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With the advent of ChIP-seq multiplexing technologies and the subsequent increase in
ChIP-seq throughput, the development of working standards for the quality assessment
of ChIP-seq studies has received significant attention. The ENCODE consortium’s large
scale analysis of transcription factor binding and epigenetic marks as well as concordant
work on ChIP-seq by other laboratories has established a new generation of ChIP-seq
quality control measures. The use of these metrics alongside common processing steps
has however not been evaluated. In this study, we investigate the effects of blacklisting
and removal of duplicated reads on established metrics of ChIP-seq quality and show that
the interpretation of these metrics is highly dependent on the ChIP-seq preprocessing
steps applied. Further to this we perform the first investigation of the use of these metrics
for ChIP-exo data and make recommendations for the adaptation of the NSC statistic to
allow for the assessment of ChIP-exo efficiency.
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INTRODUCTION
ChIP-seq couples chromatin immunoprecipitation with high
throughput sequencing technologies to allow for the genome
wide identification of transcription factor (TF) binding sites and
epigenetic marks. The use of high throughput sequencing cir-
cumvents many of the limitations seen previously with ChIP-chip
array based methods including probe specific biases and the phys-
ical limitations on the proportions of genomes which may be
represented (Schmidt et al., 2008; Ho et al., 2011). ChIP-seq how-
ever inherits many of the technical artifacts found with ChIP
enrichment analysis (non-specific binding of DNA, uneven frag-
mentation efficiency) as well as incurs novel problems associated
to high-throughput sequencing (Park, 2009).

Following the papers first describing ChIP-seq (Barski et al.,
2007; Johnson et al., 2007; Mikkelsen et al., 2007), the identifica-
tion and removal of technical noise from ChIP-seq data has led to
the development of common processing procedures (Kharchenko
et al., 2008; Kidder et al., 2011; Bailey et al., 2013) and more
recently the publication of standards for ChIP-seq quality con-
trol (Landt et al., 2012; Marinov et al., 2013). With the increase in
sequencing output and the use of multiplexing technologies, such
standards not only provide a more quantitative and unequivocal
assessment of quality than can be established through visualiza-
tion in a genome browser but also allow for the required high
throughput classification of ChIP-seq quality.

In this study we investigate the application of such standards
to classical ChIP-seq as well as ChIP-exo sequencing and evaluate

the influence of common processing and filtering steps on these
metrics. From the investigation of over 400 publically available
ChIP-seq and ChIP-exo datasets, we identify the influence of
common areas of aberrant signal on established ChIP quality
metrics as well as highlight the importance of iterative quality
assessment over ChIP-seq processing steps.

MATERIALS AND METHODS
RETRIEVAL OF SEQUENCING DATA
TF and histone ChIP-seq was selected from the ENCODE/SYDH
(The ENCODE Project Consortium, 2012) and CRUK datasets
(310 and 145 datasets, respectively). For ChIP-exo data only TF
data were included. Well characterized and replicated epigenetic
factors and marks were selected for inclusion in this study and all
data downloaded from the European Nucleotide Archive (ENA;
http://www.ebi.ac.uk/ena/). Polymerase data was omitted from
this study due to differential pattern of binding across transcrip-
tional start sites and genes. ENA and SRA accession numbers for
ENCODE/SYDH, CRUK ChIP-seq, and CRUK ChIP-exo datasets
used in this study are included in the Supplementary Materials.

BLACKLISTED REGIONS
The DAC and DER blacklisted regions were downloaded from
UCSC table browser (http://hgwdev.cse.ucsc.edu/cgi-bin/
hgFileUi?db=hg19&g=wgEncodeMapability) (Fujita et al.,
2011). The UHS regions were retrieved from (https://sites.
google.com/site/anshulkundaje/projects/blacklists). Analysis of
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overlaps and read counts within blacklisted regions was per-
formed using the GenomicRanges Bioconductor package version
1.8.13 with R 2.15.1 (Gentleman et al., 2004).

ALIGNMENT AND DATA PROCESSING
ChIP-seq and ChIP-exo reads were aligned to UCSC GRCh37
genome (February 2009 build) using BWA version 0.5.9 (Li and
Durbin, 2010). For consistency, all reads were trimmed to a com-
mon length (28 bp, the smallest read length across all datasets).
Reads were filtered to the male set of chromosomes omitting ran-
dom contigs using Pysam 0.7.5. Calculation of read classes and
proportions of blacklisted reads were performed using customs
scripts implemented in Pysam 0.7.5 (http://code.google.com/p/
pysam/).

