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The new class of rare variant tests has usually been evaluated assuming perfect genotype
information. In reality, rare variant genotypes may be incorrect, and so rare variant tests
should be robust to imperfect data. Errors and uncertainty in SNP genotyping are already
known to dramatically impact statistical power for single marker tests on common variants
and, in some cases, inflate the type I error rate. Recent results show that uncertainty
in genotype calls derived from sequencing reads are dependent on several factors,
including read depth, calling algorithm, number of alleles present in the sample, and the
frequency at which an allele segregates in the population. We have recently proposed a
general framework for the evaluation and investigation of rare variant tests of association,
classifying most rare variant tests into one of two broad categories (length or joint tests).
We use this framework to relate factors affecting genotype uncertainty to the power
and type I error rate of rare variant tests. We find that non-differential genotype errors
(an error process that occurs independent of phenotype) decrease power, with larger
decreases for extremely rare variants, and for the common homozygote to heterozygote
error. Differential genotype errors (an error process that is associated with phenotype
status), lead to inflated type I error rates which are more likely to occur at sites with more
common homozygote to heterozygote errors than vice versa. Finally, our work suggests
that certain rare variant tests and study designs may be more robust to the inclusion of
genotype errors. Further work is needed to directly integrate genotype calling algorithm
decisions, study costs and test statistic choices to provide comprehensive design and
analysis advice which appropriately accounts for the impact of genotype errors.
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INTRODUCTION
Over the past 5 years, numerous gene-based tests of rare variant
association have been proposed. Several summaries and reviews
of these methods are available (Asimit and Zeggini, 2010; Bansal
et al., 2010; Cooper and Shendure, 2011; Dering et al., 2011;
Gibson, 2012). The majority of these tests accumulate evidence of
genotype-phenotype association across multiple single nucleotide
variants (SNVs) within a gene either by first collapsing geno-
types of some or all of the SNVs (collapsing; burden; length tests)
(Morgenthaler and Thilly, 2007; Li and Leal, 2008; Madsen and
Browning, 2009; Han and Pan, 2010; Li et al., 2010; Morris and
Zeggini, 2010; Zawistowski et al., 2010; Feng et al., 2011; Sul et al.,
2011; Zhang et al., 2011; Dai et al., 2012) or by aggregating (e.g.,
summing) individual variant association statistics across all SNVs
within a gene (variance components; joint tests) (Li and Leal,
2008; Basu and Pan, 2011; Ionita-Laza et al., 2011; Lin and Tang,
2011; Neale et al., 2011; Pan and Shen, 2011; Wu et al., 2011) (see
Liu et al., 2013 for details).

A recent paper (Liu et al., 2013) introduced the terminology
“length” and “joint” tests to illustrate a geometric interpreta-
tion of the gene-based, rare variant, test statistic formulation for

case-control studies. Most rare variant test statistics can be writ-
ten as functions of the generally stated Length (Lp) or Joint (Jp)
test statistics as defined immediately below:

General Length Test Statistic, Lp =
(

m∑
i = 1

∣∣∣∣∣ c+
i

2N+

∣∣∣∣∣
p)1/p

−
(

m∑
i = 1

∣∣∣∣∣ c−
i

2N−

∣∣∣∣∣
p)1/p

General Joint Test Statistic, Jp =
(

m∑
i = 1

∣∣∣∣∣ c+
i

2N+ − c−
i

2N−

∣∣∣∣∣
p)1/p

where, m is the number of SNVs within the gene, N+ and N−
indicate the sample sizes of the cases and controls, respectively, c+

i
and c−

i indicate the observed number of minor alleles at variant
i, within the case and control samples, respectively, and p reflects
the choice of Lp norm. To date, most published length tests use
p = 1, while most joint tests use p = 2. Thus, length tests compare
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the magnitudes (lengths) of the m-dimensional minor allele fre-
quency (MAF) vectors between cases and controls by taking the Lp

norms of the vectors, with larger differences in length indicating
stronger evidence of genotype-phenotype association. Joint tests
compare both the lengths of the case-control vectors, as well as
the angle between the vectors (evidence for association increases
as the magnitude of the angle between the vectors increases). This
geometric framework provides the basis for theoretical evaluation
of test behavior—moving beyond comparison of rare variant test
statistic behavior solely by simulation.

Genotype errors occur when calling algorithms misidentify an
individual’s genotype (e.g., an individual who is actually AA is
identified as AT). To date, the majority of evidence showing the
detrimental effects of genotype error on this new class of rare
variant tests has been based on simulation results. In particular,
simulation of genotype data followed by simulation of genotype
errors on those genotypes finds that the power of some specific
length tests decreases—sometimes dramatically—in the presence
of non-differential (independent of case-control status) genotyp-
ing errors. These power declines can be particularly large for
errors misclassifying the common homozygote as the heterozy-
gote, even when the error rate is relatively low (Powers et al.,
2011). Relatedly, for some specific joint and length tests, the type I
error rate increases above nominal levels in the presence of differ-
ential genotyping errors, even at low error rates. The magnitude
of the type I error inflation increases further as the sample size,
number of rare variants or relative difference in case-control error
rates at the site increases, or as the MAF of variants decreases.
Similarly, these effects are enhanced for errors from the com-
mon homozygote to the heterozygote (Mayer-Jochimsen et al.,
2013). At error levels observed in sequence and imputed data
for rare variants, the effects of errors on power and type I error
can be measurable (Awadalla et al., 2010; Ilie et al., 2011; Nielsen
et al., 2011; Rogers et al., 2014). These findings are similar to
findings about the effects of both non-differential (Gordon et al.,
2002, 2004; Kang et al., 2004a,b; Ahn et al., 2007) and differen-
tial (Moskvina et al., 2006; Ahn et al., 2009) errors when analyzed
with single marker test statistics.

While such findings based on simulation are useful, their util-
ity in providing a deeper understanding of the reasons why errors
can be so detrimental to power and type I error is limited. In
this paper, we use the geometric framework as a platform for
deeper understanding of the mechanisms by which genotype
errors impact rare variant tests of association. In particular, we use
the geometric framework to gain greater insights into the relative
impact of different types of genotype errors (homozygote to het-
erozygote, or vice versa), MAF, the differential or non-differential
nature of the genotype errors and choice of rare variant test statis-
tic on the power and type I error rate of length and joint tests.

METHODS
DISTRIBUTIONS, POWER AND TYPE I ERROR RATES OF GENE-BASED
RARE VARIANT TEST STATISTICS
We start by noting that c+

i ∼ Binom(2N+, f +
i ) and c−

i ∼
Binom(2N−, f −

i ), where f +
i and f −

i are the MAFs in the cases

and controls, respectively. For a low prevalence disease, f −
i will

be approximately equal to the population MAF, fi. We are often

interested in the scaled difference of these counts, Di = c+i
2N+ −

c−i
2N− . Applying basic distribution theory yields: μDi = f +

i − f −
i

and σ 2
Di

= 1
2N+

(
f +
i

(
1 − f +

i

))+ 1
2N−

(
f −
i

(
1 − f −

i

))
. For all rare

variant tests considered in this manuscript, the null hypothesis is
that f +

i = f −
i for all i. We start by stating assumptions needed for

our analytic evaluation.

