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INTRODUCTION

Studies of human variation and its links to disease promise to
usher in an era of personalized medicine, where the genetic code
of an individual is assessed and used to guide clinical practice.
This advance toward individualized medicine is being made pos-
sible through the cataloging of common genetic variants and their
associations with complex traits and disease.

Genome wide association studies (GWAS) have a central role
in this human genetics revolution. The primary purpose of
GWAS is to identify single nucleotide polymorphisms (SNPs)
that are associated with phenotypic traits, typically those asso-
ciated with a particular disease (Figure 1). In a handful of
cases, particularly in cancer, the move to genome wide SNP
detection has led to clinically relevant predictions (Jostins and
Barrett, 2011). However, despite these best-case-scenarios, nearly
half of the disease-associated SNPs from published GWAS are
not located in or near genes (Visel etal., 2009; Hindorff etal.,
2013). Therefore, despite the fact that significant associations are
often found between complex traits and SNPs in gene deserts
(i.e., genomic regions of > 500kb that lack annotated genes
or protein-coding sequences; Venter etal., 2001; Libioulle etal.,
2007; Grant etal., 2009), their location within gene deserts
means they have no readily annotated gene function and can-
not be assigned to a specific biological pathway. Explanations
abound for why apparently significant SNPs are located in gene
deserts (Visel etal., 2009; Uddin etal., 2011; Zhang etal., 2012).
However, typically these sorts of results only make their way
into publications as part of supplementary tables of findings,
often without any attempt to explain the association. Current
trends are now shifting to focus on SNPs within gene deserts as
potentially contributing to diseases by regulating gene function
from a distance.

Genome wide association studies are central to the evolution of personalized medicine.
However, the propensity for single nucleotide polymorphisms (SNPs) to fall outside
of genes means that understanding how these polymorphisms alter cellular function
requires an expanded view of human genetics. Integrating the study of genome structure
(chromosome conformation capture) into its function opens up new avenues of exploration.
Changes in the epigenome associated with SNPs in gene deserts will allow us to define
complex diseases in a much clearer manner, and usher in a new era of disease pathway
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How is it possible for SNPs within gene deserts to reg-
ulate unlinked genes? The answer lies within the twists and
turns that form when 3 m of human DNA (chromosomes)
is packaged within a roughly spherical nucleus that is only
approximately 10 pm in diameter. Within the hierarchy of
folding necessary to package the genome within the eukaryotic
nucleus, regions of each chromosome contact other chromosomes
to form an intricate 3-dimensional DNA network. Therefore,
while two regions of DNA (loci) may be distant on a linear
scale, DNA folding provides a mechanism for these two loci
to become spatially close together. Implicit in this concept is
the idea that all genetic functions (regulation, reading, repair,
and replication) are influenced by this 3-dimensional architec-
ture, generating the cell’s morphology and function (Mistel,
2001). Intra-cellular DNA structure cannot be divorced from its
functions.

