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Transfer messenger RNA (tmRNA; also known as 10Sa RNA or SsrA RNA) is a small RNA
molecule that is conserved among bacteria. It has structural and functional similarities to
tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P,
it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to
EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA
lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-
peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help
of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single
polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and
SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without
a codon–anticodon interaction, and subsequently truncated mRNA is replaced with the
tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB
structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues
the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide
serves as a target of AAA+ proteases, the trans-translation products are preferentially
degraded so that they do not accumulate in the cell. Although alternative rescue systems
have recently been revealed, trans-translation is the only system that universally exists
in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents
accumulation of non-functional proteins from truncated mRNA in the cell. It might play the
major role in rescuing the stalled translation in the bacterial cell.
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INTRODUCTION
Translation often stalls in various situations in a cell, sometimes
in a programmed fashion and other times unexpectedly. For
example, translation of mRNA lacking a stop codon (non-stop
mRNA) does not terminate efficiently because peptide release fac-
tor does not function. Thus, the cell should have a system to
cope with such emergencies. However, little attention was given
to this issue until the mid-1990s, and therefore the discovery of
tmRNA was a big surprise. Initially the tRNA-like structure and
function of tmRNA were elucidated. Both terminal regions of
tmRNA can form a secondary structure resembling the upper
half of the cloverleaf-like structure of tRNA (Komine et al., 1994;
Ushida et al., 1994), which includes several tRNA-specific consen-
sus sequences and base modifications (Figure 1A; Felden et al.,
1997, 1998). Like that of tRNA, the 3′ end of tmRNA can be
aminoacylated with an amino acid (alanine) by an aminoacyl-
tRNA synthestase (alanyl-tRNA synthetase; Komine et al., 1994;
Ushida et al., 1994). Other tRNA-like functions, such as 5′ pro-
cessing by RNase P (Komine et al., 1994), binding to EF-Tu
(Rudinger-Thirion et al., 1999; Barends et al., 2000, 2001; Hanawa-
Suetsugu et al., 2001) and interaction with 70S ribosome (Ushida
et al., 1994; Komine et al., 1996; Tadaki et al., 1996), have also
been revealed. Although it is about fivefold larger than tRNA,
tmRNA has no apparent anticodon, making it difficult to clarify
whether and how tmRNA is involved in translation. A few years

later, it was found that tmRNA has functions not only as tRNA but
also as mRNA: a short peptide is encoded by the middle part of
tmRNA (Tu et al., 1995), which is surrounded by four pseudoknot
structures (Figure 1A; Nameki et al., 1999b,c). Intriguingly, these
two functions cooperate, rather than being independent, to pro-
duce a chimeric polypeptide from two mRNAs, a C-terminally
truncated polypeptide encoded by mRNA fusing the tmRNA-
encoded short peptide with an alanine residue of unknown origin
in between them (Keiler et al., 1996; Muto et al., 1996; Himeno
et al., 1997). This acrobatic translation involving co-translational
mRNA swapping produces a single polypeptide from two mRNAs,
and thus it has been called trans-translation (Figure 2; Muto
et al., 1998). This system provides a stop codon to allow com-
pletion of translation of a non-stop mRNA and consequently
recycling of the ribosome. In addition, trans-translation has been
regarded as a quality control system that prevents non-functional
polypeptides derived from truncated mRNAs from accumulat-
ing in the cell, as the tag-peptide consisting of the first alanine
residue and the tmRNA-encoded short peptide, especially the
sequence of the last four hydrophobic amino acids (ALAA), serves
as the target for cellular ATP-dependent proteases (Gottesman
et al., 1998; Herman et al., 1998; Flynn et al., 2001; Choy et al.,
2007).

Trans-translation requires a tmRNA binding protein called
SmpB in addition to canonical elongation factors (Karzai et al.,
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FIGURE 1 | Secondary and tertiary structures of tmRNA. (A) Secondary
structure of tmRNA. (Left) The most typical secondary structure of tmRNA
is shown, with TLD and the tag-encoding region designated in brown and
red, respectively. (Right) A secondary structure of two-piece tmRNA. The
5’-coding piece and 3’-amino acid acceptor piece are designated in green
and violet, respectively. (B) Tetiary structure of tmRNA or its fragment in
complex with SmpB. (Left) A crystal structure of a complex of a TLD
fragment lacking the 3’CCA end of T. thermophilus tmRNA (the 5’ 25
residues and 3’ 34 residues connected by a UUCG loop) and the globular
domain (N-terminal 123 of a total of 144 residues) of SmpB (PDB ID: 2CZJ;
Bessho et al., 2007). TLD (brown) and SmpB (dark blue) mimic the upper
and lower halves of the L-shaped structure of tRNA, respectively. (Right) A
cryo-EM structure of tmRNA·SmpB in a T. thermophilus post-translocated
state complex of trans-translation (PDB ID: 3YIR; Weis et al., 2010b) is
shown, with TLD, the tag-encoding region and SmpB designated in brown,
red, and dark blue, respectively. The N-terminal globular domain of SmpB
mimicking the lower half of the L-shaped structure of tRNA is in close
contact with the upstream region of the tag-encoding sequence.

