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The goal of this paper is to review recent research on copy number variations (CNVs) and
their association with complex and rare diseases. In the latter part of this paper, we focus on
how large biorepositories such as the electronic medical record and genomics (eMERGE)
consortium may be best leveraged to systematically mine for potentially pathogenic CNVs,
and we end with a discussion of how such variants might be reported back for inclusion in
electronic medical records as part of medical history.
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WHAT ARE COPY NUMBER VARIATIONS?
Copy number variations (CNVs) are deletions and duplications
in the genome that vary in length from ∼50 base pairs to many
megabases (50 base pair to 1 kilobase CNVs are typically consid-
ered indels). Events that cause CNVs include non-allelic homolo-
gous recombination, non-homologous end-joining, transposition
of transposable elements, transposition of pseudogenes, vari-
able numbers of tandem repeats, and replication errors following
template-switching or fork stalling. CNVs are the primary mode
by which an individual acquires a mutation, and occur at a rate of
approximately 1.7 × 10−6 per locus as opposed to 1.8 × 10−8 for
sequence variation (Lupski, 2007). Estimates of CNV frequency
vary depending on the size of the structural variation classed as
CNV – some estimates suggest that up to 12% of the genome
may be variable in copy number, and that the cumulative result
of CNV inheritance may constitute more than 10% of the human
genome (Carter, 2007; Lupski et al., 2010). Recent studies suggest
that the average human genome contains >1000 CNVs, cover-
ing approximately four million base pairs (Conrad et al., 2010;
Mills et al., 2011), and occur at a rate of 0.07–0.12 per generation
(Cordaux and Batzer, 2009; Itsara et al., 2010; Beck et al., 2011;
Malhotra and Sebat, 2012). The Database of Genomic Variation
(DGV)1 currently lists over 100,000 published, unique, CNVs
across the genome. While the majority continues to be benign,
an increasing number of CNVs have been associated with dis-
ease susceptibility. Common functional consequences of CNVs
typically demonstrate gene dose effect and include truncated pro-
tein sequences, eliminated/reduced protein expression (typically

1http://dgv.tcag.ca/dgv/app/home

the result of deletions), or increased protein expression (typically
caused by duplications).

HOW ARE COPY NUMBER VARIATIONS IDENTIFIED?
ARRAY-BASED APPROACHES
A range of approaches are available for detecting CNVs (Figure 1).
The most common methods rely on computational methods,
which leverage signals from genotyping and sequencing to infer
CNVs. For example, large chromosomal anomalies can be detected
through log R ratio (LRR) and B-allele frequency (BAF), data
routinely generated and provided with single nucleotide poly-
morphism (SNP) and exome microarrays (e.g., Figure 2). For
replication and validation, quantitative PCR – which compares
the threshold cycles of a target versus reference sequence –
is still widely deployed. In a similar vein, paralogs-ratio test-
ing and molecular copy number counting are also used for
validation.

For high-throughput CNV detection, the most common plat-
forms are genome hybridization (CGH) arrays, genome-wide
association (GWA) arrays, and second-generation sequencing
(SGS). CGH arrays use artificial bacterial chromosomes or long
synthetic oligonucleotides to probe either specific regions of inter-
est or the entire genome (Greshock et al., 2007; Haraksingh et al.,
2011). While this method has relatively low spatial resolution (typ-
ically >5–10 Mb; Kallioniemi et al., 1993) and requires a relatively
large volume of DNA, CGH does offer high sensitivity and speci-
ficity (Greshock et al., 2007; Haraksingh et al., 2011), which is
critical in a diagnostic context.

Single nucleotide polymorphism (SNP) arrays are more com-
monly used for CNV analysis, and CNVs can be identified from
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FIGURE 1 | CNV detection using different platforms: platforms vary in their capacities to detect CNVs.

FIGURE 2 | CNV detection in SNP-array data using PennCNV:

example log R ratio (LRR) and B Allele Freq (BAF) values for the

chromosome 15 q-arm of an individual. Three normal chromosomal
BAF genotype clusters (AA, AB, and BB genotypes) have LRR values
around zero. The copy-neutral loss-of-heterozygosity (LOH) region has

normal LRR values, but no AB cluster. Increased copy number can be
observed in the increased number of peaks in the BAF distribution and
increased LRR values. LRR and BAF patterns are different for different
CNV regions, and can be used to generate CNV calls. Adapted from
Wang et al. (2007).
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standard GWA array signals, or from arrays that utilize custom
probes. Custom probes offer greater coverage of non-SNP sites,
and can offer high sensitivity, particularly with regard to break-
point resolution (Haraksingh et al., 2011). While conventional
(i.e., non-custom) SNP arrays offer less specificity, they never-
theless represent a cost-effective option for characterizing CNVs
and have been successfully applied to a wide range of phenotypes
to date (Connolly and Hakonarson, 2012).