Methods to study intra-cellular DNA organization, e.g., chro-
mosomal conformation capture, 3C, or related methodologies
(Figure 2) have confirmed that loci on separate chromosomes
(Ling etal., 2006; Lomvardas et al., 2006) or on the same chromo-
some but separated by large intervening sequences (Carter etal.,
2002; Tolhuis et al., 2002; Sotelo etal., 2010; French etal., 2013)
can interact in space to regulate the expression of multiple genes
(Schoenfelder etal., 2010). Therefore, it is possible that intergenic
SNPs associated with diseases are indeed involved in the regulation
of genes and pathways through spatial associations with different
genes. In effect, intergenic SNPs represent sequence alterations
that affect the ability of these regions to interact with other loci
or recruit the proteins necessary for gene regulation at a distance
(Sotelo etal., 2010; French etal., 2013). This proposal gains some
support from the finding that 76% of GWAS SNPs are near (or
in linkage within a haplotype block) DNasel hypersensitive sites,
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FIGURE 1 | Genome wide association studies (GWAS) identify genetic
associations by comparing common single nucleotide polymorphisms
(SNP; a single DNA base which changes in the genome between
paired human chromosomes) across the human genome within a case
cohort (red-pants) with those present in a control cohort (black-pants).
The result is an “unbiased” discovery of common genetic variants
associating with a particular trait/disease. These are typically presented in a
Manhattan plot. [The Manhattan plot shown illustrates the significance of
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the trait association (y-axis) according to genome position (x-axis) for
pediatric asthma (Noguchi etal., 2011). In this study, a SNP in the 8g24
gene desert was clearly identified as the most significant risk loci for
pediatric asthmal. There are millions of SNPs across the billions of base
pairs of DNA that make up the human genome, but current GWAS focus
mostly on the relatively few SNPs that fall within genes. Although each
SNP has a relatively small impact on any one trait/disease, together they
explain large amounts of variation.
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FIGURE 2 | High-resolution molecular techniques for studying the
spatial organization of chromosomes. Various methods exist to capture
when two genomic regions are in close spatial proximity. Microscopy is a
powerful tool for visualizing structure, especially when combined with FISH
methodologies (Branco and Pombo, 2006; Rouquette etal., 2010). However,
even the super resolution microscopes only resolve 15-20 nm structures,
which limits the ability to visualize the lowest levels of DNA packing (Baker,
2011). By contrast, proximity based ligation technologies [e.g., 3C (Dekker
etal., 2002), 4C (Zhao etal., 2006), GCC (Rodley etal., 2009), ChIA-PET (Li
etal., 2013 n.d.), or 5C (Dostie etal., 2006)] enable the high-resolution
identification of which DNA sequences are contacting each other, directly
or indirectly, in 3D space at a given moment in time. (A) Proximity based
ligation methodologies currently incorporate the same basic steps. The
structure of the chromatin is captured by cross-linking which ensures that
regions that are in contact are chemically held together. The chromatin
structure is then broken into pieces with restriction enzymes (digested),
pieces that are held together by cross-links are then enzymatically joined
together (ligated), purified away from the cellular debris and detected by
various methods (for a more in depth discussion see Grand etal., 2011). The
method used for detection of these ligated products (i.e., PCR, low or high
through-put sequencing) depends on whether specific, close range or
global organization is being investigated. By coupling 3C technologies to
next-generation sequencing (NGS) it is possible to create unbiased low or
high-resolution 3-dimensional maps of whole genomes (Lieberman-Aiden
etal., 2009; Rodley etal., 2009). This has led to discoveries of interesting
interactions in regions of the DNA that otherwise wouldn't be thought to
be part of a particular disease process (Rodley etal., 2012). (B) Genetic
variation (SNPs, see Figure 1A) can affect chromatin structure by altering
folding patterns. These changes result in differential spatial relationships,
leading to a gain or loss of function through altered associations between
enhancers, promoters, LCRs, silencers, or imprinting control regions.

which are often locus control regions (LCRs) — regions associated
with enhancers (Maurano etal., 2012; Malin etal., 2013). Despite
the fact that “our understanding of higher-order genomic structure
is coarse, fragmented and incomplete,” (Dixon etal., 2012) there
are certain things that have been learned by a decade of research
on the topic.

HOW DO LONG-DISTANCE INTERACTIONS AFFECT GENE
EXPRESSION?

The “dog-on-a-lead” model has been proposed to account
for the coordination of positioning of chromosomes and the
formation of interactions within and between chromosomes. In
this model, chromosome positioning and folding dominates the

3-dimensional organization of the nucleus, while genes, domains,
and enhancers are largely limited to form contacts within the
chromosomal context within which they are located (Krijger and
de Laat, 2013). This model allows for the occurrence of cell-
specific interactions within similar chromosome domains as a
cause of variegated gene expression amongst otherwise identical
cells. (de Wit etal., 2013).

The dog-on-a-lead model for the spatial organization of
eukaryotic genomes encompasses the formation of short and long-
distance interactions, between enhancers and promoters, which
form an essential component of the regulatory systems for eukary-
otic gene expression (Sotelo etal., 2010; French etal., 2013). These
interactions are hypothesized to function to bring genes and
regulatory regions to spatial domains which contain high con-
centrations of the relevant enzymes, proteins and raw materials
required for the production of messenger RNA. In effect, loci
co-localize at factories that promote transcription (Cook, 2002).
For example, activation of the HoxB and uPA genes is accompa-
nied by alterations in their spatial organization that include the
association of these genes into a factory that promotes their tran-
scription (Chambeyron and Bickmore, 2004; Marenduzzo etal.,
2007; Ferrai etal., 2010). Thus, inter- and intra-chromosomal
organization is a reflection of the cell machinery integrating
spatial relationships into higher-order epigenomic regulation
(Baker, 2011).

However, as clear as these models have become, technological
challenges have left questions about the existence, formation and
maintenance of transcription factories that require chromosome-
mixing and long-range interactions. Firstly, the 3C based methods
that have become popular for the study of the 3-dimensional chro-
mosome networks can potentially bias the results (Razin etal,
2010; Gavrilov etal., 2013). Moreover, these methods are prob-
abilistic (O’Sullivan et al., 2013) and thus, interactions identified
by 3C are representative of what is happening in a population
of cells. Any one cell in the population is likely to display only a
small proportion of the interactions that were captured. There-
fore, the “factory” may not actually be present in any one cell.
Secondly, the amount of mixing (Branco and Pombo, 2006)
that occurs between spatially adjacent chromosomes within the
nucleus remains controversial with some contending that chro-
mosomes are self-contained with little mixing (Olivares-Chauvet
etal., 2011).