Assumptions
(1) Let ε01,i represent the probability that the major allele is mis-

classified as the minor allele at site i, and let ε10,i represent the
probability that the minor allele is misclassified as the major
allele at site i. We can write the population MAF in both the
cases and controls as a function of the true population minor
allele frequencies and the error rate. In particular

f +∗
i = f +

i

(
1 − ε10,i

)+ (
1 − f +

i

) (
ε01,i

)
f −∗
i = f −

i

(
1 − ε10,i

)+ (
1 − f −

i

) (
ε01,i

)
where we assume that each allele has an equal chance of being
misclassified and that likelihood of errors in the cases is the
same as in the controls (non-differential errors). Differential
errors follow a similar definition and assumption, except that
the change of errors is different in cases and controls.

(2) In all proofs and simulations, we assume that the allele
frequencies in the population follow Hardy-Weinberg
Equilibrium.

(3) In all proofs and simulations, we assume that the variant sites
within the gene are not in linkage disequilibrium (LD) as we
have done in previous work (Mayer-Jochimsen et al., 2013).
See the Discussion for implications.

(4) When evaluating the impact of genotype errors on J∗
2

(Impact of Genotype Errors on the Type I Error and Power
of J∗

2 ) and J∗∞ (Impact of Genotype Errors on the Type I
Error and Power of J∞), as well as when providing ana-
lytic power and sample size estimates (Asymptotic Power
Formulas for L∗

1 and J∗
2 ), we explore the impact of genotype

errors on the distributions of c+
i and c−

i as approximated

by Normal distributions. In particular, that c+
i ∼̇ Norm(

N+p+
i , N+p+

i

(
1 − p+

i

))
and c−

i ∼̇Norm
(
N−p−

i , N−p−
i(

1 − p−
i

))
. It follows directly that Di∼̇Norm

(
μDi , σ

2
Di

)
,

and, thus,
D2

i

σ 2
Di

∼̇χ2
1,λ where λ =

(
μDi
σDi

)2
is the non-centrality

parameter. We evaluate robustness to this assumption as part
of our simulation study (see Quality of Asymptotic Power
and Type I Error Predictions).

Impact of genotype errors on the type I error and power of L∗
1

When p = 1, we can write

L1 =
(
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i = 1
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where we have dropped the absolute value since the observed
minor allele counts will always be positive. Thus, μ (L1) =∑m

i,= 1 μDi and σ 2 (L1) = ∑m
i = 1 σ 2

Di
when variant sites are inde-

pendent (no LD).
When genotype errors are present (indicated by

∗), similar arguments hold. The distribution of L∗
1 =∑m

i = 1

(
c+∗
i

2N+ − c−∗
i

2N−

)
= ∑m

i = 1 D∗
i has mean μ

(
L∗

1

) = ∑m
i = 1(

f +∗
i − f −∗

i

) = ∑m
i = 1 μ∗

Di
and σ 2

(
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1

) = ∑m
i = 1 σ 2

D∗
i
+ 2

∑
i < j

Cov
(

D∗
i , D∗

j

)
where,

∑m
i = 1 σ 2

D∗
i

= ∑m
i = 1

( 1
2N+

) (
f +∗
i

(
1−

f +∗
i

))+ 1
2N−

(
f −∗
i

(
1 − f −∗

i

))
. As above, when variant sites are

independent (no LD)
∑

i < j Cov
(

D∗
i , D∗

j

)
= 0.

Non-differential genotype errors and the type I error rate.
When the null hypothesis is true, it is straightforward to see that
μ (L1) = 0. When there are non-differential genotype errors
μ
(
L∗

1

) = ∑m
i = 1 μ∗

Di
= 0 since f +∗

i − f −∗
i = f +

i

(
1 − ε10,i

)+(
1 − f +

i

) (
ε01,i

)− f −
i

(
1 − ε10,i

)− (
1 − f −

i

) (
ε01,i

) = (
1 − ε10,i

)(
f +
i − f −

i

)− (
ε01,i

) (
f +
i − f −

i

) = 0 for all i. Bross (1954) proved
that estimates of the variance of D∗

i are unbiased in the presence
of non-differential misclassification errors for both small and
large samples. Thus, linear scaled sums of these estimates (as in
L∗

1) are also unbiased, resulting in a test which controls the Type I
error rate.

Non-differential genotype errors and power. Given the fact that
the Type I error is maintained in the presence of non-differential
errors, we now explore the impact of non-differential genotype
errors on the power of L∗

1. To do this we start by noting that μ
(
L∗

1

)
can be written as:

μ
(
L∗

1

) =
m∑

i = 1

((
1 − ε10,i

) (
f +
i − f −

i

)− (
ε01,i

) (
f +
i − f −

i

))

=
m∑

i = 1

((
1 − ε10,i − ε01,i

) (
f +
i − f −

i

))

Thus, in the presence of non-differential genotype errors(
ε10,i > 0 , ε01,i > 0

)
, μ

(
D∗

i

) = (
1 − ε10,i − ε01,i

) (
f +
i − f −

i

)
<

μ (Di) = (
f +
i − f −

i

)
, moving μ

(
D∗

i

)
closer to 0 (which is our

expectation under the null hypothesis), with both ε10,i and
ε01,i contributing equally to the shift of the mean of the
alternative distribution closer to 0. When f +

i ≥ f −
i for all i

(all variants are non-causal or risk increasing), then
(
L∗

1

)
<

μ (L1) = ∑m
i = 1

(
f +
i − f −

i

)
, moving μ

(
L∗

1

)
closer to 0 (which

is our expectation under the null hypothesis). When at least
one f +

i < f −
i (at least one protective variant), then moving

μ
(
D∗

i

)
closer to 0, will increase the overall value of μ

(
L∗

1

)
since there will be less “cancellation” occurring between risk
increasing and risk reducing variants when computing the test
statistic.

We will now show that in general, σ 2
(
L∗

1

)
> σ 2 (L1). Recall

that σ 2 (L1) = ∑m
i = 1 σ 2

Di
and that σ 2

Di
= 1

2N+
(
f +
i

(
1 − f +

i

))+
1

2N−
(
f −
i

(
1 − f −

i

))
, with similar relationships true when errors

are present (denoted by ∗). To show that σ 2
(
L∗

1

)
> σ 2 (L1)

it is sufficient to show that σ 2
D∗

i
> σ 2

Di
for all i, an inequality

which is true when both f +∗
i

(
1 − f +∗

i

)
> f +

i

(
1 − f +

i

)
and

f −∗
i

(
1 − f −∗

i

)
> f −

i

(
1 − f −

i

)
.

To see that f +∗
i

(
1 − f +∗

i

)
> f +

i

(
1 − f +

i

)
is true in most

cases consider that 0 < f +
i < 0.5 and, thus, in most situations,

0 < f +∗
i < 0.5 because we have defined f as the MAF. Thus,

f +∗
i

(
1 − f +∗

i

)
> f +

i

(
1 − f +

i

)
when f +∗

i > f +
i , an inequality that

will be true in most practical cases, as shown below

f +∗
i > f +

i f +
i − f +

i

(
ε10,i + ε01,i

)+ ε01,i > f +
i

ε01,i > f +
i

(
ε10,i + ε01,i

)
ε01,i > ε10,i

(
f +
i

1 − f +
i

)
≈ ε10,if

+
i

Where we make use of the fact that for rare alleles f is quite small,
and so, unless the value of ε10,i is many orders of magnitude
larger than ε01,i the inequality will be true. Similar arguments
hold when showing f −∗

i

(
1 − f −∗) > f −

i

(
1 − f −

i

)
.

