering meth-
ods are not suited to handle such large input data files and may
not provide clear group patterns due to the inevitable noisy set
contained in microarray experiments.

Thus in microarray analog-based experiment platforms,
diverse strategies were developed and applied in the literature to
address different aspects of biological questions in time course
gene expression data. For many applications of new digital-based
RNA-seq technology, which has been rapidly replacing array-based
experiments in transcriptome gene expression profiling, however,
we are not able to simply plug in methods used in microarray,
as it quantifies discreteness of expression level and somehow dif-
ferent biases from experiments and normalization strategies to
adjust artifacts. More sophisticated RNA-seq-specific algorithms
and software tools are particularly important in analyzing various
RNA-seq applications along with the wave of data produced by this
fast-moving RNA-seq technology. Statistical methodologies cur-
rently lack solutions to analyze time course experiments as well as
other types of outcomes. Significant efforts must be undertaken
on the statistical and computational methodology front. Sophis-
ticated, tailor-made data analysis approaches will likely play a key
role in fully realizing the power to interpret whole stories of the
time-series RNA-seq transcriptome in next-generation sequencing
technologies.
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PERIODICITY IN MICROARRAY AND RNA-seq
Since the pioneering work in methods of identification of period-
ically expressed genes as a function of the cell-cycle or circadian
rhythm in microarray, various organisms at a genome-wide level
have been studied in yeasts, plants, and mammals (Eisen et al.,
1998; Wichert et al., 2004; Ptitsyn et al., 2007; Michael et al., 2008;
Zhao et al., 2009; Geyfman et al., 2012; Oishi, 2012; Sporl et al.,
2012). Using cell-cycle or circadian rhythmic data from microarray
has long been a critical modeling approach in studying periodi-
cal transcriptional regulation statistically. With the new RNA-seq,
none of these methods has yet gained widespread generalizabil-
ity for detecting and ranking periodically expressed genes. A
satisfying understanding of temporal dynamics in mathemati-
cally modeling the events of the cell-cycle is needed to generate
oscillations. Some mathematical modeling approaches for clock
genes, such as cell-cycle or circadian rhythmic data, have been
discussed in detail (Ferrell et al., 2011): simple Boolean modeling
in a single species-based on-and-off to represent discreteness in
regulation from a protein circuit, ordinary differential equations
(ODE), delay differential equations, Fourier analysis, and stochas-
tic and partial differential approaches applied in the eukaryotic
cell-cycle.

However, the majority of applications have focused on ODE
approaches. It has been shown from efforts at modeling the
identification of clockwise genes in a periodic time course of
microarrays that many computational methods currently cannot
be directly applied to RNA-seq data due to the quantification and
type of data (i.e., continuous fluorescent intensity vs. discrete-
ness of mapped read counts and gene expression-level quantity vs.
gene/isoform-level quantity). Therefore, efficient methods should
be well established to analyze periodically temporal dynamics by
capturing linear or non-linear dynamic behaviors of modules and
interactions of genes during different stages or successive time
points in system biology. The identified biological disruption or
abnormal pattern on clockwise genes in a timing system is being
further investigated as impairments on metabolic regulation (Fer-
rell et al., 2011; Mazzoccoli et al., 2012). In RNA-seq, researchers in
this field strive to develop edge methods that accurately quantify
the rhythmical periodic behaviors of genes from large numbers of
variables and very few observation structures.

CO-EXPRESSION AND DIFFERENTIAL EXPRESSION ANALYSIS OVER
TIME IN MICROARRAY
Some papers suggested more improved methods to extract core
co-regulated patterns of interest from an entire gene set, includ-
ing some noisy set (Tseng and Wong, 2005; Yuan et al., 2008).
Furthermore, cluster analysis may fail to detect changes over a
time-series in genes that belong to clusters in which most genes
do not change (Bar-Joseph et al., 2001, 2003). There is the peren-
nial question of how many clusters to use as a parameter when
applying clustering methods other than the hierarchical cluster-
ing approach. Although some groups have been investigating how
to choose a proper number of clusters, it is still in question, and
arbitrarily varying choices are usually used as initial trials. More
specifically, some researchers have proposed gene clustering algo-
rithms for time-series expression in combinations of genes and
samples simultaneously by considering the correlated relationship