Importantly, it is possible to retroactively characterize CNVs
from existing genome-wide association study (GWAS) data. In
this context, the observed SNP signal of an allele relative to
the normalized intensity of the allele can be used to deduce a
deletion (decreased intensity) or duplication (increased inten-
sity; Glessner et al., 2012). This possibility constitutes a major
opportunity for custodians of large biorepositories such as elec-
tronic medical record and genomics (eMERGE), where a large
volume of GWAS data has already been generated. Since its found-
ing in 2007, the eMERGE consortium has produced dozens of
GWASs on a range of phenotypes including lipids (Rasmussen-
Torvik et al., 2012), arrhythmia (Ritchie et al., 2013), and white
blood cell count (Crosslin et al., 2012) to name a few. For
many of these phenotypes, no CNV studies have been pub-
lished to date. This, we believe, represents an opportunity to
identify new disease-associated loci without the generation of
new genotype data, and will be addressed by the consortium
in the immediate future. Similarly, we note that a large num-
ber of studies listed in the NHGRI GWAS catalog2 do not have
complementary CNV data, suggesting a largely under-utilized
resource.

For array-based analyses, a range of packages are available.
Both Affymetrix and Illumina – the two primary purveyors of
SNP arrays – offer free software packages for CNV analysis. Inde-
pendently developed toolsets are also available. These include
circular binding segmentation (Olshen et al., 2004) MixHMM (Liu
et al., 2010), GADA (Pique-Regi et al., 2008), PennCNV (Figure 2;
Wang et al., 2007), and ParseCNV (Glessner et al., 2013a; the lat-
ter two were developed by eMERGE researchers and are widely
used).

SEQUENCING-BASED APPROACHES
Common CNVs are well-covered by SNPs in existing arrays
(Conrad et al., 2010; Wellcome Trust Consortium et al., 2010).
However, a resequencing study by Pang et al. (2010) suggests
that coverage of rare CNVs may be less comprehensive. The
authors identified over 12,000 structural variants in 4,867 genes
across 40 + mb of sequence (the Venter genome), which had
been initially unreported. More than 24% of these CNVs would
not have been imputed by SNP-association. Given that rare
alleles can have large effect sizes and a high penetrance, these
results underline the limitations of SNP arrays to identify certain
pathogenic CNVs. SGS, which is far more proficient at identi-
fying rare CNVs, offers an attractive solution in this regard –
particularly in identifying novel insertions absent in the refer-
ence genome. This has obvious clinical utility. SGS also confers a
number of other critical advantages in terms of ability to identify

2http://www.genome.gov/gwastudies/

smaller CNVs (<50 bp), and an enhanced capability for detect-
ing breakpoints (Li and Olivier, 2013). Indeed, because SGS
allows us to probe breakpoints at the level of base pairs, it facili-
tates capture of the signature of potential mutational mechanisms
(Li and Olivier, 2013).

With SGS data, the most common methods for CNV iden-
tification from short-read analysis (Medvedev et al., 2010) are
read-depth analysis (Xie and Tammi, 2009; Yoon et al., 2009;
Abyzov et al., 2011), split-read mapping (Mills et al., 2006), paired-
end read mapping (Korbel et al., 2009), and clone-based sequenc-
ing (Kidd et al., 2008). For all approaches, the most important
determinants of accuracy are alignment and read-length. The aver-
age length of (reliable) reads is ∼ from 100 to 150 bp, which
is insufficient to eliminate erroneous mapping. As this metric
improves, CNV-calling algorithms will become more accurate.

A large number of algorithms have been developed for
indentifying CNVs from sequencing data, including CNVnator
(Abyzov et al., 2011), PennCNV-Seq (in press), GenomeStrip
(Handsaker et al., 2011), cnvHiTSeq (Bellos et al., 2012), and
XHMM (Fromer et al., 2012). Different CNV algorithms have
different strengths and weaknesses (see Li and Olivier, 2013 for
review), and the most effective strategy in terms of minimizing
erroneous CNV calls is to incorporate multiple toolsets, which
can be validated computationally via local de novo assembly (e.g.,
see SVMerge, Wong et al., 2010).