It is also important to note that the increases to σ 2
(
L∗

1

)
due to

effect of ε01 are substantially more than the effects of ε10. This can
be seen by observing that f +∗

i = f +
i − f +

i

(
ε10,i + ε01,i

)+ ε01 =
f +
i

(
1 − ε10,i

)+ (
1 − f +

i

)
ε01,i. Since fi is small, increases in val-

ues of ε01,i increase variance, while increases to ε10,i decrease
variance, but substantially less. Increases in variance, combined
with shifting of the mean of the alternative distribution toward
the mean of the null distribution, will result in decreases in power.
The only exception is in cases where genotype errors occur on
protective variants, which, as shown in the previous section, may
mitigate power loss to some extent. Our evaluation shows that
the relative effects of ε01,i on power loss are more than power loss
driven by ε10,i.

Differential genotype errors and the type I error rate. Differential
genotype errors occur when the genotype error rate in the cases
(ε+) is different than it is in the controls (ε−). In this case, it
follow directly from earlier arguments that,

μ
(
L∗

1

) =
m∑

i = 1

f +
i

(
1 − ε+

10,i

)
+ (

1 − f +
i

)
ε+

01,i −
(

f −
i

(
1 − ε−

10,i

)

+ (
1 − f −

i

)
ε−

01,i

)
Where, + and − indicate the different genotype error rates in
the cases and controls, respectively. We note that when the null
hypothesis is true, the following is true for each variant i.

fi
(

1 − ε+
10,i

)
+ (

1 − fi
)
ε+

01,i −
(

fi
(

1 − ε−
10,i

)
+ (

1 − fi
)
ε−

01,i

)
= fi

(
ε−

10,i − ε+
10, i

)
+ (

1 − fi
) ((

ε+
01,i − ε−

01,i

))
This quantity is not zero in the presence of differential geno-
type errors. This means that when differential genotype errors are
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present μ
(
L∗

1

) �= 0, which is sufficient to show that the resulting
type I error rate will typically no longer be the nominal value.
The exception is when the effects of differential genotype errors
cancel out, which can occur if genotype error rates are larger in
the cases for some variants, and larger in the controls for other
variants. Examining the equation further suggests that in general
the larger the difference in error rates, the larger the type I error
rate will be, with differences in the ε01,i error rates contribut-
ing more to inflation in the type I error rate than differences in
the ε10,i error rates, since differences in ε10,i only impact μ

(
L∗

1

)
through a term which is multiplied by f , typically a small quantity.
Sites with higher MAF (larger fi) will tend to increase the value of
μ
(
L∗

1

)
more, however, the impact is scaled by the difference in

case and control genotyping error rates, which will typically be a
small quantity, meaning that the overall impact of fi on the value
of μ

(
L∗

1

)
is quite minimal.

Much of the argument about the relationship between
σ 2
(
L∗

1

)
and σ 2 (L1) in the presence of differential genotype

errors follows directly from arguments made in the previ-
ous section (Power) when examining non-differential errors.
To show that, in general, σ 2

(
L∗

1

)
> σ 2 (L1) it is sufficient to

show that σ 2∗
Di

> σ 2
Di

, an inequality which is true when both

f +∗
i

(
1 − f +∗

i

)
> f +

i

(
1 − f +

i

)
and f −∗

i

(
1 − f −∗

i

)
> f −

i

(
1 − f −

i

)
.

It is typically true that f +∗
i

(
1 − f +∗

i

)
> f +

i

(
1 − f +

i

)
because

ε+
01,i > ε+

10,i

(
f +
i

1−f +
i

)
≈ ε+

10f +
i , with similar arguments holding

in the controls—even when the error rates in the controls
are different than in the cases. Thus, once again, the effect
of ε01 on the variance is substantially more than the effect
of ε10. Since increases in variance will result in increases in
the type I error rate, ε01 has a potentially large impact on
the type I error rate, while ε10 has less impact (really only
impacting μ

(
L∗

1

)
.

Impact of genotype errors on the type I error and power of J∗
2

When p = 2, we can write

J2 =
⎛
⎝ m∑

i = 1

∣∣∣∣∣ c+
i

2N+ − c−
i

2N−

∣∣∣∣∣
2
⎞
⎠

1/2

=
√√√√ m∑

i = 1

(
c+

i

2N+ − c−
i

2N−

)2

=
√√√√ m∑

i = 1

(Di)
2

Thus, μ
(
J2
2

) = ∑m
i = 1 μD2

i
= ∑m

i = 1 (f +
i − f −

i )
2

and σ 2
(
J2
2

) =∑m
i = 1 σ 2

D2
i
+ 2

∑
i < j Cov

(
D2

i , D2
j

)
, where Cov

(
D2

i , D2
j

)
is the

covariance between the differences in case and control allele
counts at variant i and j, and, thus, is an indirect measure of LD.
When variant sites are independent (no LD) Cov(D2

i , D2
j ) = 0.

When genotype errors are present (indicated by ∗),
similar arguments hold. The distribution of J2

2∗ =∑m
i = 1

(
c+∗
i

2N+ − c−∗
i

2N−

)2

= ∑m
i = 1

(
D∗

i

)2
has mean μ

(
J2
2∗
) =∑m

i = 1 μ∗
D2

i
and σ 2

(
J2
2∗
) = ∑m

i = 1 σ 2
D∗

i
2 + 2

∑
i < j Cov

(
D∗

i
2, D∗2

j

)
.

As above, when variant sites are independent (no LD)∑
i < j Cov

(
D∗2

i , D∗
j

2
)

= 0.

Insights into the direction and pattern of effects of genotype
errors on J2

2 are aided by utilizing χ2 distributions. As noted
in Distributions, Power and Type I Error Rates of Gene-based

Rare Variant Test Statistics (Assumptions),
D2

i

σ 2
Di

∼̇χ2
1,λ where λ =(

μDi
σDi

)2
is the non-centrality parameter. It follows directly that

J2
2,scaled = ∑m

i = 1

(
Di
σDi

)2∼̇χ2
m,λ where λ = ∑m

i = 1

(
μDi
σDi

)2
is the

non-centrality parameter. Our analyses focus on the behavior
of J2

2,scaled which can be interpreted as a MAF-variant weighted
version of J2 in the spirit of Madsen and Browning (2009) and
others.

Non-differential genotype errors and the type I error rate.

When the null hypothesis is true, λ = ∑m
i = 1

(
μDi
σDi

)2 =
∑m

i = 1

(
f +
i − f −

i
σDi

)2

= 0. This is also true in the presence of non-

differential genotype errors since, as shown in Non-differential
Genotype Errors and the Type I Error Rate, f +∗

i − f −∗
i = 0 for all

i, and so λ∗ = ∑m
i = 1

(
f +∗
i −f −∗

i
σ ∗

Di

)2

= 0. Thus, the type I error rate

is maintained since the distribution of J2
2,scaled is the same with or

with non-differential genotype errors when the null hypothesis is
true.