of samples (Luan and Li, 2003; Song et al., 2007). Ernst and Bar-
Joseph (2006) also developed the short time-series expression
miner (STEM); however, this method is applicable when there
is only one biological condition in the time course experiment.
Thus, some of the literature on gene clustering methods have
highlighted the importance of the identification of co-expressed
patterns at the static or dynamic by itself and in a combinato-
rial way with the detection of differentially expressed individual
genes or biological functional pathways, although clustering meth-
ods have inherent issues, as discussed above. This section, first
of all, focuses on an in-depth discussion of the technical and
methodological aspects of the identification of a TDE in time-
series classical hybridization technologies. A complete review of
other downstream analyses for microarray is beyond the scope of
this study and can be found elsewhere (Butte, 2002; Filkov et al.,
2002; Ahdesmaki et al., 2005, 2007; Androulakis et al., 2007; Oh
et al., 2011; Swan et al., 2011; Nascimento et al., 2012). Due to
unavoidable sources of uncertainty from the addition of noise and
artifacts on signals, prior to the main downstream analyses, nor-
malizing, filtering, cleaning, and removal of noise and artifacts
are crucial initial procedures to produce reliable DEX and results.
The overall framework for preprocessing raw microarray data is
described in Bolstad et al. (2004), Zahurak et al. (2007), Owzar
et al. (2008) and Shakya et al. (2010) by a series of log-data trans-
formations and data quality, normalization to adjust for effects
which arise from variations in the microarray before analyses are
performed, and treatments of missing values by imputation meth-
ods. Some characteristic features of replicated microarray time
course data are typically short series, and one classifies a shorter
time-series as k = 4–10 time points and a longer time-series as
11–20 time points, very often irregularly time-spaced. Compared
to RNA-seq, although relatively a microarray platform has more
samples, occasionally a few replications with n ≤ 5 has been a com-
mon standard. Gene expression values at different time points may
be inherently correlated, especially if a common reference design
is used or a common pool of cells is sampled (Tai and Speed,
2009).

Similar to RNA-seq, in a time course microarray experiment,
three main types of structures have been studied so far. The first
type is a single-series time course that may have no known partic-
ular patterns, as in developmental time courses (Chu et al., 1998;
Wen et al., 1998; Tamayo et al., 1999). As in factorial time course
design, the second type is a study with different biological condi-
tions at each time point over a time-series, as a plant’s response to a
pathogen and the transcriptional response to oxidative stress in the
heart and how it changes with age to investigate TDE genes in (Kal
et al., 1999; Edwards et al., 2003). The main objective of such previ-
ous studies is to identify genes whose temporal expression patterns
following response differ between different biological conditions
of more than two. The third type is a periodic experiment with
cell-cycle and circadian rhythmic data (Cho et al., 1998; Spellman
et al., 1998; Storch et al., 2002). As pooling approaches with statis-
tics, LIMMA and ANOVA-based methods have been proposed
to address a multi-series time course (Smyth, 2004; Meyer et al.,
2012). But as already discussed, such pooling samples do not con-
sider time-dependent structure explicitly; identical results would
be obtained even if columns were reordered and there existed
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obstacles to hinder the power of detection. Other efforts at tem-
poral analysis have been done in regression-based methods by Xu
et al. (2002) and Conesa et al. (2006), and the robust Wald statistics
by Guo et al. (2003). GeneTxWarper (Criel and Tsiporkova, 2006)
is a tool of alignment to analyze and mine gene expression time-
series based on dynamic time-warping techniques. The EdgeR R
package is a spline-based approach for significance analysis in a
time course microarray experiment within one or between several
conditions proposed by Storey et al. (2005) and Leek et al. (2006).
There is a multivariate approach proposed by Tai and Speed (2006,
2009) and Nueda et al. (2007, 2010), an HMM taking into account
time-dependent property by Yuan and Kendziorski (2006) and
Yuan et al. (2008, 2011), and an SEA web tool to run multifac-
torial time-series data developed by Nueda et al. (2007, 2010).
Smooth spline methods were used to identify temporally differ-
entially expressed gene patterns in (Song et al., 2007) and (Luan
and Li, 2003, 2004; Billups et al., 2009). More recently, Yuan et al.
(2011) studied a dynamic time-warping algorithm (DTW-S) to
analyze primate brain expression time-series data using a smooth
spline function. They compared three different species using a
published microarray dataset and showed shift degrees in the
human species compared to other species during the development
of the prefrontal cortex.

