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BACKGROUND

Cancer is a multifactorial disease with
a striking heterogeneity due to genetic,
epigenetic and transcriptional changes
involving a myriad of genes and proteins.
While these factors are relevant to clin-
ical prognosis and medical treatment, a
system’s approach is needed to unravel
the complexities underlying intertwining
carcinogenesis mechanisms. In particular,
networks allow for straightforward inte-
gration of molecular, genetic, clinical, and
topological features embedded in measur-
able cancer data. Modeling such data leads
to an assessment of significant changes in
conditions which affect the cellular mech-
anisms, in particular dysregulating them.
Ultimately, treatment of cancer as a sys-
tems disease indicates a challenging trans-
lation from systems biology to systems
medicine. Markers are key players in can-
cer, characterized by the reference entity
(gene, protein, etc.,) and by their indi-
vidual or composite nature. We aim to
show that the association of markers with
detected network modules presents advan-
tages compared to the consideration of
individual markers.

Network complexity can be character-
ized in many possible ways, and both the
specific data and the network structure
represent factors conditioning any pos-
sible inference approach. The structural
organization of networks is measurable
at both local and global network scale.
Consider for instance node degree and link
density as a starting point, then move to
the analysis of degree-degree correlation,
and finally to the exploration of modular-
ity (core/community structure). While

such translation allows for validating
the presence of non-random network
dynamics, the role of stochasticity sug-
gests that a network can be conceived
as an example of an ensemble of net-
works with certain structural properties,
i.e. a sort of example sampled from a net-
work space. Notably, by focusing on the
structure of networks, and not on the
dynamics defined on them, the concept
of stationarity is simplified by considering
the fact that despite natural networks arise
often from non-equilibrium processes,
the notion of equilibrium
gated through the previously described
translation (roughly speaking, single
nodes—correlated nodes—modules and
cross-linked modules) can be considered
an abstraction within a frame in which
network ensembles are stationary entities
and each example or component network
can be seen as a state of the system.
Markers involve several complex
phases, such as: discovery, identification,
and validation. Networks offer an inter-
esting opportunity with regard to the
study of markers: they allow to estab-
lish their relevance as individual entities
and also as components of a cluster or
module. Supported by recent literature
(Dao et al.,, 2011; Peer and Hacohen,
2011; Bebek et al., 2012; Wu et al., 2012;
Ben-Hamo and Efroni, 2013), we hypoth-
esize that by switching their role, from
individual to team players, markers may
provide novel information on cancer,
especially when studied in a pathway con-
text. In particular, markers examined at
a network scale may reveal their systems
relationships, generating synergistically

investi-

active candidates. This fact is impor-
tant as it bypasses limitations due to
low reproducibility between differential
expression (DE) studies, because of the
cellular heterogeneity within a tissue,
genetic heterogeneity among patients,
and other reasons (Ein-Dor et al., 2005,
2006). Chuang et al. (Chuang et al,
2007) highlight that sub-networks, i.e.,
connected components in a protein inter-
action network, which are induced by
markers, show superior reproducibility
compared to isolated gene markers. Also,
genes with known breast cancer muta-
tions may be not detected by DE studies,
but still play an important role in inter-
connecting DE genes. Sub-networks were
detected based on the maximization of the
mutual information computed between
the activity scores (averaged normalized
gene expressions) and the disease status
(metastasis/non-metastasis). Similarly,
Lee et al. (2008) computed the activity
of pathways through a related score cor-
responding to the activity of the subset
of genes in each pathway (called CORGs)
found to better discriminate the disease
status. Notably, we looked carefully at the
new generation of pathway enrichment
tools in the bioinformatics literature, and
selected for our analyses GeneMANIA
(Mostafavi et al., 2008; Warde-Farley
et al., 2010). This tool integrates known
co-expression, co-localization, pathway,
protein interaction and genetic interac-
tion relationships to the DE gene list,
and predicts from the latter additional
genes, with the result of strengthening the
functional enrichment analysis. This inte-
grative omics approach becomes a binder
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Table 1| Single gene marker versus module marker across epigenetic treatments.