1999). SmpB consists of a globular domain and an unstructured
C-terminal tail (Dong et al., 2002; Someya et al., 2003). It binds to
the tRNA-like domain (TLD) of tmRNA to prevent tmRNA from
degradation and enhance aminoacylation of tmRNA (Barends
et al., 2001; Hanawa-Suetsugu et al., 2002; Shimizu and Ueda,
2002; Nameki et al., 2005). SmpB also plays a crucial role in the
ribosomal process of trans-translation.

The trans-translation system is universally present in bacterial
cells and is present in organelles of some eukaryotes but not in the
cytoplasm of eukaryotes or archaebacteria. There is accumulating
evidence indicating that the bacterial cell is equipped with addi-
tional systems to cope with stalled translation. Here, we review
the current understanding of the molecular mechanism and the
cellular functions of tmRNA-mediated trans-translation as well as
other ribosome rescue systems.

MOLECULAR MECHANISM OF TRANS -TRANSLATION
An outline of the process of trans-translation is as follows
(Figure 3): initially, tmRNA in complex with SmpB is aminoacy-
lated with alanine by alanyl-tRNA synthetase. Ala-tmRNA enters
the A-site of the stalled ribosome on a truncated mRNA to receive
the nascent polypeptide from peptidyl-tRNA in the P-site. Then
peptidyl-Ala-tmRNA translocates to the P-site, which exchanges
the template from truncated mRNA to the tag-encoding region
on tmRNA. It can reasonably explain the missing origin of the
alanine residue connecting the truncated polypeptide encoded by
mRNA with the tmRNA-encoded tag-peptide: it is derived from
the alanine moiety aminoacylated to tmRNA. This model was pro-
posed on the basis of the results of an in vivo study showing that
truncated polypeptides fusing the tmRNA-encoding tag-peptide
in its C-termini accumulate in the cell when a truncated mRNA is
expressed (Keiler et al., 1996), and the model was supported by the
results of an in vitro study showing that the tag-peptide is synthe-
sized using Escherichia coli cell extract depending on the addition
of poly(U) and on the aminoacylation capacity of tmRNA (Muto
et al., 1996; Himeno et al., 1997). However, several questions have
been raised. How does tmRNA find the stalled ribosome? How
does tmRNA enter the A-site of the ribosome without an anti-
codon? How does the tag-encoding region of tmRNA substitute
for truncated mRNA? How is the resuming point on tmRNA deter-
mined? SmpB has emerged as the key molecule to solve these
questions.

Besides canonical translation factors and tmRNA, SmpB is
the minimal requirement for in vitro trans-translation (Shimizu
and Ueda, 2002; Takada et al., 2007; Kurita et al., 2012). SmpB
has been thought to continue binding to tmRNA throughout
the process of trans-translation (Ivanova et al., 2007). In a crys-
tal structure of a complex of SmpB and a model RNA fragment
corresponding to TLD of tmRNA, the globular domain of SmpB
binds to TLD so that it compensates for the lack of the lower
half of the L-form structure in tmRNA (Figure 1B; Gutmann
et al., 2003; Bessho et al., 2007). Thus, TLD in complex with
the globular domain of SmpB would structurally mimic a whole
tRNA molecule. A directed hydroxyl radical probing study has
revealed two SmpB binding sites in an E. coli ribosome, one
in the A-site and the other in the P-site, both of which can be
superimposed on the lower half of the tRNA molecules in the
translating ribosome (Kurita et al., 2007). An additional mimicry
of the upper half of tRNA by TLD could complete two whole
translating tRNA mimics at the A-site and P-site so that their
aminoacyl ends are oriented to the peptidyl-transferase center.
The pattern of cleavage of 16S rRNA by hydroxyl radicals from the
C-terminal tail residues has suggested two binding sites of the C-
terminal tail of SmpB with two different modes of conformation
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FIGURE 2 | Schematic representation of trans-translation. When the
translating ribosome is stalled due to mRNA truncation, it is rescued by
trans-translation, which produces a chimeric protein consisting of the
C-terminally truncated polypeptide (gray circles) encoded by 3’-truncated

mRNA fusing the tmRNA-encoded short peptide (blue circles) with an alanine
residue (red circle) originating from alanine aminoacylated to the 3’-end of
tmRNA in between them. Trans-translation promotes degradation of both
truncated mRNAs and aberrant polypeptides from truncated mRNAs.

in the ribosome in addition to the unstructured conformation in
solution: an extended conformation from the A-site to the down-
stream tunnel along the mRNA path as an α-helical structure
and a folded conformation around the mRNA path in the P-site
(Kurita et al., 2007, 2010).