CALCULATION OF QUALITY METRIC AND CROSS-CORRELATION
PROFILES
SSD metrics were calculated using the htSeqTools Bioconductor
package for a representative chromosome (chromosome 1)
(Gentleman et al., 2004; Planet et al., 2012). Cross-correlation
profiles, RSC and NSC metrics for complete samples were per-
formed using ccQualityControl version 1.1 (Marinov et al.,
2013). Analysis of cross-correlation across DAC blacklists, peaks
and read duplicates was performed using custom scripts and
the GenomicRanges (version 1.8.13) and Rtracklayer (version
1.23.16) Bioconductor libraries (Gentleman et al., 2004) fol-
lowing previously described methodology (Kharchenko et al.,
2008).

RESULTS
DUPLICATE FILTERING AND LIBRARY COMPLEXITY
High-throughput sequencing provides a measure of the frequency
of sequence fragments from within the starting DNA fragment
library and it is the variety of fragment sequences within this DNA
pool that is defined as the library complexity (Landt et al., 2012).
Sequence reads and read pairs mapping to the same position on
the genome are termed duplicates and the frequency of occur-
rence of such duplicates is used as a metric of library complexity,
with lower complexity libraries often being characterized by a
higher rate of read duplication (Landt et al., 2012; Bailey et al.,
2013).

The treatment of read duplicates and their use as a measure of
library and sequencing quality varies between high-throughput
sequencing applications. For whole genome and exome sequenc-
ing, the exclusion of duplicated reads is commonly performed to
remove potential PCR amplification artifacts where PCR errors
may be propagated leading to false positives in the identification
of single nucleotide polymorphisms (Bainbridge et al., 2010). In
contrast to this, in RNA-seq data, the measurements of quan-
titative changes in gene expression coupled with the expected
large dynamic range of RNA molecules within a cell and between
cell populations or tissues require a greater dynamic range of
sequence depths than may be observed following the removal of
duplicates.

The removal of duplicates from ChIP-seq data has been estab-
lished as a common processing step in order to remove artifacts
from PCR amplification bias and sources of aberrant signal

(Zhang et al., 2008; Landt et al., 2012; Bailey et al., 2013). The pro-
portion of duplicates within a data set alongside the total number
of sequence reads has been used a measure of ChIP-quality and
more recently formalized by the ENCODE consortium as the
Non-Redundant Fraction (NRF) (Landt et al., 2012). Guidelines
for NRF suggest that less than 20% of reads should be duplicates
for 10 million reads sequenced (Landt et al., 2012).

Early ChIP-seq methodology suggested an expected duplica-
tion rate based on the number of sequence reads and the size
of the mappable genome (Zhang et al., 2008; Zang et al., 2009).
Although accounting for sequence depth, the use of all poten-
tial fragments from the mappable genome as the expected library
complexity may overestimate the true complexity of libraries
generated from epigenetic factors. An example can be taken
from the ChIP-seq datasets here, where peaks from ER ChIP-exo
(ERR336950) and ChIP-seq (ERR336952) can be seen to cover
only ∼ 0.17% and 0.24% of the genome, respectively. Analysis
of duplication rates in ChIP-seq observed from single-end map-
ping using paired-end data has shown that the duplication rate
for single end sequencing is overestimated and that this over-
estimation leads to ChIP-signal being preferentially lost within
ChIP enriched regions (Chen et al., 2012). The exclusion of dupli-
cated reads and read pairs from high through sequencing data
limits the upper bounds of potential read depth on the genome
and so restricts the observable dynamic range of ChIP signal. For
single-end sequencing this cap on potential sequencing depth is
the number of reads on either strand which may cover a genomic
position uniquely and hence the potential range of signal is twice
the read length.

Historically, ChIP-seq has been used to map potential binding
events and epigenetic modifications without regard for quantifi-
cation of the degree of signal observed within these events (Bailey
et al., 2013). In this role and coupled with the limitations on signal
height imposed from duplicate removal, the saturation of ChIP
signal as a sacrifice for the discovery of less frequent epigenetic
events may often occur.