Non-differential genotype errors and power. When the alter-
native hypothesis is true, f +

i �= f −
i for at least one i, and the

non-centrality parameter, λ = ∑m
i = 1

(
f +
i −f −

i
σDi

)2

will be greater

than 0. Furthermore, the power of J∗
2,scaled (non-differential geno-

type errors) will be lower than J2,scaled (no errors) if λ∗ < λ. As
shown in 2.1.1.2, σ ∗

Di
> σDi , and so we can show that, in gen-

eral, λ∗ < λ if
(
f +∗
i − f −∗

i

)2
<
(
f +
i − f −

i

)2
is also true, which is

the case since
(
f +∗
i − f −∗

i

)2 = (
1 − ε10,i − ε01,i

)2 (
f +
i − f −

i

)2
<(

f +
i − f −

i

)2
. Furthermore, we can conclude that the impact of the

errors follows the same pattern as for L∗
1, namely that the rela-

tive effects of ε01,i on power loss are more than power loss driven
by ε10,i.

Differential genotype errors and the type I error rate. When dif-
ferential genotype errors are present, then there may be inflation
of the type I error rate. This inflation occurs because, due to
differential genotype errors, the non-centrality parameter, λ∗ =∑m

i = 1

(
f +∗
i − f −∗

i
σ ∗

Di

)2

, is no longer, necessarily, zero. This result

follows directly from the fact that f +∗
i may not equal f −∗

i for

all i, since f +∗
i − f −∗

i = fi
((

ε−
10,i − ε+

10, i
)

+
(
ε−

01,i − ε+
01,i

))
+(

ε+
01,i − ε−

01,i

)
will not necessarily equal 0. even when f +

i = f −
i =

f . Following directly from Differential Genotype Errors and the
Type I Error Rate, the case-control differences in the ε01,i error
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rates will inflate the type I error rate more than case-control
differences in the ε10,i.

Impact of genotype errors on the type I error and power of J∞
Liu et al. (2013) showed that, while under-explored in the lit-
erature, the choice of norm for both Length and Joint statistics
had practical implications. In particular, as the value of the norm
increases, gene-based rare variant tests are increasingly robust
to the inclusion of non-causal variants (i.e., variants for which
f +
i = f −

i ). To explore how the impact of genotype errors may
vary based on choice of norm, we consider using the infinity
norm on a joint test. Following Liu et al. (2013), we let, J∞ =

argmax
1 ≤ i ≤ m

(
c+i

2N+ − c−i
2N−

)
.

Non-differential genotype errors and the type I error rate.
Results earlier showed that the Type I error rate is maintained
because when non-differential genotype errors are present μDi =
μ∗

Di
= 0, and that estimates of the variance of D∗

i are also unbi-
ased resulting in a test (J∗∞) which maintains the type I error
rate since the distribution at each variant site maintains the
type I error rate and the variant sites are independent of each
other.

Non-differential genotype errors and power. When there are
non-differential genotyping errors, the power will be reduced
because μ∗

Di
< μDi . However, because J∞ focuses only on a

single variant site (namely, the site, i, showing the largest dif-
ference in minor allele frequencies), the impact of errors on
power relative to L1 and J2 may be lessened because the power
loss does not accumulate across variant sites when genotype
errors are evenly distributed across variant sites. However, if non-
differential genotype errors are focused only on the sites with
the largest true difference in minor allele counts power loss may
be substantial. The relative impact of ε01 and ε10 follow pat-
terns described earlier (Non-differential Genotype Errors and
Power).

Differential genotype errors and the type I error rate. When dif-
ferential genotyping errors are present, the type I error rate will
increase because μ∗

Di
�= 0. As with power, the impact on type

I error may be lessened because the type I error effects do not
accumulate across variant sites when genotype errors are evenly
distributed across variant sites. However, if the differential geno-
type errors are contained only on a single variant—inducing
the largest observed differences in minor allele frequencies—
the type I error rate may inflate above levels observed for L1

and J2. The relative impact of ε01, ε10 and f follow patterns
described in Differential Genotype Errors and the Type I Error
Rate.

ASYMPTOTIC POWER FORMULAS FOR L∗
1

AND J∗
2

We can derive general power and sample size formulas for situa-
tions of both differential and non-differential errors, which yields
the potential for directly computing the change in power and
sample size increase necessary to mitigate the effects of genotype
errors.

L∗
1

As established in the introduction to Section Distributions, Power
and Type I Error Rates of Gene-based Rare Variant Test Statistics,
the minor allele counts c+i and c−i are both binomially distributed,

with c+i ∼ Binom(2N+, f+i ) and c−i ∼ Binom(2N−, f−i ). While
not needed in our initial exploration of the direction and rel-
ative effects of non-differential genotype errors on the type I
error rate and power, to make predictions of the actual change in
power or type I error rate, we utilize the normal approximation
described earlier (Distributions, Power and Type I Error Rates of
Gene-based Rare Variant Test Statistics Assumptions).

Since Di∼̇Norm
(
μDi , σ

2
Di

)
, L1 = ∑m

i = 1 Di̇ ∼ Norm
(∑m

i = 1

μDi ,
∑m

i = 1 σ 2
Di

)
. In the presence of errors, L∗

1 =∑m
i = 1 D∗

i ˙∼ Norm
(∑m

i = 1 μD∗
i
,
∑m

i = 1 σ 2
D∗

i

)
.

Estimated power in the presence of non-differential genotype
error. To determine the test’s power, first find the z1 − α quantile,

C, under the null hypothesis as C = z1 − α

√∑m
i = 1 σ 2

Di,H0
. Find

the corresponding quantile, zβ , on the alternative hypothesis dis-

tribution as zβ =
C−∑m

i = 1 μD∗
i,HA√∑m

i = 1 σ 2
D∗

i,HA

and compute the power, π , as

π = 1 − 	
(
zβ

)
where 	 (·) is the normal cdf.

Sample size necessary in the presence of non-differential
genotype error. Since power decreases in the presence of
non-differential genotype error (as shown in Non-differential
Genotype Errors and Power), we can find the sample size nec-
essary for a given power in the presence of genotype errors.
To assist in the following proof, let k = N−/N+ = N−∗/N+∗
and t∗i = ( 1

2

) (
f +∗
i

(
1 − f +∗

i

)+ 1
k f −∗

i

(
1 − f −∗

i

))
so that σ 2

D∗
i

=
1

2N+∗
(
f +∗
i

(
1 − f +∗

i

))+ 1
2kN+∗

(
f −∗
i

(
1 − f −∗

i

)) = t∗i
N+∗ .

To determine N+∗ needed for a given α and β note that

zβ =
C −∑m

i = 1 μD∗
i,HA√∑m

i = 1

t∗i,HA
N+∗

=
z1 − α

√∑m
i = 1

t∗i,H0
N+∗ −∑m

i = 1 μD∗
i,HA√∑m

i = 1

t∗i,HA
N+∗

z1 − α

√√√√ m∑
i = 1

t∗i,H0
− zβ

√√√√ m∑
i = 1

t∗i,HA
=
∑m

i = 1 μD∗
i,HA√

1
N+∗

And so,

N+∗ =
⎛
⎜⎝ z1 − α

√∑m
i = 1 t∗i,H0

− zβ

√∑m
i = 1 t∗i,HA∑m

i = 1 μD∗
i,HA

⎞
⎟⎠

2

To find the percent sample size increase necessary to maintain
power, simply compute the ratio of N+∗ to N+, where N+ is
determined following the same procedure as is used for N+∗, only
using values for ti and μDi not in the presence of errors.
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Type I error rate in the presence of differential genotype error.
In the presence of differential error, we can use a similar pro-
cedure to the one described in Estimated Power in the Presence
of Non-Differential Genotype Error to determine the Type I
error rate. Specifically, first find the z1 − α quantile, C, under

the null hypothesis as C = z1 − α

√∑m
i = 1 σ 2

Di,H0
corresponding to

the nominal type I error rate α. Find the corresponding type I
error rate in the presence of differential genotype errors, z1 − α∗ ,

as z1 − α∗ =
C−∑m

i = 1 μD∗
i,H0√∑m

i = 1 σ 2
D∗

i,H0

and compute the inflated type I error

rate, 1 − 	
(
z1 − α∗

)
where 	 (·) is the normal cdf.