On the basis of these SmpB properties, the trans-translation
process can be described in more detail (Figure 3). Ala-
tmRNA·SmpB·EF-Tu·GTP enters the vacant A-site of the stalled
ribosome. GTP hydrolysis induces a conformational change of
the stalled complex to release EF-Tu.GDP, allowing accommo-
dation of Ala-TLD·SmpB in the A-site. During this process, the
C-terminal tail of SmpB interacts with the mRNA path extend-
ing towards the mRNA entry channel. Subsequently, Ala-TLD in
the A-site receives the nascent polypeptide chain from peptidyl-
tRNA in the P-site, and the resulting peptidyl-Ala-TLD·SmpB
translocates from the A-site to the P-site. During this process, the

C-terminal tail of SmpB dissociates from the mRNA entry channel
and binds around the site of codon–anticodon interaction in the
P-site with change in its conformation from the extended struc-
ture to the folded structure, which in turn promotes release of
mRNA from the ribosome. The conformational change of the C-
terminal tail concomitant with translocation makes the A-site free,
thereby allowing introduction of the resume codon of tmRNA into
the decoding region. This model has been supported by results
of structural studies of several trans-translation intermediates.
Cryo-EM studies have revealed three kinds of intermediates in
the pre-accommodated, accommodated, and translocated states
(Kaur et al., 2006; Cheng et al., 2010; Fu et al., 2010; Weis et al.,
2010a,b). In all of them, SmpB and TLD occupy the lower and
upper halves, respectively, of the tRNA-binding sites. Although the
C-terminal tail of SmpB has not been identified in these maps due
to low resolution, its interaction with the mRNA path has clearly
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FIGURE 3 | A current model of trans-translation. Ala-tmRNA·SmpB·EF-
Tu·GTP enters the vacant A-site of the stalled ribosome to trigger
trans-translation. GTP hydrolysis by EF-Tu may induce a conformation change
of the stalled complex, allowing the C-terminal tail of SmpB to interact with
the mRNA path with an extended structure. After peptidyl-transfer,

peptidyl-Ala-tmRNA·SmpB translocates from the A-site to the P-site with the
help of EF-G to drive out truncated mRNA from the ribosome. During this
process, the extended C-terminal tail somehow folds. Then the resume codon
of tmRNA is set on the decoding region. SmpB and the tag-encoding region
are shown in red and blue, respectively.

been shown in a crystal structure of a pre-accommodation state
complex of trans-translation containing kirromycin (Neubauer
et al., 2012).

This model can explain why trans-translation preferentially
occurs at the ribosome stalled on mRNA with a shorter 3′-
extension, which has been exemplified in vitro (Ivanova et al., 2004;
Asano et al., 2005): the C-terminal tail of SmpB competes with the
3′-extension of mRNA for the mRNA entry channel. A chemical

footprinting study has suggested that SmpB interacts with A1492,
A1493, and G530 in 16S rRNA, which form the decoding region
(Nonin-Lecomte et al., 2009). However, these nucleotides can be
changeable without loss of both peptidyl-transferase and GTP
hydrolytic activities in trans-translation, indicating much lower
significance of these decoding nucleotides for trans-translation
(Miller et al., 2011). In a crystal structure of a Thermus ther-
mophilus pre-accommodation state complex of trans-translation,
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G530 stacks with a residue (Y127) around the start of the C-
terminal tail of SmpB (Neubauer et al., 2012). Recently, Miller
and Buskirk (2014) have found that the corresponding residue in
E. coli SmpB (H136) has a crucial role in GTP hydrolysis, leading
to the proposal that stacking of this residue with G530 triggers
GTP hydrolysis.

EF-G promotes release of truncated mRNA from the stalled
ribosome after peptidyl transfer to Ala-tmRNA, suggesting the
presence of a canonical translocation-like step in the trans-
translation process (Ivanova et al., 2005). During this event, SmpB
must pass through the barrier between the A-site and P-site, and
tmRNA must enter the inside of the mRNA entry channel to set the
resume codon in the decoding region. Consistently, in a cryo-EM
map of a translocational intermediate complex containing EF-G
and fusidic acid, both bridge B1a, which serves as a barrier between
the A-site and P-site, and latch, which is usually closed by the
interaction between the head (helix 34) and body (G530 region)
to form the mRNA tunnel, are open (Ramrath et al., 2012). Precise
positioning of the resume codon at the decoding region requires
the sequence just upstream of the resume codon at positions –6
to +1 (Williams et al., 1999; Lee et al., 2001), and this sequence is
recognized by the globular domain of SmpB (Konno et al., 2007),
suggesting that SmpB bridges two separate domains of tmRNA
in the P-site to determine the resume codon for tag-translation
presumably just after translocation. This is in agreement with
cryo-EM maps of translocated state complexes of trans-translation
(Figure 1B; Fu et al., 2010; Weis et al., 2010b). Another study has
suggested the importance of the C-terminal tail of SmpB and its
interaction with the start GCA codon on tmRNA for determi-
nation of the start point of tag-peptide translation (Camenares
et al., 2013). Taken together, the results suggest that the interaction
between tmRNA and SmpB is more important for resume point
determination than the interaction between tmRNA and the ribo-
some. It should be noted that some kinds of aminoglycosides that
bind the decoding region shift the resume point of tag-translation
(Takahashi et al., 2003; Konno et al., 2004).

Although several examples of the potential molecular mimicry
of tRNA by a translation factor have been reported, SmpB is the
sole molecule that has been assumed to mimic the dynamic behav-
ior of tRNA throughout all of the classical and hybrid states, A/T,
A/A, A/P, P/P, and P/E, in the translating ribosome. The ribosomal
protein S1, which has been identified as a tmRNA-binding protein
(Wower et al., 2000), is not thought to participate in the early stage
of trans-translation, at least until the first translocation (Qi et al.,
2007; Takada et al., 2007).