BLACKLISTING REGIONS
In contrast to the genome wide removal of aberrant signal by fil-
tering duplicated reads, specific genomic regions associated with
artifact signal may be removed prior to further ChIP-seq analysis
(Kharchenko et al., 2008; Bailey et al., 2013; Hoffman et al., 2013).
The exclusion of these regions aims to remove sources of artifact
signal caused by biases from chromatin accessibility and ambigu-
ous alignment. The reduction of such noise prior to ChIP-seq
analysis has been suggested to improve the estimation of frag-
ment length and normalization of signal between samples and
so increase accuracy of both peak calling and comparative ChIP
analysis (Kharchenko et al., 2008; Bailey et al., 2013; Hoffman
et al., 2013).

Kharchenko et al. first proposed the exclusion of reads from
artifact regions by using signal generated from input samples
(Kharchenko et al., 2008). In this study, three distinct classes
of signal artifact for ChIP-seq were identified as (1) high signal
and narrow enrichment, (2) structured narrow enrichment indis-
tinguishable from ChIP enrichment and (3) long (> 1000 bp),
unstructured regions of signal (Kharchenko et al., 2008). The
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effects of artifactual high signal regions on the identification of
putative binding sites are in the most part eliminated through the
use of appropriate input controls. However, regardless of the use
of an input, many properties of a sample important to further
ChIP-seq analysis remain confounded by sources of high artifact
signal (Kharchenko et al., 2008).

Recent work by Furey and Kudaje as part of the ENCODE
project has led to the creation of two sets of “blacklist” regions
for the human genome which are believed to contain experiment
and cell-type independent areas of high artifact signals (Hoffman
et al., 2013; Kundaje, 2013). These regions therefore potentially
provide a methodology for the removal of artifact signal common
to all human ChIP-seq analysis.

Terry Furey at Duke University (Kundaje, 2013) created the
set of Duke Excluded Regions (DER). Although its construction
is not fully described, this blacklist consists of 11 distinct repeat
classes making up 1648 regions covering ∼0.34% (∼10Mb) of the
human genome. Of the repeat classes included, around 85% of
the DER is constructed of just two repeat classes with ALR/Alpha
and BSR/Beta repeats representing 70 and 15%, respectively, of
the total (Figure 1A).

In parallel, Anshul Kudaje produced the Ultra High Signal
Artifact (UHS) regions derived from a subset of the ENCODE
open chromatin and input sequence data (Hoffman et al.,
2013; Kundaje, 2013). This represents a set of manually curated
genomic regions found to contain high degrees of artifact signal.
By identifying regions showing extreme depths in open chromatin
and input control for uniquely mapped reads and combining this
with measures of mappability, an initial set of ultra-high signal
regions was identified (Kundaje, 2013). With manual curation of
these regions alongside annotation of repeat class and gene loca-
tions, the final UHS region set was created (Kundaje, 2013). The
UHS regions contain 226 genomic locations but despite the inclu-
sion of less distinct regions than the DER set covers a similar
genomic proportion of 0.33%. As with the DER, the UHS set con-
sists of six classes of regions with 88% of all regions comprised of
centromeric repeats (Figure 1A).

These two separately derived blacklisted regions have consider-
able overlap with ∼30% of DER and 67% of UHS regions shared
between the two sets. This overlap is even greater when consid-
ered as genome covered with 68% percent of UHS’s and 71%
percent of the DER’s genomic coverage in common (Figure 1A).
Analysis of the regions common and exclusive to each set shows
that BSR/Beta, Tar1 and rRNA repeats are overrepresented in the
DER only sets (Figure 1B). In keeping with the derivation of
the DER from repeat classes, 50% of high mappability islands
are found only within the UHS’s regions (93% when excluding
ChrM), whereas large proportions of the centromeric and satellite
repeats, analogous to DER’s Alpha and Beta repeats, are common
to both sets (Figure 1B).

Following their creation and characterization, the DER and
the UHS blacklists were amalgamated into the DAC Consensus
Excluded Regions (Kundaje, 2013). Assessment of the regions
unique to the DER identified a further 38% of DER regions not
included within UHR regions as having “medium scale signal”
whereas the remaining repeat regions were found to be low sig-
nal (Kundaje, 2013). These regions are enriched for both CATTC

and BSR/Beta repeats and their supplement to the UHS regions
produced the final DAC Consensus Excluded Region blacklist
commonly used for exclusion of artifact signal.