DEX ANALYSIS IN DIGITAL SAGE, CAGE, AND MPSS
EXPERIMENTS
The analysis of gene expression profiles within an organism has
been one the most general approaches in molecular biological
research to simultaneously monitor large-scale genes and sam-
ples in evolution across time points of developmental phenomena
or human disease and its treatment over a period of time. As
the means for profiling gene expression, following microarray,
initial direct sequencing of cDNA libraries, MPSS (massively par-
allel signature sequencing), SAGE, and CAGE (cap analysis of
gene expression) have been popular tools. The main difference
to microarrays is that they provide the tag-based expression level
quantification and digital measurement technologies to enable
the quantification of the expression levels of novel genes and
alternatively spliced transcripts without prior knowledge. cDNA
microarray has been successfully applied in transcriptome stud-
ies, but it provides partial information about abundance based
on fluorescent intensity, whereas the expression level in SAGE
is quantified by a short sequence-tagging enzyme that gives rise
to 15-bp tags to uniquely identify a transcript (Velculescu et al.,
1995; Brenner et al., 2000; Pollock and Grime, 2002). Similarly,
MPSS technology has the advantage that does not require prior
information of the sequences of the transcripts expressed in the
cell or tissue to be compared. And the deepCAGE, with short 20-
nucleotide sequence tags, has been used uniquely to identify the
promoter of each transcript and its expression measurement sites
on a genome-wide scale. In contrast, MPSS and SAGE produce
tag counts or fragments as locating at the 3′ end of the transcript
and do not identify the promoter that might be mapped more
upstream in the genome sequence (Yeh et al., 2002). As variants
of SAGE, 5′ SAGE using oligo-capping to generate tags and super-
SAGE allowing isolation of 26-bp tag fragments from expressed
transcripts (Matsumura et al., 2011) have also been applied. But

they are not currently used as solutions in gene expression profil-
ing, since they do not have sufficient depth of coverage in libraries,
and the quantification of low expression levels of transcripts is not
reliable.

Some studies associated with the identification of altered
changes of expression in temporal or/and spatial patterns ini-
tially investigated using digital expression. But applications on
the proper methods to facilitate the temporal analysis of large-
volume data generated by digital technologies have been poorly
addressed when compared to the comprehensive gene expres-
sion microarray approach, which has been the most commonly
used technology so far. The next-generation sequencing currently
revolutionizing the transcriptome field thus presents advantages
and a great potential over the previous technologies by allow-
ing for more in-depth studies. Detailed reviews of methods for
identifying DEX in early digital technologies can be found in
(Baggerly et al., 2003; Lu et al., 2005; Gilchrist et al., 2007; Zaret-
zki et al., 2010). Through tag-based approaches, including the
SAGE-seq, deepCAGE, and MPSS approaches, direct sequencing
of cDNA libraries has been applied in transcriptome studies as
an alternative to microarrays by not relying on genome annota-
tion for prior probe selection. Investigators have demonstrated
transcriptional profiles in a variety of developmental processes,
including plant and animal model development, embryogenesis,
defense responses to pathogens, and response to drug treatment.
More recently RNA-seq, with its improved technical quality, has
replaced methods used to identify developmentally related genes
or drivers in tumor progression or significant differences between
given experimental conditions. Along with the advent of new tech-
nologies to explore gene expression profiling, the use of methods
of testing hypotheses by developing a robust and precise approach
to fully account for underlying static or even dynamic tempo-
ral data structure has been investigated. Transcriptomic profiles
are defined by a class of high-throughput approaches, classi-
cal microarray, the initial digital gene expression measurement
such as SAGE, and more recently RNA-seq, offering consid-
erably greater throughput, which enables the expression-level
measurement of the abundance of tens of thousands of tran-
scribed RNAs in a given sample to be analyzed (Okaty et al.,
2011).