J∗
2

In Section Impact of Genotype Errors on the Type I Error and

Power of j∗2 we demonstrated that J2
2,scaled = ∑m

i = 1

(
Di
σDi

)2∼̇χ2
m,λ

where λ = ∑m
i = 1

(
μDi
σDi

)2
is the non-centrality parameter. The

non-centrality parameter can be used to find the power, type I
error rate and related quantities.

Estimated power in the presence of non-differential genotype
error. To determine the test’s power, first find C = χ2

m,α . Then,

find the value of β such that C = χ2
m,β,λ∗ and compute the power,

π , as π = 1 − β and where λ∗ is the non-centrality parameter in
the presence of non-differential genotype errors.

Sample size necessary in the presence of non-differential
genotype error. Since power decreases in the presence of
non-differential genotype error (as shown in Non-differential
Genotype Errors and Power), we can find the sample size neces-
sary to attain a particular level of power in the presence of geno-
type errors. As was done in Sample Size Necessary in the Presence
of Non-Differential Genotype Error, we will focus on obtain-
ing the percent increase in sample size necessary (N+∗/N+)

when genotype errors are present to maintain power when geno-
type errors are not present, where we again let k = N−/N+ =
N−∗/N+∗ and t∗i = ( 1

2

) (
f +∗
i

(
1 − f +∗

i

)+ 1
k f −∗

i

(
1 − f −∗

i

))
so

that λ = ∑m
i = 1

(
μDi
σDi

)2 = ∑m
i = 1

(
μDi

2

ti
N+

)
.

We start by noting that in order to maintain power, the value
of the non-centrality parameter without errors, λ∗, must be the
same as the value of the non-centrality parameter when errors are
present, λ∗.

Thus, we solve the following for N+∗/N+.

λ = λ∗

m∑
i = 1

(
μDi

2

ti

)
=

m∑
i = 1

⎛
⎝μD∗

i

2

t∗i
N+∗

⎞
⎠

N+∗

N+ =
∑m

i = 1

(
μDi

2

ti

)
∑m

i = 1

(
μD∗

i
2

t∗i

)

Type I error rate in the presence of differential genotype error.
In the presence of differential error, we can use a similar proce-

dure to the one described in Estimated Power in the Presence of
Non-Differential Genotype Error to determine the Type I error
rate. To determine the test’s power, first find C = χ2

m,α , the nom-
inal type I error rate with no errors. Then, find the value of α∗
(the inflated type I error) such that C = χ2

m,α∗,λ∗ where λ∗ is the
non-centrality parameter in the presence of differential genotype
errors.

SIMULATION
We conducted a simulation study In order to determine to con-
firm theoretical intuitions described above, evaluate the quality
of asymptotic normal distributions and to demonstrate that,
while not explicitly considered above, joint and length test behav-
ior across a wider class of norms (L1, L2, L4, L∞, J1, J2, J4, J∞)
follows predicted patterns.

Simulation settings
For all simulation settings we consider a situation where there
were 1000 cases and 1000 controls, and the number of variants,
m, was fixed at 8. Genotypes at each variant, i, were simulated
independently, following the assumptions of Hardy–Weinberg
Equilibrium in the controls. Genotype errors were added to the
true genotypes according to three error different models: ε10 error
only, ε01 error only, and both ε10 and ε01 errors. Due to the strin-
gent priors often placed on genotype callers, calling rare minor
alleles is difficult, and thus ε01 error rates tend to be smaller than
ε10 error rates (Powers et al., 2011). In order to reflect these real-
istic differences in error rates, we considered the following seven
error settings, which are given as (ε01, ε10): (0, 0), (0, 0.1), (0, 0.5),
(0.01, 0), (0.05, 0), (0.01, 0.1), (0.05, 0.5). We considered five dif-
ferent MAF settings: all variants MAF = 1%, all variants MAF =
0.1%, all variants MAF = 0.01%, two variants at 1%/six variants
at 0.1% and two variants at 1%/six variants at 0.01%. All 35 com-
binations of MAF and genotype error rates were then considered
for additional situations using differential and non-differential
errors.

For non-differential errors, we used a relative risk distribution
of 1.5 for MAF = 1%, 3 for MAF = 0.1% and 5 for MAF =
0.01% for risk-increasing, and the inverse for protective variants
with those MAFs. We then considered six different mixes of causal
and non-causal variants (1) all variants non-causal, (2) all vari-
ants risk increasing, (3) all variants risk reducing, (4) ½ variants
risk reducing and ½ risk increasing, (5) ½ variants non-causal and
½ risk increasing, and (6) ½ variants non-causal, ¼ risk increas-
ing and ¼ risk reducing), for a total of 6 × 35 = 210 settings with
non-differential errors, 35 of which have no risk variants. In the
case of differential errors, the relative risk was set to 1, and two
different magnitudes of differential error were considered: relative
difference in case and control genotype error rates (error rate in
cases divided by error rate in controls) of 1.2, 1.5, 1/1.2, and 1/1.5.
Thus, we considered 35 × 4 = 140 different cases of differential
genotyping error.

A follow-up simulation study was conducted for the purposes
of better understanding the behavior of tests with different norms.
In particular, we started with the same 35 combinations of MAF
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and genotype error rate as in the main simulation study. We then
considered two settings: one with 8 SNPs and the other with 16
SNPs, where in each case only one SNP in the set was causal (des-
ignated to be a SNP with a larger MAF in cases where SNPs have
varying MAF). This simulation only considered non-differential
error.

Calculating power and type I error
For each simulation setting listed above, we generated 1000 inde-
pendent samples. We then used phenotype permutation (1000
permutations for each sample) to compute p-values for eight
different test statistics: L1, L2, L4, L∞, J1, J2, J4, J∞, where the p-
value is the percent of permuted values of the test statistic that
exceeded the observed value. The power or type I error rate is then
computed as the percentage of the 1000 samples with p-values less
than 0.05. For L1 and J2 asymptotic power predictions were also
computed for each setting.

RESULTS
OVERALL IMPACTS OF NON-DIFFERENTIAL ERRORS
Type I error is control in the presence of non-differential errors
There were 35 simulation settings where there were no causal vari-
ants and non-differential genotype errors. To assess the overall
control of the type I error rate, we looked at all 280 simulation
by test statistic combinations (35 settings × 8 different statistics).
An empirical type I error rate between 3 and 7% was consid-
ered to be reasonable control of the type I error rate (nominal
level = 5%; approximate 99% margin of error = 2%). The vast
majority (86.1%; 241/280) of test-statistic combinations showed
reasonable control of the nominal type I error rate (empirical
type I error rate between 3 and 7%). Of the 39 remaining set-
tings, all showed deflation of the empirical type I error rate below
the nominal level (Mean = 0.01, SD = 0.011, Min. = 0, Max. =
0.028). Twenty-five of the thirty-nine settings occurred when all
variants had MAF = 0.01%, meaning that the average number of
rare variants in the gene being analyzed was only 1.6 in the cases
and 1.6 in the controls across all 8 variant sites combined. Across
the remaining 14 settings, the average MAF was still relatively low
(mean = 0.0011). The 39 settings were fairly indiscriminate across
the 8 different test statistics considered here. Overall, type I error
was controlled in the presence of non-differential errors.