Treatment type Source: DE genes Source: extended gene list
Gene markers Induced module marker Gene markers Induced module markers

From DAC to DAC + TSA 9 0 13 24

From TSA to DAC + TSA 20 0 25 26

Module #Pathways Best pathway FDR -best #Genesin #Genesin Genes

marker enriched pathway module pathways

ID in module marker

7 1 T cell activation 9.97e-08 15 217 AKT1, CD3G, CD47 CD8B, IFNB1, IGF1, IL6, IL6ST,
INS, KIT, MYB, PIK3CA, PIK3R1, TNFSF18, WNT1

13 1 JAK-STAT cascade 1.04e-06 10 89 EGF, IGF1, IL6, IL6ST, KIT, MAPK1, MAPK3, SH2B2,
STAT5A, STAT5B

52 1 Growth factor receptor binding 2.03e-04 7 70 EGF, IL6, IL6ST, PDGFB, PDGFRA, PDGFRB, TGFAIlfa

74 2 Apoptotic signaling pathway 9.42e-04 9 173 AKT1, CASP9, CDKN1A, IGF1, PDCD6, SFN, TOPORS,
TP53, TP73

83 4 Regulation of smooth muscle 1.15e-02 4 35 IGF1, IL6, PDGFB, PDGFRB

cell proliferation
122 1 Cytokine receptor binding 7.88e-03 7 139 CXCL13, ENG, IFNBT1, IL6, IL6ST, PIK3R1, TNFSF18
127 4 Regulation of cysteine-type 8.46e-03 7 142 AKT1, CASP9, CD27 IFNB1, MYC, SFN, XDH

endopeptidase activity involved
in apoptotic process

18 9 TRIF-dependent toll-like receptor 3.27e-07 9 67 CHUK, IKBKB, MAP2K1, MAP2K2, MAPK1, MAPK3,
signaling pathway NFKB1, NFKBIA, RELA
21 2 Apoptotic signaling pathway 7.05e-07 12 173 AKT1, BAD, CASP8, CD38, CFLAR, FADD, HGF, HTT,
PDCDS6, RIPK3, TP53, TRAF2
22 1 T cell activation 798e-07 13 217 ADAM17, AKT1, LCK, LCP1, MALT1, NCKAP1L,
PIK3CA, PIK3CB, PIK3R1, PIK3R2, RAG1, TRAF2,
TCRB
29 1 Regulation of cytokine 2.76e-06 14 296 ADAM17, CHUK, FADD, IKBKB, INHA, MALT1,
production NCKAP1L, NFKB1, NFKBIA, RELA, RIPK3, TAX1BP1,
TRAF2, UBA7
32 2 regulation of type | interferon 3.90e-06 8 67 CHUK, IKBKB, NFKB1, NFKBIA, RELA, RIPK3,
production TAX1BP1, UBA7
33 2 Regulation of cysteine-type 8.80e-06 10 142 AKT1, BAD, CASP8, FADD, HGF, LCK, RAF1, TNFSF15,
endopeptidase activity involved TRAF2, VEGFA
in apoptotic process
38 2 I-kappaB kinase/NF-kappaB 8.92e-05 10 186 BMP7 CASP10, CASP8, CFLAR, CHUK, FADD, IKBKB,
cascade MALT1, NFKBIA, RELA
73 1 B cell activation 5.74e-03 6 95 ADAM17, CD38, GPR183, INHA, NCKAP1L, RAG1
Module # Pathways enriched in module FDR -best # Genes in # Genes in pathways Genes
marker ID pathway module marker
85 Necrotic cell death 4.78e-05 4 14 FADD, FAS, FASLG, TNF
120 Regulation of osteoclast differentiation 5.72e-04 4 27 IFNG, IL12B, IL4, TNF
167 Leukocyte apoptotic process 2.05e-03 4 40 AKT1, AXL, IL10, IL2
237 Lymphocyte apoptotic process 8.98e-03 3 24 AKT1, IL10, IL2
306 B cell apoptotic process 4.14e-02 2 10 IL10, IL2

Top: Gene and Module Markers comparisons under various treatments.

Mid: Annotation of Conserved module markers between DAC and DAC — TSA treatments.

Annotation of Conserved module markers between TSA and DAC — TSA treatments.

Bottom: Examples of annotated module markers specific to co-treatment (DAC + TSA).

*Listed in bold font in the last column examples of extended genes, i.e., missing in the microarray but found connected in the network by the described method.
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of a wide range of biological information
layers in the same meta-network, thus
including many possible generators of
marker modules. Inclusion of information
from non-DE genes is also possible if
it is important in terms of connectivity,
and considered into the analysis through
over-representation or scoring techniques.
The question addressed in this Opinion
therefore is: how effective is an inte-
grative approach and the additional
inference power made available for our
understanding of the role of cancer mark-
ers? In parallel studies that we are con-
ducting, and whose results are centered on
treatment-specific profiling and pathway
annotation, we have performed functional
enrichment analysis of multi-drug resis-
tant osteosarcoma (MDR-OS) cells from
the HosDXR150 cell line after three epi-
genetic treatments working against drug
resistance (Esteller, 2007; Bock, 2012).
The same data source is used here to
perform a second-generation analysis,
following the meta-network approach.
The mechanism we want to study is in
the realm of epigenetic therapy, and con-
sists of a de-methylating agent (5-Aza-dC,
DAC), a de-acetylating agent (TSA), and a
treatment combining both. We hypoth-
esize that our inference approach can
shed light over the impact on cells of
single versus combined epigenetic treat-
ments, by identifying module-specific and
module-shared markers at systems scale.