REQUIREMENT OF MRNA CLEAVAGE FOR TRANS -TRANSLATION
Because the tag-sequence serves as a degradation signal, trans-
translation products are hardly detected in the cell or its extract,
although they become accumulated and thus detectable when the
tag-encoding sequence of tmRNA is engineered. It has long been
believed that trans-translation occurs around the 3′-end of trun-
cated mRNA lacking a stop codon (non-stop mRNA) in the stalled
ribosome since publication of the results of an earlier in vivo study
using an artificial mRNA (Keiler et al., 1996). Non-stop mRNA
can be produced either unexpectedly or in a programmed fashion,
and a similar situation can also arise when the normal termination

codon is read through in the presence of a non-sense suppressor
tRNA (Ueda et al., 2002) or a miscoding drug (Abo et al., 2002).
Proteomic analyses have identified endogenous trans-translation
products from various bacterial sources, indicating that trans-
translation preferentially occurs at specific sites of specific mRNAs
(Roche and Sauer, 2001; Collier et al., 2002; Fujihara et al., 2002;
Hong et al., 2007; Barends et al., 2010). Consequently, several sit-
uations that promote trans-translation in the middle of mRNA
have been focused on: translational pausing due to a rare codon
(Roche and Sauer, 1999), an inefficient termination codon (Roche
and Sauer, 2001; Hayes et al., 2002a; Sunohara et al., 2002) and a
programmed stalling sequence (Collier et al., 2004) induces trans-
translation. However, whether trans-translation actually occurs
in the middle of mRNA without cleavage has been controver-
sial. It has been found that a bacterial toxin, RelE, cleaves an
mRNA specifically at the A-site in the stalled ribosome (Ped-
ersen et al., 2003). RelE is usually inactivated by an antitoxin,
RelB, and it is activated by degradation of RelB by Lon protease
upon amino acid starvation. Yet, the finding of an A-site-specific
endoribonuclease has supported the idea that mRNA cleavage is
the prerequisite for trans-translation. Ribosome stalling induces
cleavage of mRNA at the A-site even in a cell lacking RelE or sev-
eral other endoribonucleases (Hayes and Sauer, 2003; Sunohara
et al., 2004a,b; Li et al., 2008), indicating the involvement of an
as-yet-unidentified ribonuclease or the ribosome itself in mRNA
cleavage. It has also been reported that the 3′–5′ exoribonulease
activity of RNase II is an important prerequisite for A-site-
specific mRNA cleavage (Garza-Sánchez et al., 2009). Besides
RelE, several kinds of ribosome-dependent endoribonucleases,
each having a specific antitoxin, have been identified in E. coli
(Feng et al., 2013).

In vitro studies have clearly shown that trans-translation can
occur in the middle of mRNA, although the efficiency of trans-
translation is drastically decreased with increasing length of the
3′-extension from the stalled position (Ivanova et al., 2004; Asano
et al., 2005). This is in agreement with results of structural
studies showing that the C-terminal tail of SmpB occupies the
mRNA path in the early stage of trans-translation so that it
competes with the 3′-extension of mRNA (Kurita et al., 2010;
Neubauer et al., 2012).

Proteomic studies have shown that trans-translation preferen-
tially occurs at the proline codon just preceding the stop codon
(Hayes et al., 2002a,b). Asp–Pro, Glu–Pro, Pro–Pro, Ile–Pro, and
Val–Pro are favorable C-terminal dipeptides for trans-translation,
suggesting an additional importance of the penultimate residue.
In fact, Asp–Pro and Pro–Pro are unusually underrepresented
at the C-terminus in most bacterial proteins. Due to the struc-
tural irregularity of proline having a secondary amine instead
of the primary amine, peptidyl-Pro-tRNAPro in the A-site would
interfere with the access of peptide release factor (Janssen and
Hayes, 2009), rather than that of the Ala-tmRNA·SmpB·EF-
Tu·GTP complex. Consistently, limited amounts of aminoacyl-
tRNA or release factor induce trans-translation, indicating
competition of trans-translation with aminoacyl-tRNA and
release factor for sense and non-sense codons, respectively,
in the stalled ribosome (Ivanova et al., 2004; Asano et al.,
2005; Li et al., 2007). Consecutive proline residues also affect
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peptidyl-transfer during the elongation process to cause trans-
lational arrest, which can be rescued by EF-P (Doerfel et al., 2013;
Ude et al., 2013).

These in vivo and in vitro studies together have settled the con-
troversy shown above: translation can stall even in the middle of
mRNA in some situations, and this kind of stalled ribosome can
be a potential target for trans-translation, although it would sub-
stantially occur only after cleavage of mRNA around the A-site by
RelE or another as-yet-unidentified ribonuclease with the help of
a 3′–5′ exoribonuclease RNase II.