IS GENOME ORGANIZATION STABLE?

Evidence exists for organization of chromosomes into topolog-
ical domains in pluripotent stem cells that then remain stable
between cell types (de Wit etal., 2013). Reproducible spatial asso-
ciations between fragile loci may be reflected in translocation
hot-spots in somatic cells (Roix et al., 2003). For example, Burkitt’s
Lymphoma is often characterized by a translocation involving
the IgH locus, located on chromosome 14, and the Myc gene
promoter, located on chromosome 8 (Roix etal., 2003). Crit-
ically, the Myc and IgH loci co-localized during transcription
within the nucleus of primary B cells (but not other cell types;
Osborne etal., 2007; Wang etal., 2009) supporting the idea that
inter-chromosomal interactions can promote disease-associated
translocations. Overall, it is evident that genome organization has
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many common factors across cell type, but is unlikely to be a singu-
lar structure. Rather, the spatial organization is dynamic over time
and space, helping to regulate the cell’s current needs through
cycles of aging, type (function), and current needs (cell-cycle
dependent).

DOES THE SPATIAL ORGANIZATION OF A GENOME ALTER
WITH AGE?

DNA damage repair, histone modifications, and chromatin
remodeling are all highly affected by the aging process (Burgess
etal.,, 2012). Moreover, cellular aging has been shown to affect
the shape of the nucleus and nuclear lamina organization in
cell cultures of cells from Hutchinson—Gilford progeria syndrome
patients (Bridger and Kill, 2004). The aging process also plays a
great role in changes in gene expression, a process shown across
species. (Zhan etal., 2007; Brink etal., 2009; de Magalhaes etal.,,
2009; Park,2011). Epigenomics is generally considered to be highly
dependent on the interplay between the spatial organization of
chromosomes and nuclear functions. Therefore, it is reasonable to
hypothesize that aging-associated alterations to short- and long-
distance regulatory interactions within the spatial organization of
the genome affect the development-related expression of critical
genes.

It has been shown that in some circumstances similar genes
come together in 3D space, regardless of the age of the individual
(Gandhi et al., 2006). However, this result is controversial due to its
low resolution and observations of the developmental-dependent
regulated formation of long-distance interactions associated with
the expression of fetal and adult hemoglobin (Tolhuis etal., 2002;
Bank, 2006). Specifically, the erythroid-specific genes Hbb-bl
and Eraf, separated by over 20 Mb on the same chromosome,
co-localize into a transcriptional factory when actively transcribed
(Osborneetal.,2004). Similarly, mice Hbb has been shown to form
transcription-associated preferential inter-chromosomal connec-
tions with 359 erythroid genes from different genomic locations
(Schoenfelder et al., 2010).

IS IT IMPORTANT TO INCORPORATE THE CHROMOSOME
INTERACTION NETWORK INTO FUTURE GWAS/SNP
STUDIES?

Extensive efforts have been made to catalog human variation.
The most recent versions of dbSNP and the human gene muta-
tion database contain 38,072,522 validated variants (Sherry etal.,
2001) and ~100,000 mutations in nuclear genes (Stenson etal.,
2009) that are associated with complex human traits, respectively.
However, the associations between common-variants (SNPs) and
phenotypic traits or diseases held in these databases, and others
like them, only describe a small fraction of the overall heritability
of complex disease traits (Frazer etal., 2009). Thus, our ability
to elucidate functional pathways related to these SNPs has been
limited. Part of the reason for missing heritability has been pro-
posed to be bias toward results focused on the coding regions,
which comprise only 1.5% of the genome (Consortium etal.,
2007). This ignores the rest of the ~2.5-15% of the genome that
is estimated to be functionally constrained, yet outside of coding
regions (Vernot etal., 2012). Thus, given the fact that enhancers
can be located in gene deserts (Harismendy etal., 2011) and can

control multiple genes through physical interactions, it is impor-
tant to determine if SNPs located outside of genes contribute
to disease phenotypes through alterations to spatial regulatory
interactions.

One caveat to the study of SNPs within non-genic regions is
that, while it is known that common SNPs explain a substantial
portion of heritability, not all SNPs contribute equally to the heri-
tability of a trait. SNPs in genes explain the most heritability, while
those near genes (or in areas regulating them) explain some, and
those in non-genic regions (SNP deserts) explain little of the her-
itability (Smith etal., 2011; Yang etal., 2011; Schork etal., 2013).
Despite this, it remains possible that SNPs located outside of cod-
ing regions represent a new class of regulatory SNPs that make an
important contribution toward explaining heritability.