METHODS

NETWORK AND MODULE MARKER
GENERATION

c¢DNA microarray analysis was performed
to provide expression measurements of
1920 genes of MDR-OS cells after the
three treatments (details in Supplementary
File Experiment.doc). The gene IDs of
the DE genes after each treatment were
fed to the GeneMANIA web tool (http://
www.genemania.org), and we explored
co-expression, genetic interaction, co-
localization, pathway and physical inter-
action network data. Edge weighting was
based on GO-Biological Processes. The
integrated networks (IN) were gener-
ated from only the DE genes and by
adding the 20 most closely related genes,
according to the algorithm. The pro-
cedure was repeated for all cell treat-
ments, forming 6 networks; a common

hypergeometric over-representation test
(p-value = 0.05) determined enriched
pathways and functional modules, and
those sharing the same group of genes were
merged into a single group, then used as
module markers.

RESULTS AND DISCUSSION

GENE SETS AND NETWORKS

The treatment with the de-methylating
agent DAC produced 57 genes significantly
up-regulated, and 69 down-regulated. The
treatment with the de-acetylating agent
TSA produced 40 genes significantly up-
regulated, and 68 down-regulated. The
combined treatment with DAC + TSA
produced 16 genes significantly up-
regulated, and 46 down-regulated. Those
gene lists were fed to GeneMANIA. Three
of the six produced networks were gen-
erated using the original DE genes (one
for the DAC treatment, one for TSA,
and one for the combined DAC + TSA),
while the other three networks were
generated by extending to additional pre-
dicted 20 nodes in each network, ie.,
highly connected genes in the IN (one
for each treatment type). For the DAC
treatment, 60% of the genes de novo con-
nected within the IN were present in
the microarray, but were not DE genes,
while the remaining 40% corresponded
to genes not present in the microar-
ray (PDGFRB, PIK3R1, MAPK3, EGE
CASPY, GSK3B, STAT5A, and MAP2K2).
Exactly the same situation was observed
for the TSA treatment, where 40% of the
added genes were not in the microar-
ray (PIK3R1, MAPK3, MAP2K2, CHUK,
PIK3R2, IKBKB, PIK3CB, and TRAF2).
For the combined treatment, only 5 new
genes (25%) were added (IL12B, IL10,
CHUK, MAPKO9, and IKBKB). Intuitively,
the extension of the network to highly con-
nected genes in an abstract space of data
multitude suggests a possible recovery
of potentially important genes excluded
from the experiment. In turn, the pre-
dictive inference approach can generate
more testable hypotheses centered on the
possible role of markers.

MODULE MARKERS

A module marker is a group of genes with
some detected properties, beyond their
simple collection. A module is considered
“active” if DE genes are included, while

a more specific characterization involves
gene connectivity, considering cases of
network of integrated interaction, path-
way, co-expression, co-localization, and
genetic interaction data. Such group of
genes may form a sub-network involving
one or multiple pathways, or functional
modules, over-represented in one or more
of those. Following this idea, the 126 DE
genes after DAC treatment yielded 240
module markers, the 108 DE genes after
TSA treatment yielded 161 module mark-
ers, and the 62 DE genes after DAC + TSA
treatment yielded 207 module markers.
Generating module markers from an IN
may offer advantages over the use of only
interactions or pathways; an advantage
refers to selecting specific or multiple data
types. A data multitude is represented in
the Supplementary File Figure.doc (panel
A), with three out of six module mark-
ers appearing after DAC treatment, and
other three after TSA treatment. A com-
bination of co-expression (emphasized in
purple), pathway (blue), interaction (red),
co-localization (gray), predicted inter-
action (yellow), or genetic interaction
(green) characterizes the modules, while
the removal of any specific data type would
affect the IN’s integrity. A limited data
type variety is behind the Supplementary
File Figure.doc (panel B): two modules (b
and f) come from co-expressions, one (a)
comes mainly from pathways, and the rest
from both. The other edges (interactions,
predicted interactions and co-localization)
only appear in a few cases, implying that
their removal would not affect the connec-
tivity of the PIN.