In order to investigate the proportion of signal attributable
to such blacklists, reads from different read classes (all, dupli-
cated and multi-mapped reads) were counted within all blacklists’
regions for the ENCODE, CRUK, and ChIP-exo data sets. All data
sets showed an enrichment of reads within blacklisted regions
(Figure 2A), with ∼10-fold for ENCODE and CRUK ChIP-seq
datasets and ∼5-fold for ChIP-exo sets (Figure 2B) highlighting
their strong acquisition of background signal. The number of
reads mapping to the DER, the UHS, and the DAC blacklisted
regions demonstrates how the DER-only regions (DER regions
not amalgamated in the DAC consensus set) are largely devoid
of signal when compared to DAC consensus regions (Figure 2C)
and so their exclusion from the list of blacklisted regions has little
effect on the removal of artifact signal across all sets.

Across all datasets and blacklists there is enrichment for reads
mapping to more than one location in keeping with repeat
classes constituting large portions of the blacklists (orange box-
plots, Figure 2B). An even greater enrichment is seen in ChIP-seq
samples for duplicated reads within blacklisted regions and the
proportion of total reads as duplicates and the degree of signal
within blacklist regions can be found to be highly correlated (blue
boxplots, Figure 2B). The enrichment of duplicated reads within
blacklists is unsurprising given the common association with
artifact signal but this observation exemplifies the classification
of duplicates contributing to aberrant signal from those within
areas of genuine ChIP enrichment. In contrast to this, ChIP-exo
samples can be found to have consistently lower proportions of
duplicates in blacklisted regions (blue boxplots, Figure 2B). This
finding may reflect either the lower presence of artifact signal
or an increased rate of duplication previously observed within
ChIP-exo peaks (Serandour et al., 2013).

INEQUALITY OF COVERAGE
ChIP-seq data is most often visually or statistically interrogated
to identify points or stretches of signal enriched above expected
by the use of background signal such as that of an input con-
trol. Assessment of the global extent of signal depth allows for the
quantification of enrichment for signal within a ChIP sample or
the degree of aberrant signal within an input control. Calculation
and visualization of the number of base pairs at varying depths
of signal allow for a qualitative inspection of enrichment but
more recently two metrics describing the inequality of cover-
age across ChIP-seq datasets have been described (Planet et al.,
2012).

Standardized Standard Deviation (SSD) is calculated from the
weighted mean of the standard deviation of the depth of cover-
age across chromosomes normalized to the total number of reads
sequenced (Planet et al., 2012). Since SSD describes the variation
in signal depth across the genome it is sensitive to regions of high
signal such as that observed in blacklisted regions for both input
and ChIP samples.

Evaluation of the effects of blacklisting on SDD identifies the
highly significant reduction in both input and ChIP samples after
blacklist removal and highlights the dominant effects of artifact
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FIGURE 1 | (A) The venn-diagram represents the genomic overlap between
DAC consensus, UHS, and DER blacklists. Pie charts show the proportions of
blacklist classes contained within overlapping and unique regions of the DAC

consensus, UHS, and DER blacklists. (B) Bar charts show the relative
enrichment of blacklist classes unique to either DER and UHS blacklist
regions.

signal on the calculation of SSD scores (Figure 3A). Blacklisting
differentially reduces the mean and range of SSD scores for input
compared to ChIP samples (Figure 3B) and so illustrates the
effectiveness of blacklisting in removing the majority of regions
that show artificially high signal while maintaining ChIP sig-
nal. After blacklisting, one should expect a reduced SSD score
in the input when compared to the ChIP sample, and therefore

the observation of a similar SSD score between both sample and
input may act as a flag to further remove artifact regions from the
genome.