Non-differential genotype errors decrease power
To assess the overall relationship between non-differential geno-
type errors and power when causal variants were present, we
regressed empirical power on (a) average MAF across all variants,
(b) magnitude of errors (0,1,5; where for ε10, 0 = 0%, 1 = 1%,
and 5 = 5% and for ε01, 0 = 0%, 1 = 10%, and 5 = 50%), (c)
percent of risk increasing variants and (d) percent of risk reduc-
ing variants for each of the test statistic by type of error (ε01 only,
ε10 only, or ε01 and ε10) combinations where at least one vari-
ant increased or reduced disease risk. Overall, when focusing on
the impact of genotype errors, we found that regression model
coefficients for ε01 only and ε01 and ε10 models were quite sim-
ilar, while ε10 only was quite different. This confirms that the
impact of ε10 is much less than that of ε01. Furthermore, as error
rates increased, power decreased (e.g., 3–5% for 1% increase in

ε01 errors). Finally, as expected, increases to the MAF and per-
cent of risk increasing variants increased power (e.g., increase
in average MAF of 0.1%, increased power 1.0–3.2%; increase of
10% in proportion of risk increasing variants increased power
1.3–7.0%), while increases to the percent of risk-reducing vari-
ants increased power for joint tests (0.5–2.4%) and decreased
power (0.6–1.3%) for length tests. Table 1 shows the coefficients
for regression models across all non-differential genotype error
settings.

Figure 1 further illustrates that the effect of genotype errors
is compounded by the MAF. While the power is similar when
no errors are present, similar magnitude errors for lower MAF
decrease power at a faster pace than in cases with larger MAF
variants.

OVERALL IMPACTS OF DIFFERENTIAL ERRORS
Similar to the previous section, we used regression to assess the
overall impacts of the three main simulation parameters (MAF,
error magnitude and ratio of case to control errors) on the type
I error rate when there were differential genotype errors. Table 2
shows the coefficients for regression models across all differen-
tial genotype error settings. In general, regression coefficients are
similar for the ε01 only and ε01 and ε10 models, confirming that,
as is the case for non-differential genotype errors, the effect of
ε10 errors are less compared to the effects of ε01 errors. When ε01

errors are present, the type I error rate increased when increasing
either the magnitude of the errors (between 6 and 13% increase
in type I error rate for 1% increase in ε01 errors) or increasing the
difference between the case and control error rates (between 9 and
12% increase in type I error rate for 10% relative increase in case
error rate); changes to the MAF alone did not had little impact
the type I error rate. However, as MAF decreases the effects of dif-
ferential genotyping errors become even greater in magnitude, as
illustrated in Figure 2 for J2, but a pattern that is true regardless
of choice of test statistic.

THE IMPACT OF GENOTYPE ERRORS ON CHOICE OF TEST STATISTIC
While we have described the general effects of genotype errors
on power and type I errors within particular test statistics, the
geometric framework provides a basis for comparisons about the
effects of genotype errors across two characteristics of rare variant
test statistic: choice of length or joint test and choice of norm. We
now consider each of these choices in turn.

Choice of length or joint test statistic
As shown both theoretically and validated by simulation, the gen-
eral patterns of the effects of genotype error and allele frequency
on length and joint tests are similar (see Methods, Overall Impacts
of Non-Differential Errors, and Overall Impacts of Differential
Errors). However, there is one important distinction worth
addressing. In particular, recall the distinction between length and
joint tests: length tests use the difference in case-control total allele
frequency at the locus as the statistic, while joint tests compute the
difference in allele frequencies at each variant site and then sum
the differences across the locus.

Non-differential errors. For non-differential errors at a causal
locus, if genotype errors yield a reduction in the difference in the
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cumulative MAF between cases and controls, there will be power
loss. For joint tests, if genotype errors yield a reduction in the
cumulative differences in allele frequency, there will be power loss.
Thus, for joint tests, total power loss is a straightforward cumu-
lative function of the power loss at each variant site. Things are,
however, more complex for length tests. In a situation where all

FIGURE 1 | Power for L1 in the presence of non-differential genotype

errors at different MAF. Power loss occurs when non-differential genotype
errors are present at a locus. The power curves illustrated are at a site with
eight causal variants. As genotype errors increase, power loss occurs.
However, the power loss is most substantial when the minor allele
frequency is the lowest.

variants are risk-increasing, total power loss is a cumulative func-
tion of the power loss at each variant site. However, length tests
lose power when protective variants and risk-increasing variants
are present in the same gene because the effects of the variants
“cancel out.” In this case, genotype errors can mitigate some of
the power loss due to cancellation by bringing the difference

FIGURE 2 | Type 1 error rate for J2 in the presence of differential

genotype errors at different MAF. As differential error rates increase, the
type I error rate increases. The type I error rate is illustrated at a site with
eight non-causal variants. As differential (20% higher in cases) genotype
error rates increased, the type I error rate increased. When the MAF was
low, this effect was even larger.

Table 2 | Regression model coefficients relating type I error loss/gain to simulation parameters.

Norm Type Error magnitude (per 1% for ε01; MAF (per 0.1%)b Ratio of case and control error

10% for ε10)a rates (per 10%)c

ε01 only ε10 only ε01 and ε10 ε01 only ε10 only ε01 and ε10 ε01 only ε10 only ε01 and ε10

1 Length 0.08*** 0.01* 0.07*** −0.004 0.008* −0.005 0.12*** −0.004 0.11***

Joint 0.13*** 0.02** 0.12*** −0.005 0.009** −0.009 0.10*** 0.022* 0.10***

2 Length 0.08*** 0.01* 0.07*** −0.003 0.007* −0.005 0.11*** −0.006 0.11***

Joint 0.13*** 0.02** 0.12*** −0.005 0.009** −0.009 0.10*** 0.022* 0.10***

4 Length 0.08*** 0.01* 0.08*** −0.002 0.007* −0.004 0.10*** −0.005 0.10***

Joint 0.12*** 0.01** 0.11*** −0.004 0.008** −0.008 0.10*** 0.020* 0.09***

8 Length 0.06*** 0.005 0.06*** −0.001 0.004* −0.003 0.10*** −0.003 0.10***

Joint 0.10*** 0.01** 0.10*** −0.003 0.005** −0.007 0.09*** 0.013* 0.09***

*p < 0.05; **p < 0.01; ***p < 0.001.
aIncrease in type I error rate for a 1% increase in error rate for ε01 or a 10% increase in error rate for ε10. For example, for J2, in the presence of ε01 only errors, a

1% increase in genotype error rate increases the average type I error rate by 13% points when differential genotype errors are present.
bIncrease in type I error rate for a 0.1% increase in average MAF across all variant sites in the gene. For example, for J2, in the presence of ε10 only errors, a 0.1%

increase in average MAF across all variant sites increases the average type I error rate by 0.9% points.
c Increase in type I error for a 10% increase in the relative difference between the ratio of the case to control error rate. For example, for J2, in the presence of ε01

only errors, if the ratio of case error rate is 10% larger than control error rate 10% (e.g., 0.011 and 0.01), then the average type I error rate increases by 10% points.
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in case-control allele counts closer together at protective variant
sites (see Section non-Differential Genotype Errors and Power for
details).