DISEASE-ASSOCIATED COPY NUMBER VARIATIONS
As discussed elsewhere in this issue, GWASs have been success-
ful in identifying common risk variants, particularly where the
frequency of such variants is >5%. In addition to common vari-
ants, certain disorders have been shown to be enriched for rare
CNVs (Conrad et al., 2010; Pang et al., 2010). In terms of func-
tional impact, CNVs have been shown to be enriched in genes
involved in immune responses, cell–cell signaling, and retrovirus-
and transposition-related protein coding (Li and Olivier, 2013). A
large number of phenotypes have now been associated with CNVs,
including several rare diseases (Matsuura et al., 1997) and a range
of neurodevelopmental disorders (Glessner et al., 2012), includ-
ing depression (Glessner et al., 2010c), schizophrenia (Glessner
et al., 2010b), and autism (Glessner et al., 2009). Autism pro-
vides a particularly good example of how our understanding of
genetic risk factors and etiology is enhanced by CNV research,
as demonstrated by a recent exome sequencing study (Iossifov
et al., 2012) involving 343 families from the Simons Simplex
Collection.

The study identified 59 “likely gene disruptions (LGDs)” in
autism cases. Interestingly, the 59-strong LGD shared overlapped
strongly with a set of 842 proteins that interact with the fragile
X protein, FMRP. In total, 14 of the 59 LGDs encoded FMRP-
interacting proteins (P = 0.006), as did 13 of 72 CNV candidates
from the group’s previous CNV paper (P = 0.0004). Thus, 26 of
129 candidates were FMRP-related (P < 1 × 10−13). These results
mark the fragile X mental retardation 1 (FMR1) gene as a high-
profile autism candidate. Screening upstream targets of FMR1, the
same group identified a deletion in GRM5 that removes a single
amino acid, causing an additional substitution at the same site.
GRM5 encodes the glutamate receptor mGluR5 (Bear et al., 2004),
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which has been proposed as translational target in both ASD and
ADHD (Elia et al., 2012; Silverman et al., 2012).

Several other CNV studies of autism have uncovered rare recur-
rent CNVs that have been informative. Our laboratory recently
identified a range of CNVs in two major gene networks, ubiq-
uitins and neuronal cell adhesion molecules that predispose to
autism (Glessner et al., 2009). The ubiquitin–proteasome system
is known to operate at pre- and post-synapses, and mediate neu-
rotransmitter release, recycling of synaptic vesicles in pre-synaptic
terminals, and modulating changes in dendritic spines and post-
synaptic density (Yi and Ehlers, 2005). Neuronal cell adhesion
molecules contribute to neurodevelopment by facilitating axon
guidance, synapse formation and plasticity, and neuron–glial
interactions.

Results from these and several other CNV studies suggest that
genomic hotspots may be particularly vulnerable, which for autism
include loci on chromosomes 1q21, 3p26, 15q11–q13, 16p11, and
22q11 (Bucan et al., 2009; Glessner et al., 2009; Pinto et al., 2010).
Interestingly, these hotspots are part of large gene networks that
are important to neural signaling and neurodevelopment, and
have additionally been associated with other neuropsychiatric dis-
orders. For example, studies of schizophrenia have highlighted
structural mutations incorporating chromosomes 1q21, 15q13,
and 22q11 (Glessner et al., 2010b). From an etiological perspec-
tive, autism and schizophrenia seem extremely different and it
would seem counter-intuitive that associated loci should overlap.
Some authors have addressed this peculiarity by proposing that
the two disorders may in fact be opposite poles of the same spec-
trum (Crespi and Badcock, 2008). While such propositions await
confirmation, they do highlight the potential of CNV studies to
generate new hypotheses about the nature of complex diseases.
Although individual structural variants explain relatively little by
way of genetic variance, their cumulative is likely to be consider-
able. For autism, Marshall et al. (2008) suggested that CNVs play
a causal role in 7% cases.

Beyond neuropsychiatric diseases, CNV studies have been pub-
lished across a range of disease types, including heart disease
(Goldmuntz et al., 2011), obesity (Glessner et al., 2010a), and
cancer (Kuusisto et al., 2013). They have also recently been impli-
cated in altered lifespan through alternative splicing mechanism
(Glessner et al., 2013b).