TRANS -TRANSLATION AS QUALITY CONTROL SYSTEMS OF PROTEIN
AND MRNA
As described above, the most significant role of trans-translation
is to promote recycling of stalled ribosomes in the cell. Trans-
translation is thought to have additional roles as quality control
systems of protein and mRNA.

Most trans-translation products would be non-functional, and
thus their accumulation might be deleterious for the cell. To avoid
this situation, the tag-peptide and in turn the trans-translation
products are promptly degraded in the cell by cytoplasmic ATP-
dependent proteases (AAA+ proteases), including ClpXP, ClpAP,
Lon and FtsH, and the periplasmic protease Tsp (Prc; Figure 4).
ClpX or ClpA recognizes the C-terminal ALAA sequence of the
tag-peptide to unfold the trans-translation products in an ATP-
dependent fashion for degradation by its partner ClpP peptidase
(Gottesman et al., 1998). The tag-peptide specifically binds to a
protein, SspB, to increase its affinity to ClpX, and consequently
ClpXP is thought to play the dominant role in degradation of
trans-translation products at least in β- and γ-proteobacteria
(Flynn et al., 2001) and perhaps in α-proteobacteria (Lessner
et al., 2007). Lon participates in degradation of trans-translation
products under stressful conditions (Choy et al., 2007). FtsH
is anchored to the cytoplasmic side of the inner membrane

FIGURE 4 | Ribosome rescue pathways together with folding and degradation pathways in an E. coli cell. Folding and degradation pathways are shown
in blue and red, respectively.
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to degrade the membrane-associated trans-translation products
(Herman et al., 1998). The C-terminal ALAA sequence of the tag-
peptide required for ClpXP and ClpAP is highly conserved among
bacteria except Mycoplasma, in which the tag-peptide terminates
with AFA instead of ALAA. This can be addressed by the absence
of ClpXP, ClpAP, and Tsp in Mycoplasma (Gur and Sauer, 2008;
Ge and Karzai, 2009).

While trans-translation is induced by cleavage of mRNA in the
stalled ribosome as described above, trans-translation also pro-
motes further degradation of non-stop mRNA (Yamamoto et al.,
2003). Trans-translation would expose the 3′ end of non-stop
mRNA sequestered by the stalled ribosome, facilitating the access
of 3′–5′ exoribonuclease for degradation of non-stop mRNA. It
should be a great advantage for the cell, considering that ribosome
stalling would be repeated until non-stop mRNA is degraded,
even if the stalled ribosome at the 3′ end of the polysome is
rescued by trans-translation. RNase R is a likely candidate for
such an exoribonuclease (Oussenko et al., 2005; Mehta et al., 2006;
Richards et al., 2006; Ge et al., 2011). E. coli RNase R makes a
complex with tmRNA and SmpB (Karzai and Sauer, 2001) via
direct interaction with SmpB (Liang and Deutscher, 2010). It is
induced under stress conditions in E. coli (Chen and Deutscher,
2005) and is involved in cell cycle-regulated degradation of tmRNA
in Caulobacter crescentus (Hong et al., 2005). E. coli RNase R
is acetylated in exponential phase, resulting in the exponential
phase-specific degradation via tighter binding to tmRNA·SmpB
(Liang et al., 2011).

PHYSIOLOGICAL SIGNIFICANCE OF TRANS -TRANSLATION
The apparent universality of the trans-translation system among
bacteria suggests some biological significance of this system.
Indeed, it is essential for some bacteria including Neisseria gon-
orrhoeae (Huang et al., 2000), Mycoplasma genitalium (Hutchison
et al., 1999), Haemophilus influenzae (Akerley et al., 2002), Heli-
cobacter pylori (Thibonnier et al., 2008), and Shigella flexneri
(Ramadoss et al., 2013a), and its depletion causes a wide vari-
ety of disorders. Since its lack causes avirulence of some infectious
bacteria, the trans-translation system has been focused on as an
effective target for antibiotics (Shi et al., 2011; Ramadoss et al.,
2013b).

Many of these defective phenotypes are caused by a defect in
the trans-translation reaction rather than degradation of the trans-
translation products (Keiler, 2008). This suggests that ribosome
recycling is more important for the cell than preventing accumu-
lation of non-functional proteins. Upon starvation of amino acids,
supply of amino acids from trans-translation products should
become important for new protein synthesis (Pedersen et al., 2003;
Li et al., 2008).

Trans-translation is often employed for regulation of gene
expression. In E. coli, tmRNA-mediated trans-translation targets
mRNA for LacI, a repressor of the lactose operon, to accelerate its
degradation upon glucose depletion, leading to derepression of the
lac operon (Abo et al., 2000). In Bacillus subtilis, trans-translation
occurs around the catabolite responsive element (cre) sequence,
a binding site of the repressor protein catabolite control protein
A (CcpA), within the coding region of several mRNAs including
TreP mRNA for trehalose phosphorylase (Fujihara et al., 2002).

Binding of CcpA to the cre sequence would induce a transcrip-
tional roadblock to produce truncated mRNA (Ujiie et al., 2009).
In C. crescentus, the cell cycle (Keiler and Shapiro, 2003a) and the
initiation of DNA replication (Keiler and Shapiro, 2003b; Hong
et al., 2007) are controlled by trans-translation.