INVESTIGATING RNA-seq TIME-SERIES DATA USING
DYNAMIC DEX METHODS
The newly emerging RNA-seq technology enables the study of
the transcriptional program of various types of time-series exper-
imental designs underlying the development and evolution of
complex organisms. A more robust and precise methodology is
needed to fully understand the complex temporal patterns that
contribute to biological questions in their developmental systems
so as to better understand the causal relationship between gene
expression and time. This is not a trivial problem and makes it dif-
ficult to study them without a sophisticated statistical method. The
identification and characterization in RNA-specific time-series
expression profiles has been a long-standing challenge. As an alter-
native, static methods, limited but intuitive, have been applied for
RNA-seq time-series data (Kvam et al., 2012; Rapaport et al., 2013;
Soneson and Delorenzi, 2013). The current analytical limitation
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of static methods will be overcome with more rigorous dynamic
methods that account for sequential correlation on time-series
expression profiles as the cost of sequencing continues to decline
and the appropriate number of samples and time points become
available.

Accordingly, the issue of development of methodologies in
RNA-seq time-series data has emerged as a new syndrome in
this field, following by statistical methods to detect changes of
expression in pairwise comparisons. Prior to exploration and deep
discussion on dynamic methods, an understanding of the pros
and cons of different static methods is critical to enumerating the
specific benefits of the temporal aspects and the future direction
of applications of robust new methods of dynamic time-series
RNA-seq data in a given biological context. The advantages and
limitations of the existing static methods in the identification of
DEX were comprehensively reviewed in the previous sections.

The important question of how many time points (data points)
and replicates should be used to identify a particular temporal
expression pattern might be raised in the beginning of the experi-
ment to increase power and efficiency, since the cost of sequencing
data in time-series is not insignificant (Auer and Doerge, 2010;
Fang and Cui, 2011; Pauli et al., 2012; Busby et al., 2013).

Since RNA-seq time-series gene expression profiles in biolog-
ical systems commonly contain a short series of time points, as
extended studies from this current study show, methodologies
based on gene-to-gene interactions sharing information across
genes will gain more sensitivity in detecting genes whose changes
of DEX are not identified marginally in the gene-by-gene univari-
ate dynamic approaches presented in this review. In addition, it
is not still clear how to assess time course experimental design
with multi-factors (and/or multi-groups) in a small sample set-
ting or large-scale longitudinal data with repeated measurements
in clinical applications. For example, ones are interested in identi-
fication of temporally differentially expressed genes characterized
from different enzyme effects to stimulus-response experiments
of human diseases. In the particular time course data with mul-
tiple parameters to distinct levels of experimental or biological
factors, such as different tissues, strains, or drug treatments in
microarray, ANOVA and LIMMA have generally been applied in
relatively large experiments compared to RNA-seq. However, to
date RNA-seq assays in a multi-series of time course, a facto-
rial time course experiment has not been explored in statistical
methodology perspectives, even though such studies play a pivotal
role in revealing temporal mechanisms of expression from disease-
specific target genes with the stimulus of drug treatments. Thus,
RNA-specific methodologies of identifying temporal expression in
stimulus-response experimental settings will offer a range of spe-
cialized applications that have not been available in conventional
approaches to gene therapeutic effects. As an ad hoc approach, our
group is currently developing a statistical method to consider fac-
torial time course experiments (multi-series time course) as well as
identification of periodically regulated genes. Another interesting
topic to be addressed in RNA-seq is genetic regulatory networks
at alternative splicing (AS) diversity and gene level quantification.
More recently, (Stower, 2012) also pointed out the importance of
post-transcriptional studies in a time course and evidence for the
widespread association of incompletely spliced transcripts. Wood

et al. (2007) emphasized RNA-directed therapy strategies, includ-
ing altered processing of the target pre-mRNA transcript and the
reprogramming of genetic defects through mRNA repair, com-
paring it to conventional gene therapies as an emerging field in
clinical applications of genomics.

Characterization of temporal dynamics at AS diversity will soon
be a very promising and prominent research area by taking a look
at transcript variants individually other than unified gene level
quantification. In addition, in order to study cell-cycle or circadian
rhythmic variations with periodicity, an appropriate statistical
methodology must be selected to identify significantly cell-cycle-
regulated (or periodically expressed) genes of the genome in a
given organism. Currently there are no effective methods of defin-
ing the subset of predominantly periodically expressed genes in
RNA-seq genome-wide analysis from factorial periodical time
course experiment with conditions at a time.