ARE THERE ANY CURRENT METHODS FOR ASSOCIATING
SNPs AND 3D FUNCTION?

Methods that try to explain the roles of these SNPs in the context
of 3D structure have recently begun to be developed. For example,
a recently developed database provides functional annotations of
SNPs using actual long-range interaction datasets (Wang etal.,
2012; Li etal., 2013). By going beyond conservation information
and incorporating information from multiple different sources
(e.g., HapMap, ENCODE), the GWAS3D database has branded
itself as an “efficient solution to interpret the regulatory role of
genetic variation in the non-coding regions,” associating SNPs
with 3D structure changes. This database brings 3D structure out
of LD blocks, but it does not provide a mechanism through which
gene deserts would have a functional role within the cell.

EXAMPLES OF GWAS HITS IN GENE DESERTS PLAYING A
FUNCTIONAL ROLE THROUGH 3D INTERACTIONS

Recent advances in the theoretical and experimental methods used
to study DNA packaging within cells make it possible to elucidate
the biological function and pathways to which SNPslocated within
gene deserts can contribute. This has been shown in a number
of gene deserts, most notably: SNPs within a 1.2 Mb region on
chromosome 8924, a known gene desert, have been implicated in
cancer-type-specific interactions with Myc, a highly potent cancer
gene > 300 kb away (Amundadottir etal., 2006; Ghoussaini et al.,
2008; Ahmadiyeh et al., 2010; Wasserman etal., 2010). This same
region has also been implicated in pediatric asthma in an Asian
population (Noguchi etal., 2011) and non-syndromic cleft lip in
pediatric patients (Grant etal., 2009).

In examples reflecting the complex nature of the metabolic
syndrome, several studies have found long-range interactions
that regulate metabolic disease pathways. 3D genome interactions
within the 9p21 locus were shown to play a functional role for
GWAS-significant SNPs associated with coronary artery disease
and type 2 diabetes; enhancers in this region with significant
STAT-1 binding have the ability to impair interferon-y signal-
ing response (Harismendy etal., 2011). Li etal. (2013) using the
GWAS3D database, showed that SNPs associated with diabetes
mellitus have a number of cell-type-specific interactions across
the genome, specifically the 1p13 region. This group also explored
the regulation of IRS1, active in type 2 diabetes and coronary artery
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disease, discussing the possible regulatory role of GWAS SNPs in
sites 600 Kb and 1 Mb downstream from the IRS1 gene promoter.

Beyond cancer and metabolic syndromes, long-range interac-
tions can have a role in human development. A study on the
transcription of Sonic hedgehog (SHH), an important regulator of
human development, has shown that its expression can be altered
by a SNP in an intron in a gene 1Mb away which acts on a cis-
acting regulator of SHH (2° of separation; Lettice et al., 2002). This
interaction plays a role in the development of preaxial polydactyly.

CONCLUSION

Since the GWAS era began over a decade ago, the understanding
of the genetics of human disease has undergone many significant
breakthroughs. Despite this, the likelihood that individual SNPs
explain any single heritable disease predisposition decreases with
the complexity of the cellular pathways and processes that ulti-
mately contribute to the disease. The “low hanging fruit” from
the common-disease, common-variant hypothesis is likely gone,
prompting the drive to find new breakthroughs and move the pur-
suit beyond simply cataloging the deleterious SNPs within genes
(Lietal., 2013).

Alterations to the genome can occur to the actual DNA
sequence and also at the level of the spatial organization. Indi-
vidually, or collectively, these changes contribute to diseases in a
number of different ways. Therefore, while intergenic SNPs do
not affect the coding sequence of any known genes, it remains
likely that they contribute to disease phenotypes by changing the
3-dimensional organization of the genome.

While the functional characterization of intergenic SNPs is no
easy feat, it is critical that new research identifies and functionally
characterizes all variants and variant combinations that make a
significant contribution to disease etiology. Expressed quantita-
tive trait loci (eQTL) studies have attempted to link SNPs, changes
in gene expression, and phenotype. However, the mechanism by
which non-coding SNPs affect expression remains unclear, par-
ticularly for trans-eQTLs. Integrating spatial organization, eQTL,
and SNP data may provide evidence for direct linkages that explain
some of these correlations.

Integrating clinical, computational and molecular approaches
to identify changes in pathways mediated by spatial associations
with intergenic SNPs will open up avenues of exploration that can-
not be otherwise elucidated, defining complex disease in a much
clearer manner, and ushering in a new era of disease pathway
exploration.
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