There is accumulating evidence for increased importance of
tmRNA under stressful conditions, such as high or low temper-
ature (Oh and Apirion, 1991; Muto et al., 2000; Shin and Price,
2007), nutrient starvation (Oh and Apirion, 1991; Okan et al.,
2006; Abe et al., 2008), ethanol treatment (Muto et al., 2000),
cadmium treatment (Muto et al., 2000), and acid exposure (Thi-
bonnier et al., 2008). Stresses might increase the frequency of
aberrant translation in cells, which can be rescued by trans-
translation. Consistently, the total amount of trans-translation
products increases under stressful conditions (Fujihara et al.,
2002). Perhaps in response to the increased requirement of the
trans-translation system, the intracellular level of tmRNA or SmpB
increases with an increase in stress in some bacteria (Muto et al.,
2000; Palecková et al., 2007; Rezzonico et al., 2007).

The trans-translation system sometimes regulates other stress
response systems possibly via expression of a global regulator. For
example, depletion of tmRNA induces heat shock response in E.
coli (Munavar et al., 2005). The expression level of the sigma fac-
tor RpoS (sigma S), which controls the expression of a series of
genes involved in general stress response, is positively controlled
by trans-translation in E. coli (Ranquet and Gottesman, 2007).
The involvement of trans-translation in the extracellular stress-
response pathway via another sigma factor, RpoE (sigma E), has
also been suggested (Ono et al., 2009). Other stress-related pro-
teins including the molecular chaperone DnaK are regulated by
trans-translation in streptomycetes (Barends et al., 2010). Interest-
ingly, the expression of ArfA,an alternative ribosome rescue system
(described in a later subsection), is regulated by trans-translation
(Chadani et al., 2011a; Garza-Sánchez et al., 2011).

EVOLUTIONARY ASPECTS OF TRANS -TRANSLATION
Although it is not essential for viability in most bacteria, tmRNA is
present universally in the bacterial kingdom and in some plastids
or mitochondria of some protists. The tRNA-like secondary struc-
ture of TLD as well as several tRNA-specific consensus sequences is
highly conserved except for the deformed D-arm structure, which
has an extensive interaction with SmpB. In addition, the third
base-pair position of the amino acid acceptor stem is completely
conserved as G–U, which serves as a potent identity determi-
nant for recognition by alanyl-tRNA synthetase (AlaRS). Alanine
might not be an absolute prerequisite for trans-translation as the
amino acid aminoacylated to tmRNA as exemplified by Nameki
et al. (1999a). However, AlaRS might be the most preferable
aminoacyl-tRNA synthetase for tmRNA, considering the unique
recognition mode of AlaRS depending largely on the acceptor
stem instead of the anticodon. The tRNA-like structure would
also be significant for recognition by EF-Tu and RNase P as
well as for ribosome binding. In contrast to the high degree of
conservation of TLD, there is variation in the pseudoknot-rich
region (Nameki et al., 1999b; Williams, 2002). Plastid tmRNA
has fewer or no pseudoknot structures (Gueneau de Novoa and
Williams, 2004). Indeed, at least the last three of four pseudoknots
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of E. coli tmRNA are dispensable for trans-translation in vitro
(Nameki et al., 2000), although they participate in proper fold-
ing and processing of tmRNA (Wower et al., 2004). TLD and the
pseudoknot-rich region are linked by a long degenerated helix,
which protrudes from TLD in a direction corresponding to that
of the long variable arm of class II tRNA (Figure 1B; Bessho et al.,
2007). This direction should be conserved within the constraints of
the tRNA-like dynamic behavior of tmRNA in the limited space of
the ribosome, although the sequence of the connector helix is less
conserved.

In some lineages of α-proteobacteria, β-proteobacteria,
cyanobacteria, and mitochondria of lower eukaryotes, tmRNA
is separated into two pieces, a 5′-coding piece typically includ-
ing only two pseudoknots (PK1 and PK2) with the tag-encoding
region in between and a 3′-amino acid acceptor piece, and the
two pieces join together by base-pairing to form into a tRNA-like
structure similar to that in one-piece tmRNA (Figure 1A; Keiler
et al., 2000; Williams, 2002; Sharkady and Williams, 2004). The
gene for two-piece tmRNA is circularly permuted (Keiler et al.,
2000; Williams, 2002; Mao et al., 2009), and the permuted precur-
sor might be processed into a mature two-piece tmRNA probably
with the help of RNase P and tRNase Z. A similar processing strat-
egy has been found in the circularly permuted tRNA gene in some
primitive eukaryotes or archaebacteria (Soma et al., 2007). The
two-piece tmRNA in C. crescentus belonging to α-proteobacteria
has been shown to actually function in trans-translation (Keiler
et al., 2000). Either one-piece or two-piece tmRNA is present
in mitochondrial genome of some groups of protists (jakobids;
Jacob et al., 2004). They lack a tag-encoding sequence as well as
pseudoknots, arguing against their capacity for bacterial type of
trans-translation.