INTER-TREATMENT COMPARISONS

Table 1 (top) shows 9 out of 126 genes
expressed after DAC treatment which are
also expressed after co-treatment, and 20
out of 108 genes expressed after TSA
which are expressed after the co-treatment.
When comparing module markers gen-
erated from the DE genes, no pathway
is conserved between single and com-
bined treatments. However, things change
with the extended gene set. The num-
ber of conserved genes between treat-
ments slightly increases: 13 out of 126 DE
genes appeared both in DAC and in co-
treatment, while 25 out of 108 DE genes
appeared both in TSA and in co-treatment.
Three of the four additional genes in the
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FIGURE 1 | An integrative regulatory map. Integrated interactomic
relationships are presented, starting from the DE genes derived from the
cDNA microarray analysis, and considering connectivity with non-DE genes
(marked in bold font) obtained from the reported network extension and
functional enrichment tools. The non-DE genes excluded from the
experiments (labeled without colors) allow to establish systems relationships
with DE genes (down-regulated after treatment, which appear in green
frame, and up-regulated after treatment, which appear in red frame), and to
highlight the biological influence of epigenetic treatments. We identified
major influences in terms of: activation of osteoblast differentiation and
apoptotic signaling, and inhibition of cell proliferation, metastasis and
angiogenesis. In particular, following the described treatments, the
re-expression of epigenetically silenced key genes re-establishes cellular
homeostasis throughout mechanisms such as: 1. Osteoblast differentiation

(i.e., I:6, IL6ST, IGF1, TIMP4, TIMP1, BMP-7, all emerging from combined
treatment); 2. Drug sensitivity of MDR-OS cells through the re-activation of
both extrinsic apoptotic signaling (i.e., TNF1B, RIPK-3, FAS, FADD, genes
indicated with red frame and emerging from combined treatment) and
intrinsic apoptotic signaling (i.e., ALG2, P53, P73, CASP10, ERCC6, BAX,
BAD, BNIP-3L, genes indicated with red frame and emerging from DAC and
TSA single treatments, as illustrated in Table 1); 3. Inhibition of cell
proliferation, angiogenesis and metastasis by down-regulation of some genes
(i.e., VEGF, MAPK1, C-MYC, REL-A, MMP-2, genes indicated with green
frame), as a consequence of re-expression of epigenetically modified genes
(indirect treatment’s influence). The integrated approach allows to better
decipher the complex cellular mechanisms which led the tumor cells to
acquire the multi-drug resistance phenotype and a pro-survival advantage,
therefore identifying tumor-specific markers useful to future targeted therapy.

first case (IL6, RELA, IFNB1) were genes
expressed in DAC but not in DAC +
TSA, while the fourth gene (AKT1) was
not DE. Similarly, RELA was in TSA but
not in DAC + TSA, while the other four
genes (FADD, AKT1, CASP8, NFKBI1)
were not expressed in either TSA or co-
treatment. An interesting result appears
in column 4. Besides the modest increase

in conserved genes, results show a sub-
stantial increment in the number of con-
served module markers when using IN.
In this case, 24 module markers are con-
served in DAC and DAC + TSA, while 26
module markers are conserved between
TSA and DAC + TSA (see Supplementary
Table, part A and B, respectively). This evi-
dence naturally depends on the types of

treatments which are available, but opens
for the possibility of assessing whether
conserved module can be considered per-
sistent between treatments of different
nature. Overall, this approach suggests the
opportunity of running a certain experi-
mental design, and through module mark-
ers it emphasizes whether also indirect
effects should be accounted through the
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embedded connectivity. Table 1 (middle)
shows some interesting conserved module
markers for both cases, while Table 1 (bot-
tom) shows module markers specific to
co-treatment. Notably, the DE genes after
DAC and TSA present 13 gene mark-
ers in common, but 42 module mark-
ers in common under after the extension.
As an example of integrative analysis,
Figure 1 reports a map of gene and path-
way regulation under the influence of the
described treatments, single and combined
(Table 1). The Supplementary Table file
reports lists of gene and marker modules.

FINAL REMARKS

Epigenetics implies heritable changes in
gene expression without involvement of
DNA sequence. Gene silencing is a com-
plex biological process which involves
methylation, and leads to disease devel-
opment once dysregulated. The high fre-
quency of epigenetic changes in cancer has
motivated research into new therapeutic
approaches aimed to reverse gene silenc-
ing. DNA methylation inhibitors, together
with histone deacetylase inhibitors, are
examples of valid drug targets con-
ceived toward the re-activation of silenced
genes. Future avenues include activa-
tion of single genes by exploiting sin-
gle agents or also the combination of
epigenetic drugs, thus emphasizing the
synergistic activities between DNA methy-
lation and HDAC inhibitors, and con-
sidering likely non-specificity in terms of
gene re-activation. The identification of
modules at the network scale leads to an
integrative systems approach which goes
beyond single marker analysis and exploits
synergistic marker dynamics in support
of combinatorial experiments. Our pre-
liminary results show that the recovery
of latent connectivity may re-position

the markers depending on the module-
integrated biodata multitude and on the
nature of the edges linking the nodes.
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