CONCLUSION AND DISCUSSION
From a DEX perspective as steady-static methods, importantly,
prior to detection of temporal difference a normalization pro-
cedure must be incorporated to adjust various artifacts from
experiments. In order to be comparable between distinct intra-
and inter-samples, although intra-samples at a static time point
are assumed to be independent, the challenge is to incorporate the
fact that a gene’s expression at time t is dependent on its expres-
sion at the previous time point t-1. This remains elusive because
the normalization methods all assume that samples are indepen-
dently distributed, which is not true in time-series reality. It has
become apparent that reliable detection of the DEX between two
different or multiple groups at a static stage (or time point) is
the key to understanding complex biological functions and iden-
tifying known and novel disease-specific genes between distinct
groups such as those that lead to various types of tumors. For
now, the importance of detection of DEX in dynamic ways to pro-
vide practical solutions to comprehensively exploiting temporal
RNA-seq data is emphasized by the growing popularity of time-
series experimental studies on a system level for characterizing the
temporal orchestration of behaviors as a function of a time effect
in gene regulation of complex biosystems. Through DEX based on
ranking individual genes, numerous candidate genes with disease
effects in age or developmental progress can be detected. However,
the exact mechanisms underlying the influence of these genes and
the relationship between individual genes in temporal regulation
must be further examined.

Analysis of time-series RNA-seq data is still at an immature
stage in terms of development and application of methods to
decipher the complexity of a series of observations in time-series
representations. Most studies in RNA-seq time-series data so far
have applied methods that were originally developed for static
expression profiles without respect to time using simple pair-
wise comparisons in RNA-seq data or for time-series methods
in microarray after variance-stabilizing transformation. The iden-
tification and analysis of static gene expression profiles in RNA-seq
have become routine, and the rapid growth of time-series studies
for developmental biology and disease processes in clinical applica-
tions imposes issues for traditional methods of analyzing dynamic
system mechanisms. In general, the limited number of time points
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and replications in experimental design are due to the expense
of sequencing and the limited number of available biological
RNA-samples. This difficulty in obtaining the proper number of
samples for the many time points and biological replicates prevents
investigators of statistical methods from establishing standards
for time-series analyses due to large-scale dimensionality with the
small number of observations. And the corresponding large num-
ber of parameters causes a singularity of matrix, over-fitting, and
misleading results with false discovery rates. To overcome this,
short-time-series data can be dealt with by borrowing meaning-
ful information across genes in shrinkage methods, incorporating
prior information for representative temporal patterns or sequen-
tial correlation of gene expression between consecutive time points
in Bayesian approaches, incorporating prior information with
other genomic levels with Chip-seq and methylation data, and
collecting meta time-series data, although the challenges regarding
the heterogeneity of data remain.

The advanced, powerful statistical methods used to identify
temporal expression in a variety of RNA-seq time course data
will be useful both for web-lab biologists/clinicians and compu-
tational/statistical analysts who want to understand altered gene
expression over time, for gaining insights into biological systems
and for obtaining rich information from the data. Analyses of
temporal gene expression patterns may soon result in improve-
ment in the diagnosis and treatment of tumor progression or
neurodegenerative brain diseases and other human diseases with
a time window and experimental treatment conditions in gene
expression profiling. This comprehensive discussion provides the
first systematic review of methodologies on the identification of
dynamic expression profiles in time-series RNA-seq and forms
the foundation for future genetic, genomic, and developmen-
tal evolutionary studies related to human disease and health.
Understanding dynamic transcriptomes is crucial to understand-
ing the mechanisms of cell differentiation and ultimately providing
therapeutic immune system solutions or for characterizing cell
signaling and mitochondrial dynamics in neural degenerative dis-
eases such as Alzheimer’s and Parkinson’s from gene expression
profiles, although RNA-seq has not yet been extensively utilized to
characterize these diseases.

The pros and cons of several static methods of identifying
differentially expressed genes are listed here, including simple
pairwise comparison and multi-group comparison, and the lim-
itations of such methods in discerning temporal and spatial
transcript structure and analyzing transcriptome complexity in
dynamics are presented. Thus dynamic methodologies, includ-
ing the periodic time course proposed here, will provide critical
insights from simple short time course to retrospective stud-
ies of disease patients according to clinical characteristics. The
approaches can be applied in disease-related time course RNA-seq
transcriptome data or other count featured -omics data, such
as the initiation and progression of the immune response in
dynamics behavior in a given patient and the complexity and
dynamics of the human brain. In microarray, a longitudinal breast
cancer study identifying the gene expression profiles compared
between enriched cell populations and whole bone marrow from
normal volunteers and breast cancer patients after neoadjuvant
chemotherapy treatment could be an ideal example for defining

the correlation of the disease status, response to treatment and
survival in course of the study (Watson et al., 2007). This study
used enriched cells from bone marrow samples of breast cancer
patients before treatment or at 1-year follow-up and analyzed by
integrating total of 87 data sets. The expression of transcripts
specifically detected in enriched cell populations from breast can-
cer patients was correlated with 1-year clinical outcome using
quantitative reverse transcription-PCR in an independent cohort
of bone marrow samples.