SmpB together with tmRNA is universally present in bacteria.
Plastid tmRNA is encoded by the plastid genome, while plastid
SmpB is encoded by the nuclear genome and it is imported from
the cytoplasm (Jacob et al., 2005). Up to now, there has been
no report about mitochondrial SmpB. Both tmRNA and SmpB
should have been required at the birth of trans-translation. The
gene for tmRNA might have been formed by insertion of some-
thing into a tRNAAla gene. In contrast, no one can envisage the
origin of SmpB because of the absence of its homologue.

DIVERSITY OF RESCUE SYSTEMS OF STALLED TRANSLATION
As described above, trans-translation targets various kinds of
translational pausing due to a rare codon, an inefficient termina-
tion codon or a programmed stalling sequence, but after cleavage
of mRNA. The bacterial cell has alternative mechanisms to rescue
the stalled ribosome (Figure 4; Himeno, 2010).

Peptidyl-tRNA hydrolase (Pth) has an activity to hydrolyze the
linkage between tRNA and the nascent polypeptide of peptidyl-
tRNA after it drops off from the ribosome. Drop-off is enhanced
by RRF alone, RRF together with RF3 (Heurgué-Hamard et al.,
1998; Gong et al., 2007) or RRF, IF3, and EF-G (Singh et al., 2008).
Drop-off was initially assumed to occur in the earlier cycles of elon-
gation. This seems reasonable considering that a longer nascent
polypeptide chain would prevent release of peptidyl-tRNA from
the peptide channel of the translating ribosome. However, drop-
off has been shown to efficiently occur at the 3′ end of non-stop

mRNA in the absence of tmRNA (Kuroha et al., 2009). Overexpres-
sion of tmRNA suppresses the temperature-sensitive phenotype of
Pth (Singh and Varshney, 2004), suggesting that Pth contributes
not only to hydrolyzing the dropped-off peptidyl-tRNA but also to
rescuing the stalled ribosome or suggesting that trans-translation
can substitute for spontaneous or factor-promoting drop-off and
the following peptidyl-tRNA hydrolysis by Pth.

It has recently been found that two proteins, ArfA (YhdL)
and YaeJ (ArfB), facilitate rescue of the stalled ribosome. A single
knockout of either E. coli ArfA or tmRNA is viable, whereas a dou-
ble knockout is lethal, explaining why tmRNA is not essential in
many bacteria (Chadani et al., 2010). The ribosome rescue activity
of ArfA was initially shown using E. coli crude extract (Chadani
et al., 2010). However, ArfA alone does not have an activity to
hydrolyze peptidyl-tRNA in the P-site possibly due to the absence
of a typical GGQ catalytic motif, and it requires the help of RF-2
(Chadani et al., 2012; Shimizu, 2012). RF-2 usually acts as a UAA
or UGA codon-dependent release factor, while it serves as a stop
codon-independent release factor in the presence of ArfA. Intrigu-
ingly, translation for ArfA protein is stalled near the 3′-terminus
of its mRNA due to cleavage by RNase III, and consequently
ArfA is usually degraded via the trans-translation system, and
only when the cellular trans-translation activity becomes dimin-
ished, is C-terminally truncated but active ArfA synthesized via
spontaneous drop-off or ArfA-mediated release of the nascent
polypeptide (Garza-Sánchez et al., 2011; Chadani et al., 2011a).
Thus, the ArfA-mediated ribosome rescue system is considered to
be a backup system for trans-translation. YaeJ has also been shown
to rescue the ribosomes stalled at the 3′ end of a non-stop mRNA
in vitro (Handa et al., 2011) and in vivo (Chadani et al., 2011b). A
double knockout of E. coli ArfA and tmRNA is lethal as described
above, whereas overexpression of YaeJ makes it viable (Chadani
et al., 2011a). Unlike ArfA, YaeJ alone has an activity to hydrolyze
peptidyl-tRNA in the P-site of the stalled ribosome, as expected
from the similar sequence and structure to those of the catalytic
domain of bacterial class I release factor having a GGQ motif. YaeJ
is likely to act as a stop codon-independent peptide chain release
factor since it lacks a stop codon-recognition domain and instead
it is replaced by a C-terminal basic-residue-rich extension that
might be unstructured in solution (Handa et al., 2010). In a crys-
tal structure of E. coli YaeJ in complex with the stalled ribosome
from T. thermophilus, the C-terminal extension of YaeJ, like that of
SmpB, binds along the mRNA path of the stalled ribosome extend-
ing to the downstream mRNA tunnel with an α-helical structure
(Gagnon et al., 2012). ArfA as well as Ala-tmRNA·SmpB·EF-
Tu(GTP) does not favor the long 3′ extension of mRNA from the
decoding region upon entrance to the stalled ribosome, while YaeJ
is less sensitive (Shimizu, 2012). Thus bacterial cells are equipped
with multiple systems to cope with stalled translation, and they are
therefore often still viable even when they lose the trans-translation
system. Judging from phenotypes of factor-depleted cells, the
trans-translation system must be the primary ribosome rescue
system.