COPY NUMBER VARIATIONS IN THE CONTEXT OF THE
EMERGE CONSORTIUM
As illustrated in Table 1, the eMERGE consortium bioreposi-
tory includes ∼60,000 individuals that have been genotyped on
high-density GWA arrays3, all of which have been linked with
electronic medical records (EMRs). The size and diversity of the
repository is such that it invokes the possibility for deep mining
of disease-associated variants across multiple phenotypes. It is
inevitable that a reasonable proportion of these individuals have
disease-associated CNVs, and a larger proportion may be carriers
of structural variants in recessive disease genes. By systematically
characterizing CNVs across the biorepository, we have a very obvi-
ous opportunity to catalog CNVs and their disease-burden status.

3http://www.genome.gov/27540473

We have now run PennCNV on eMERGE Phase I data (2007–
2011), and will soon have circular binary segmentation analyses
complete for the same set (50-kb to whole-chromosome). Rele-
vant analyses will play a major role in the consortium’s Phase II
genomics program (2012–2015).

Similarly, the eMERGE consortium recently embarked upon
a large-scale pharmacogenomics project [n = ∼9000, review at
Rasmussen-Torvik et al. (2012) in this issue], featuring a tar-
geted sequencing platform developed by the Pharmacogenomics
Research Network (PGRN), and covering 84 genes considered
important for drug–gene interactions4. While the primary pur-
pose of this project is to screen for existing pathogenic variants,
this does offer an important opportunity to probe for novel vari-
ants in existing candidate genes, and to return results to patients’
medical records. This clearly cannot be accomplished without
paying heed to extensive medical, psychological, and ethical con-
siderations, which are addressed elsewhere in this issue and in
previous literature (Green et al., 2013). Assuming, however, that
such considerations are adequately addressed, the section below
considers how this might be accomplished and the potential to
impact clinical care.

INTEGRATING CNVs WITH MEDICAL RECORDS – WHAT ARE
THE OBSTACLES?
As discussed at length in this issue, the possibility of linking
genomics data with EMRs represents a potentially major health-
care opportunity. What variants/results and how to report them
remains open to debate, and indeed part of the remit of the
eMERGE consortium is to think through these hurdles.

An obvious first step is determining the pathogenicity of rel-
evant CNVs. Traditionally (e.g., cytogenetics), interpretation of
CNVs has concentrated on diseases where the mode of inheritance
was dominant, and relied on simple case–control comparisons to
discriminate pathogenic from non-pathogenic variations. Where
the CNV was common (i.e., frequency >1–5%), it was typi-
cally classed as non-pathogenic. Thus, by process, “rare” implied
“pathogenic.” With SGS and the increased capacity to detect
smaller CNVs, this assumption falls down to a certain extent.
We have started to see numerous studies where control and
case de novo rate of small CNVs is as high as 5–10%. For
rare CNVs in complex diseases, there is often insufficient power
on which to base a judgment. Public databases that catalog
pathogenic and non-pathogenic CNVs are therefore critical to
determining frequencies of CNVs in disease cases and healthy
controls.

Perhaps the most widely used catalog is the DGV, which aims
to provide a “comprehensive summary of structural variation in
the human genome” based on peer-review of relevant studies.
While the DGV has obvious clinical and research relevance, sev-
eral recent commentaries (Duclos et al., 2011; Hehir-Kwa et al.,
2013) have urged caution in relying too heavily on its frequency
and mapping statistics. As highlighted by Lee et al. (2007), many
CNVs in the DGV are derived from single platforms/technologies,
which may not necessarily translate to alternate approaches. Sev-
eral recent studies (Perry et al., 2008; Conrad et al., 2010) suggest

4www.pgrn.org

Frontiers in Genetics | Applied Genetic Epidemiology March 2014 | Volume 5 | Article 51 | 4

http://www.genome.gov/27540473
http://www.pgrn.org
http://www.frontiersin.org/Applied_Genetic_Epidemiology/
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Connolly et al. CNV analysis of eMERGE phenotypes

Table 1 | Summary of biorepositories and electronic medical records (EMRs) at 10 eMERGE-Institutions. Adapted from Gottesman et al. (2013).