Through currently the most attractive technology, RNA-seq,
identification of temporal changes of gene expression will pro-
vide a potential avenue for future studies of genetics, genomics,
system biology in developmental process and time-dependent
observed data such as aging, parkinson’s or Alzheimer’s disease
and for screening patients with tumor progression and infectious
dynamic disease using the new technology of RNA-seq time course
experiments in the various genomes.

More specifically, techniques are described here for identifying
temporal patterns that take into account the autocorrelation and
Markovian assumption that a time-series random variable typi-
cally exhibits high level of sequential correlation and the current
expression levels are dependent on past expression profiles. The
more informative dynamic methodologies considering correlation
structure across time points to identify temporal patterns will be
widely used with the advantages in RNA-seq ahead.

To overcome a general lack of dependent assumptions on exist-
ing methods and owing to small size of observations in RNA-seq
settings, statistically rigorous and validated approaches for time
course will lead to find dynamic response markers on gene expres-
sion profiles by accounting for proper assumptions, robustness,
and biological interpretations in gene functional pathways of
system biology at the most perturbed time point. Moving on tem-
poral dynamic analysis, the review describes the first systematic
and comprehensive identification methods of static and tempo-
ral dynamic patterns in RNA-seq transcriptomic data, including
array-based experiments, the very beginning of sequencing-based
experiments.

CLOSING REMARKS
The comprehensive enterprise of DEX analysis in a class of
high-throughput technologies was discussed by highlighting the
identification of DEX in static and temporal dynamics in RNA-seq
time-series, which have not been explored in statistical modeling
approaches to identify temporal expression, implying quantitative
biological scenarios in the biomedical research community. To
make this connection, this review is intended to be a guide to the
choice and use of a suitable method in a given study and to lead to a
significant paradigm shift in RNA-seq methodology. It can further
advance our understanding of hypotheses in directing a mathe-
matical relationship of system biological behaviors and statistical
modeling because all static existing methods are restricted to direct
applications for time-series dynamic data without any adaptations
of modeling and estimation. Without appropriate statistical mea-
sures in temporal analysis, almost any static approach will yield
significant genes, including a large number of false discoveries.
Furthermore, by incorporating the advantages of RNA-seq, in a
parallel manner, AS events and allelic specific expression will be
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also of value in addressing the consequences of mis-regulation
of splicing and allele in spatial and temporal time-series expres-
sion profiling in the context of human disease development. As
an important extension remark of these issues, a mathematical
graphical model is being developed in biological systems over time
on how to infer the temporal dynamics of underlying networks
in RNA-seq time-series data. For example, neuronal migration
during development of the cerebral cortex requires particular
exon-skipping events in a given transcript, and identification of
the specific transcripts which undergo a developmentally induced
AS switch in migrating neurons will play a critical role in defining
the dynamics of expression profiles and the intimate connections
between the regulation of AS and development (Garcia-Blanco
et al., 2004; Wang, 2007; Wang et al., 2008; Douglas et al., 2009;
Douglas and Wood, 2011; Grabowski, 2011). Many computa-
tional and statistical tools are currently in development, and many
issues must be addressed in RNA-seq, including quantification of
expression levels, normalization to adjust for experimental biases
and technical variability between replicates, DEX between groups,
comparative and integrative analysis of various methods, etc. One
of the main interests of findings in this study is the inference
of TDE, and characterization of temporal patterns will play a
predominant role in perspectives of statistical methodologies in
temporal analysis via RNA-seq. In this manuscript, comprehen-
sive review of statistical methodologies at a static and dynamic
were provided as statistical frameworks to define and uncover
dynamic temporal profiling for time course RNA-seq experiments
as static expression profiles that will be of great value in charac-
terizing the regulation of gene expression during a specific time
period.
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