There are some reports about stress-specific ribosome rescue
systems. The heat shock protein HSP15 has been shown to bind
to the dissociated 50S subunit with a nascent protein (Korber
et al., 2000). Upon exposure to a high temperature, a fraction
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of translating ribosomes might prematurely be dissociated into
subunits, although peptidyl-tRNA remains bound to the disso-
ciated 50S subunit unless the nascent peptide is short. In this
50S subunit, HSP15 fixes peptidyl-tRNA at the P-site to make
the A-site free presumably for entrance of a peptide release factor
(Jiang et al., 2009). High intracellular magnesium ion concentra-
tion or low temperature causes translational arrest after defective
translocation. It also promotes release of a GTPase, EF4 (LepA),
which is usually stored in the cell membrane, into the cyto-
plasm to rescue the translational arrest by back translocation
(Pech et al., 2011).

Translation often stalls at a specific site on an mRNA in a pro-
grammed fashion. As in the case of ArfA expression described
above (Chadani et al., 2011a; Garza-Sánchez et al., 2011), transla-
tional arrest is sometimes used for repression of gene expression
via trans-translation. On the other hand, a stalled ribosome
often prevents access of rescue machineries to keep translational
arrest for regulation of gene expression. E. coli tryptophanase
(tna) operon is induced by tryptophan via the translational
arrest of the leader peptide (TnaC) by inhibiting hydrolysis of
peptidyl-tRNAPro by RF2 (Yanofsky, 2007). This stalled ribosome
is not rescued by trans-translation in the presence of tryptophan,
although it is rescued slowly by RRF and RF3, leading to drop-
off (Gong et al., 2007). The ribosome is also stalled at an internal
proline codon of E. coli secM mRNA, which up-regulates the trans-
lation of the downstream SecA-encoding sequence presumably by
disrupting the secondary structure that sequesters the ribosome
binding site (Muto et al., 2006). This translational arrest is caused
by inefficient peptidyl-transfer of Pro-tRNAPro in the A-site to
the nascent peptidyl-tRNA in the P-site, which inhibits entrance
of Ala-tmRNA to the A-site and the A-site specific cleavage of
mRNA (Garza-Sánchez et al., 2006). The translation of B. sub-
tilis yidC mRNA is regulated by translational arrest at multiple
sites on the upstream mifM mRNA (Chiba et al., 2009; Chiba
and Ito, 2012). Puromycin is less reactive to this translational
arrest, suggesting that ribosome rescue machineries including
Ala-tmRNA·SmpB·EF-Tu(GTP) are also less accessible to the A-
site of this stalled ribosome. Consecutive proline codons cause
a translational arrest due to inefficient peptidyl-transfer between
peptidyl-(Pro)n-tRNA in the P-site and Pro-tRNA in the A-site
(Doerfel et al., 2013; Ude et al., 2013). In this case, the A-site
is occupied by Pro-tRNAPro, and in turn Ala-tmRNA·SmpB·EF-
Tu(GTP), ArfA or YaeJ would fail to access this stalled ribosome.
Instead, the peptidyltransferase center is modulated by EF-P bind-
ing to the region between the P-site and E-site to resume peptidyl-
transfer (Blaha et al., 2009). Pro–Pro–Pro and Gly–Pro–Pro arrest
sequences, which can be rescued by EF-P, are often found in bacte-
rial genes, and they might be programmed for regulation of gene
expression.

Pth is essential for bacteria and is widely distributed among
the other domains. While the trans-translation system univer-
sally exists in bacteria, YaeJ is distributed among Gram-negative
bacteria and ArfA shows more limited distribution within enter-
obacteria. EF-P is conserved among bacteria and its homologue
(a/eIF5A) is universally present in archaea and eukaryotes. EF4
is universally conserved among bacteria. Neither tmRNA nor
SmpB is present in the cytoplasm of eukaryotes, where a complex

of Dom34p (Pelota) and the GTP-binding protein Hbs1 pro-
motes subunit dissociation of the stalled ribosome and drop-off
of peptidyl-tRNA (Shoemaker et al., 2010) in concert with an
ATPase, ABCE1 (Pisareva et al., 2011). The Dom34p·Hbs1 com-
plex is structurally similar to the eRF1·eRF3 complex or the
aminoacyl-tRNA·EF-Tu complex (Chen et al., 2010), although the
GGQ motif is absent in Dom34, and peptidyl-tRNA hydrolysis
is assumed to be catalyzed by Pth after drop-off. In mitochon-
dria, two protein factors partially similar to the bacterial class I
release factor, ICT1 (a homologue of YaeJ) and C12orf65, both
lacking a stop codon-recognition domain while retaining the cat-
alytic GGQ motif, participate in ribosome rescue (Handa et al.,
2010; Richter et al., 2010; Kogure et al., 2012, 2014). ICT1 (YaeJ),
but not C12orf65, has an insertion of an α-helix in the GGQ
domain, and thus ICT1 is less similar to class I release factor.
C12orf65 has been found in very limited bacteria. Collectively,
various kinds of release factor homologues, YaeJ, ICT1, C12orf65,
ArfA/RF2, Dom34p (Pelota), and Hbs1, have been found to
participate in ribosome rescue. The trans-translation system is
unique in that it employs a small RNA and that it prevents accu-
mulation of non-functional proteins from truncated mRNA in
the cell.
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