Differential errors. Similar to Non-Differential Errors, the effects
of differential genotype errors on joint tests is simply the accu-
mulation of the effects at each variant site. However, the effect
of differential errors on length tests becomes more complex. For
example, if ε10 is larger in the cases than in the controls for a
risk increasing variant, then differential errors can create a vari-
ant site which has more rare alleles in the controls than in the
cases increasing the type I error rate for both length and joint
tests. However, for length tests, the inflation of the type I error
rate may be mitigated if a protective variant is present in the gene
or if another variant in the gene has ε10 is larger in the controls
than in the cases. Details follow directly from equations in Section
Differential Genotype Errors and the Type I Error Rate.

Choice of norm
While the focus of the bulk of literature has been on development
of L1 or J2 tests, recent work has shown potential advantages to the
use of higher normed tests as a built in form of variant weighting
which may yield higher power, while controlling the type I error
rate when the proportion of non-causal variants is high. We will
now explore the simulation results by evaluating the performance
of test statistics using different norms.

In the main simulation, lower normed tests always outper-
formed higher normed tests in the main simulation where there
were 8 variants, with either 50 or 100% of the variants classi-
fied as “causal” in cases where at least one variant at the locus
modified disease risk. In the follow-up simulation we considered
situations with 8 and 16 variants, where only one of the variants
modified risk. When only one of the eight variants was causal,
low norm tests outperformed high norm tests. However, when
only one of sixteen variants was causal, high normed tests outper-
formed low norm tests in some cases. Figures 3, 4 illustrate the
general patterns for length and joint tests, across norms. In short,
while genotype errors contributed to power loss, the power loss
was partially mitigated through the use of the larger norm.

QUALITY OF ASYMPTOTIC POWER AND TYPE I ERROR PREDICTIONS
In order to evaluate the quality of asymptotic power and type I
error predictions we compared the predicted power and type I
error rates (see Simulation) to those obtained via permutation in
the simulation study for L1 and J2. We use a significance level of
5% to evaluate consistency of predictions, but a follow-up analy-
sis using lower significance thresholds of 10−4, 10−5, and 10−6 for
a select group of simulation settings showed similar levels of con-
sistency with predicted power and type I error rates as described
in the following three sections (detailed results shown).

Type I error predictions in the presence of non-differential genotype
error
As expected the type I error rate of the three asymptotic tests
generally matched permutation tests since the asymptotic tests
predicted 5% type I error rate in all cases (details not shown) and

FIGURE 3 | Higher norms are more robust to genotype errors when the

proportion of non-causal variants is larger: length tests. The figure
illustrates power of four different (norm) length statistics, under varying
error models. All test statistics experience power loss in the presence of
errors. However, power loss can be mitigated through the use of high norm
test statistics.

FIGURE 4 | Higher norms are more robust to genotype errors when the

proportion of non-causal variants is larger: joint tests. The figure
illustrates power of four different (norm) joint statistics, under varying error
models. All test statistics experience power loss in the presence of errors.
However, power loss can be mitigated through the use of high norm test
statistics.

the permutation tests generally demonstrated control of the type
I error rate, except in cases of extremely low (aggregate) MAF (see
Type I Error is Control in the Presence of Non-Differential Errors
for details), where the permutation tests showed empirical type I
error rates less than the nominal level.

Frontiers in Genetics | Statistical Genetics and Methodology April 2014 | Volume 5 | Article 62 | 10

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Cook et al. Evaluating impact of genotype errors

Power predictions in the presence of non-differential genotype
error
Overall, predicted power was very close to observed power. Across
175 simulation settings with causal variants, most power predic-
tions were within 10% of the true power (91% for L1, and 83%
for J2). The quality of power predictions was strongly associated
with the average MAF across the 8 sites in the control sample, as
shown in Table 3.

Type I error predictions in the presence of differential genotype
error
Similarly, predicted type I error inflation from differential geno-
type errors was very close to the empirical type I error rate
across 140 simulation settings with no risk variants, but differ-
ential genotype errors present. The vast majority of type I error
predictions were within 5% of the empirical type I error rate
(91% for L1 and 84% for J2). Again, the quality of predictions
was strongly associated with the average MAF in the control
sample.

Software
Software (R scripts) for asymptotic power predictions and sam-
ple size computations for L1 and J2 based on the formulas and
methods shown in Asymptotic Power Formulas for L∗

1 and J∗
2 is

provided on the research group’s website at: http://www.dordt.
edu/statgen and following the links to the Software page.

DISCUSSION
Misclassification errors are a perennial problem in data anal-
ysis, and can be particularly magnified when using new tech-
nology which is often more error prone than mature technol-
ogy. Recently, there has been substantial methodological effort
devoted to the development of methods for analyzing next-
generation sequencing data. However, much of this effort has
ignored the problem of misclassification errors in the underlying
genotype data (genotype errors). We have demonstrated that the
persistent issue of genotype errors in next-generation sequencing
data (Nielsen et al., 2011; Browning and Browning, 2013) has the
potential to substantially reduce power and/or increase the type
I error rate of the majority of related rare variant tests of asso-
ciation. Researchers should use the software and analytic tools
described above to easily estimate the impact of genotype errors
on downstream analyses. Thus, appropriately increasing sample

size of next-generation studies to minimize power loss due to
genotype error.

We have provided an initial theoretical justification behind
recent simulation results evaluating the impact of both non-
differential and differential genotype errors. In particular, we
have confirmed that errors from the common homozygote to
the heterozygote (ε01) are particularly detrimental. The effects
are further compounded depending upon whether the genotype
errors are differential (increasing MAF increases type I error rate)
or non-differential (decreasing MAF decreases power). In general,
the effects of heterozygote to common homozygote errors (ε10)

are small and varied. The type I error rate is maintained in the
presence of non-differential misclassification errors, with some
over-conservatism when using permutation tests with extremely
small allele frequencies due to the discrete nature of the permu-
tation distribution. However, the type I error rate inflates in the
presence of differential genotype errors. Our results are shown
explicitly for common classes of test statistics, but are suggestive of
the impact of genotype errors on all tests within the broad classes
of length and joint tests regardless of the norm chosen.

To better understand why common homozygote to heterozy-
gote errors can be so detrimental, it is useful to consider how
many misclassifications are actually occurring in a dataset of
interest. In the case of non-differential genotype errors, when
examining rare variants (p is small), even small values of ε01

can yield many errors because most individuals in the dataset
are common homozygotes. For example, on average, in a sample
of 10,000 individuals, a rare variant with population MAF, p =
0.001, 9990 individuals will be the common homozygote, and so
if ε01 is only 0.01, we expect nearly 100 (0.01∗9990) misclassifi-
cations. On the other hand, even if ε10 is large (e.g., ε10 = 0.10),
this yields, on average a small number of misclassifications (e.g.,
0.10 ∗ 10 = 1). Notably, due to the aggregating nature of all gene-
based rare variant tests as compared to single marker tests, the
effects of genotype errors aggregate across variant sites within the
gene, further increasing impact on power loss and type I error
inflation.