Institution Biorepository Recruitment model Biorepository size Race/ethnicity and age of donors

Boston Children’s

Hospital

Gene Partnership Outpatient and

hospital-based

3,372 83% European 9% African 6% Asian

11% Hispanic/Latino Mean age:

23 years

Children’s Hospital

of Philadelphia

A Study of the Genetic Causes of

Complex Pediatric Disorders

Population-based

and disease-specific

60,000 internal (plus

100,000 external)

47.0% European 43.3% African 7.0%

Admixed 1.7% Asian 0.8% Hispanic

0.2% Native Amer. Mean age: 11 years

Cincinnati Children’s

Hospital

Better Outcomes for Children Outpatient and

hospital-based

8,472 73% European 10% African Mean age:

9 years

Geisinger Clinic MyCode® Population-based

and disease-specific

35,000 98% European Age: < 89 years

Group Health Seattle ACT Study; Alzheimer’s Disease

Patient Registry (ADPR); Northwest

Institute of Genetic Medicine (NWIGM)

Disease-specific and

HMO-based

5,859 92% European Age: > 50 years

Marshfield Clinic

Research Foundation

Personalized Medicine Research

Project

Population-based 20,000 98% European Mean age: 48 years

Mayo Clinic Vascular disease biorepository (VDB);

Mayo Clinic Biobank; other

disease-specific

Outpatient-based 36,000 97% European Mean age: 63 years

Mount Sinai School

of Medicine

BioMeTM, The Charles Bronfman

Institute for Personalized Medicine

Biobank Program

Outpatient and

hospital-based

25,000 40% Hispanic/Latino 25% African

25% European

Northwestern

University

NUgene Outpatient and

hospital-based

12,000 9% Hispanic/Latino 12% African

78% European Mean age: 48 years

Vanderbilt University BioVU Outpatient and

hospital-based

155,000 2% Hispanic/Latino 15% African

80% European Mean age: 49 years

that because of relatively low resolution in some studies, the size
of relevant CNVs may be smaller than outlined in the DGV.
Duclos et al. (2011) drew similar conclusions, stressing the“urgent
need to validate the frequencies and boundaries of the CNVs
recorded in the DGV.” This conclusion is based on the groups
finding that some of the recorded CNVs are erroneously listed as
polymorphic, which, if implemented in a medical setting may
led to a deleterious CNV being called benign. Alternate CNV
databases (e.g., dbVar; Lappalainen et al., 2013) have been estab-
lished, but all are restrained by the quality of data on which they are
based.

Other obstacles that have hampered development of CNV
databases are inconsistent annotation of genomic data across
studies, ill-defined curation protocols (e.g., QC-reporting, CNV-
calling parameters), and incomplete phenotypic data. In each
case, there is potential for consortium-led efforts to delineate
best practices. To address the challenge of incomplete pheno-
types, there is a particular opportunity for the eMERGE network.
The majority of individuals enrolled in the eMERGE repos-
itory have their longitudinal EMRs linked to their genotype.
This affords far greater potential for determining pathogenic-
ity than traditional case–control studies, where controls may be

categorized as lacking a specific disease state, with no other phe-
notype data. Completeness-of-EMR is critical in this regard. For
patients enrolled in the biorepository at The Children’s Hospi-
tal of Philadelphia, the mean duration of EMRs is ∼5.5 years,
and is similar across other eMERGE sites. Relevant data include
all ICD-9 diagnoses, lab values, procedures, and medications.
Data of this length and depth should be considered minimal
requirements for addressing pathogenicity on a large scale, while
supplementation with disease-specific measures is also highly
desirable.

Another major challenge in returning CNV data to patients’
EMR concerns the nature of inheritance. An interesting study
by Boone et al. (2013) recently sought to determine the rate of
CNVs in recessive disease genes. The group used CGH to char-
acterize deletion CNVs in 21,470 individual, identifying 3,212
heterozygous potential carrier deletions in 419 unique disease-
associated genes. While many of these CNVs are likely benign
polymorphisms, the group identified 206 heterozygous CNVs
in multiple recessive genes, spanning 2–6 genes in each dele-
tion. These CNVs, therefore, confer carrier status for multiple
recessive conditions. Similarly, 307 individuals had multiple dele-
tions in recessive disease genes. While many of these gene pairs
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have unrelated function, a non-trivial proportion belongs to a
shared pathway. Indeed, one participant had a CNV spanning
three recessive immune genes PSMB8, TAP1, and TAP2, which
are associated with autoinflammation, lipodystrophy, dermato-
sis syndrome (PSMB8), and type I bare lymphocyte syndrome
(TAP1 and TAP2). He also had a CNV in CD19, mutations of
which are associated with common variable immunodeficiency.
The authors were unable to determine whether the individual had
a compromised immune system or presented with a history of
immune disease (samples were anonymized). Nevertheless, he was
clearly a multiple-deletion carrier, as were ∼1.5% of the cohort:
such information may be of direct clinical relevance to individ-
uals’ offspring – whether this should be shared remains open to
debate.