Liu et al. (2013) demonstrated that the use of larger norms in
rare variant tests provides increased robustness to the inclusion
of non-causal variants. Our analysis demonstrates that another
advantage of these tests is that they may be more robust to geno-
type errors than lower normed tests. Rare variant tests using a
larger norm place increasing weight on sites with larger MAF in

Table 3 | Proportion of simulation settings and average MAF, within each absolute difference subcategory.

Abs. Diff. Differential error Non-differential error

L1 J2 L1 J2

<0.05 Percentage of settings (Count/Total) 98.9% (137/140) 83.6% (117/140) 88.0% (154/175) 73.1% (128/175)

Mean control MAF 0.6% 0.6% 0.6% 0.7%

0.05–0.1 Percentage of settings (Count/Total) 2.1% (3/140) 13.6% (19/140) 5.7% (10/175) 15.4% (27/175)

Mean control MAF 0.01% 0.1% 0.3% 0.2%

>0.1 Percentage of settings (Count/Total) 0 2.9% (4/140) 6.3% (11/175) 11.4% (20/175)

Mean control MAF – 0.3% 0.004% 0.1%
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the cases or controls (length tests) or on the difference in MAF
between cases and controls (joint tests). Because of the cumulative
nature of the impact of genotype errors on rare variant tests, use
of higher norms, reduces the overall impact of genotype errors.
Whether high norm (e.g., infinity norm) tests are a powerful
choice in practice is dependent upon underlying genetic architec-
ture, dependent upon what percent of the variants at the locus are,
in fact, causal, and how much prior understanding of the poten-
tial functional implications of those variants (e.g., synonymous
vs. non-synonymous) can be used to minimize the impact of non-
causal variants on the test (e.g., only including non-synonymous
variants in the test). Importantly, in cases where genotype errors
are larger for some variants, if the largest observed effects are at
sites with a low error rate, and non-causal SNPs have a higher
error rate, high normed tests may perform particularly well. Of
course, high-normed tests perform less optimally compared to
low-normed tests when numerous causal variants are present.
Thus, use of methods in the spirit of those proposed by Derkach
et al. (2013) have the potential to combine high norm tests with
low-normed tests to yield a combined testing approach which is
robust and powerful to numerous genetic architectures and geno-
type error distributions. Continued exploration of this class of
high-normed rare variant tests is needed to assess its practical
utility.

A related issue is that nearly all rare variant tests proposed to
date do not explicitly account for genotype errors in the formula-
tion of the test statistic. However, inclusion of genotype errors
in the test statistic may also help to mitigate power loss and
type I error inflation from genotype errors. While use of higher
norms may, in some cases, mitigate the impact of genotype errors,
development of tests which explicitly incorporate errors into the
test may perform even better. There are some recently developed
methods which address these weaknesses by directly incorporat-
ing sequence quality information (Daye et al., 2012) or advocating
pooled study designs (Wang et al., 2012; Navon et al., 2013).
However, in general, these methods remain outside of the main-
stream. Expanded consideration of the impact of errors on more
commonly used methods, combined with increased use of meth-
ods which explicitly model errors and/or study designs which
limit the impact of errors are needed.

To explicitly incorporate errors into gene-based rare variant
tests, explicit modeling of genotype error structures is needed.
To do this, precise error models for genotype calling algorithms
are needed. Currently, adjustments to, and practical use of, geno-
type calling algorithms are typically made with a generic sense of
reducing errors and improving downstream analysis. Our results
provide the basis for making stronger, more direct evaluation of
upstream genotype calling algorithms in light of specific power
and type I error implications. For example, the results here can
be used to determine optimal ratios of ε01 to ε10 to minimize
power loss—striking a meaningful and justified balance of sen-
sitivity and specificity in the detection of rare alleles. Further
work is needed which directly evaluates the decisions made in
genotype calling algorithms with regard to their effects on geno-
type errors and downstream power and type I error implications
and the potential development of alternate rare variant tests
which explicitly incorporate genotype errors. This work may also

include consider of errors involving the rare homozygote which
was beyond the scope of our analysis.

Our analysis considers a situation where there is no LD
between variants. The general effects of LD on the relationship
between genotype errors and test performance are straightfor-
ward, while the details are quite complex. In short, the effects
of genotype errors will generally be mitigated by LD structure
due to (a) the potential for reduced genotype errors when using
LD-aware callers and (b) the potential for increased power of
multi-marker tests when LD is present between non-causal vari-
ants. While this general pattern is true, there is substantial detail
related to (a) potential association between genotype error rates
and LD structure and (b) potential differences in performance
related to the relationship between LD and test statistic choice.
Further work is needed to more specifically characterize the
impact of LD on the effects of genotype errors.

Consideration of genotype errors in the design of studies is
another implication of our work. In particular, we have con-
clusively demonstrated that power loss will be realized in the
presence of non-differential genotype errors. Thus, if a researcher
determines that they need N subjects to achieve an a priori speci-
fied level of statistical power, 1 − β, in their rare variant analysis,
we have demonstrated that, in the presence of non-differential
genotype errors, in almost all cases, the actual number of sub-
jects needed is N∗/N > 1. While it is straightforward to see
that the value of N∗/N increases in all the same situations that
power decreases, tools are needed for researchers to quickly deter-
mine how sample size and power estimates should be modified
to appropriately account for the impact of genotype errors. The
asymptotic power predictions for L1 and J2 are provided as a first
step toward nearly instantaneous evaluation of the impacts on
power and type I error from different types and levels of geno-
type errors. The main utility in these formulas is in predicting
the relative changes in power and type I error from genotype
errors. However, even absolute power and type I error predic-
tions were quite accurate in most cases. That said, there is room
for improvement if the goal is accurate prediction of absolute
power values (e.g., tweaking predictions for a particular variant
weighting scheme).

Another important study design consideration relates to dif-
ferential genotype errors. A growing practice is the use of publicly
available databases (e.g., 1000 Genomes Project) as a source of
non-diseased subjects since this can substantially reduce study
costs. However, in such a case there is no guarantee that the geno-
type error model is the same in these publicly available databases
vs. the error model in the diseased subjects—a situation poten-
tially leading to differential genotype errors and inflated type I
errors. The use of the asymptotic equations provided here can
give a first level approximation of type I error inflation due
to differential genotype errors. As shown, this inflation can be
substantial even for modest levels of differential genotype error.
Caution should be used when using publically available control
samples. While overall methods for controlling the type I error
(e.g., genomic control) are available, these methods can substan-
tially reduce power compared to methods with explicitly model,
account for or eliminate differential errors. A related issue is that
of population stratification which also can inflate the type I error
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rate. Further work is needed to more fully investigate relation-
ships between population stratification and differential genotype
error for rare variant tests of association.

To date only simulation results providing suggestive evidence
of the impact of genotyping errors on rare variant tests of asso-
ciation has been available. Our work here, building off of the
geometric framework, provides theoretical justification to these
patterns. In particular, we demonstrate the potentially substan-
tial impact of common homozygote to heterozygote errors on
both power and type I error. The impact of the errors can be
intensified depending on the underlying MAF and differential
or non-differential nature of the genotype errors, and the test
statistic used. Further work is needed to explore additional impli-
cations of these results on genotype calling algorithms, study
design decisions and rare variant test statistic choice.
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