Inherited CNVs pose a similar set of problems. While the
majority of inherited CNVs may be in loci that lead to reces-
sive disorders, this is not always the case. Indeed, one of the
best-known CNVs is duplication at 15q11–q13, which accounts
for up to 3% of autism cases (Sebat et al., 2007; Marshall et al.,
2008). A complex scenario was recently described by Knijnen-
burg et al. (2009), where a child with a homozygous deletion in
15q13.3 (inherited from non-consanguineous, hemizygous car-
rier parents), resulted in hearing loss. Critically, if the CNV is a
gain, three copies may have no phenotypic effect but four copies
may have clinical consequences (Giorda et al., 2011). Conversely,
when one parent carries a CNV loss in a recessive disease gene
and the other parent carries a mutation in the same gene, this
can result in compound heterozygosity in offspring (Hehir-Kwa
et al., 2013; Paciorkowski et al., 2013). These findings stress the
point that not only is the size, location, and direction of the
CNV important, but so too is the number of copies. A range
of other inheritance scenarios are reviewed by Hehir-Kwa et al.
(2013), including X-linked CNVs (wide vary widely across indi-
viduals), and mosaic imbalances (Kousoulidou et al., 2013; may
vary across an individual’s cell types; Biesecker and Spinner, 2013;
Forsberg et al., 2013).

Another point concerning CNV interpretation is the phe-
nomenon of pleiotropy. As discussed above, a large proportion of
reported recurrent CNVs have replicated across diseases (Cooper
et al., 2011; Girirajan et al., 2011; Sahoo et al., 2011; Williams
et al., 2011). Thus, the same microduplications at 1q21.1 have
been associated with both autism and schizophrenia (Weiss
et al., 2008; McCarthy et al., 2009). Relevant factors influenc-
ing the expressivity of this microduplication are a combination
of environmental, epigenetic, and oligogenic (other modifier
genes; Girirajan et al., 2010) factors. The precise mechanisms
of causality that lead to a particular etiology are thus likely to
be extremely complex, which calls into question what, if any-
thing, might be reported in patients’ EMRs. Such questions are
the subject of ongoing debate (Fabsitz et al., 2010; Cassa et al.,
2012), and are beyond the scope of this review. However, it
is obvious that as genomic data becomes increasingly ubiqui-
tous, we will require extensive guidelines in determining how
CNV results should be interpreted and shared. For the same
reason, it is critical that healthcare professionals receive ade-
quate training and resources to understand and communicate test
results.

Additionally, due to large numbers of cell divisions, CNVs, par-
ticularly deletions, can be acquired in the hematogenic progenitor
cells. We have previously shown that acquired mosaicism increases
with age and can be associated with hematological disorders
(Laurie et al., 2012; Schick et al., 2013). However, when analyz-
ing CNVs associated with neurological disorders, such acquired
CNVs must be distinguished from germline mutations that are
represented in non-hematological tissues, such as brain.

CONCLUSION
To date, a large number of diseases, across a large range of
fields, have been associated with CNVs. We are still in our rel-
ative infancy in terms of deciding-upon the pathogenicity of such
structural variants. We have stressed the need for a large, publicly
accessible, and curated repository where CNVs that have been val-
idated across platforms and technologies are stored. Whether this
repository stems from improving existing catalogs or is developed
ab initio remains to be determined, but the necessity of such a
resource is compelling. Several eMERGE-led projects could fun-
nel directly into such a repository, which would have real potential
to impact healthcare.

A number of obstacles have stymied result-sharing – difficulties
identifying CNVs (particularly in regions enriched for repetitive
content), a shortage of standards, and the nature of CNV disease
burden. These problems have attracted much attention in the past
several years, and are well-characterized. While there is general
agreement that such obstacles are substantial, there is a similar
degree of optimism that benefits to be derived from solving these
problems far outweigh the costs required. Again, consortium-led
initiatives will likely be the most effective platforms for standardiz-
ing CNV-calling algorithms and developing guidelines for clinical
care. The time is ripe for such initiatives, and we expect to see
CNV-driven research make a major impact in clinical care in the
next decade.
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