ESTIMATIONS OF FRAGMENT LENGTH
Sequence reads generated from high throughput sequencing
technologies typically only represent the 5′ and 3′ end portions of
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FIGURE 2 | (A) The boxplots show the percentage of total reads for all
(red), duplicated (blue), and multi-mapped reads (orange) within the DAC
consensus, UHS, and DER blacklists for ENCODE/SYDH datasets. (B) The
boxplots show the percentage of total reads for all (red), duplicated (blue),
and multi-mapped reads (orange) within the DAC consensus for
ENCODE/SYDH and CRUK datasets. (C) Boxplots illustrating the range of
RPKM within blacklist classes for DER only, DAC consensus not within UHS
and the overlapping DAC consensus and UHS regions.

FIGURE 3 | (A) The Boxplots show the range of SDD values for CRUK and
ENCODE/SYDH input samples with no filtering steps applied and after
filtering of signal from DAC consensus, UHS, and DER blacklists. (B)

Boxplots of the SSD scores for input, transcription factors (TFs) and histone
marks from ENCODE and CRUK datasets following blacklisting by the DAC
consensus regions.

DNA fragments within the library pool. In ChIP-seq the recon-
struction of the true fragments from the available sequence reads
allow for a more accurate representation of ChIP-signal across
the genome and a higher resolution of epigenetic marks and
DNA binding sites (Figure 4) (Kharchenko et al., 2008). The
requirements to identify potential splicing and genome structural
rearrangement events by RNA-seq and DNA resequencing have
led to the more frequent use of paired end sequencing within
these technologies but the additional time and financial costs
often prohibit their use for ChIP-seq. The inference of fragment
length from single end ChIP-seq has therefore received much
attention and many bioinformatic methods have been described

www.frontiersin.org April 2014 | Volume 5 | Article 75 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Carroll et al. ChIP-seq and ChIP-exo quality assessment

FIGURE 4 | IGV screenshot of an example CTCF ChIP signal showing

the distribution of Watson and Crick signal around the CTCF motif and

the distribution of Watson and Crick signal following extension of

reads to the expected fragment length.

for its prediction (Kharchenko et al., 2008; Zhang et al., 2008;
Sarkar et al., 2009; Ramachandran et al., 2013).

Single end sequencing of these ChIP DNA fragments leads to
the structured arrangement of clusters of reads from the Watson
and Crick strands separated around the true point of maximal
ChIP enrichment (Figure 4) (Kharchenko et al., 2008). It is the
assessment of distances between these two distributions around
the central expected binding events that is employed by many
methods of fragment length prediction (Kharchenko et al., 2008;
Zhang et al., 2008; Sarkar et al., 2009; Ramachandran et al., 2013).

The peak calling algorithm MACS performs fragment length
estimation as an initial step in its peak calling procedure (Zhang
et al., 2008). Proximal peaks on the Watson and Crick stand show-
ing enrichment above background between a set range are defined
as “paired peaks” (Zhang et al., 2008). By measuring the distance
between these paired peaks an estimation of the fragment length
may be made (Zhang et al., 2008). This method relies on the ini-
tial identification of paired peaks and so fails to predict fragment
length should the criteria for paired peaks not be satisfied and is
sensitive to artifact signal meeting paired peak criteria.

A popular method for predicting fragment length is the
method of cross-correlation analysis (Kharchenko et al., 2008). In
this method the correlation between signal of the 5′ end of reads
on the Watson and Crick strands is assessed after successive shifts
of the reads on the Watson strand and the point of maximum
correlation between the two strands is used as an estimation of
fragment length (Figure 5) (Kharchenko et al., 2008).

The effects of blacklisting on fragment length estimation of
ChIP samples by these methods can be seen to be dramatic
(Figure 6). Both the cross-correlation and MACS method can be
seen to be positively influenced by the removal of aberrant sig-
nal from blacklisted regions and by duplicate filtering. When no
filtering steps are applied, the fragment length is predicted to be
the same as the read length in many of the ChIP samples whereas
the prediction of sensible fragment lengths is rescued following
blacklisting and removal of duplicated reads (Figure 6).

In fact, highly duplicated genomic positions result in dis-
tributions of Watson and Crick 5’ read ends separated by the

read length around the center of the duplicated read stack.
This phenomenon introduces a spike in cross-correlation at the
read length (read-length peak) which may supersede that of the
fragment length when assessing shift with maximum correlation
for ChIP-seq as well as result in paired peaks on the Watson
and Crick stand separated by the read length, thus leading to the
incorrect prediction of the fragment length as the read length.

CROSS-CORRELATION ANALYSIS AND IDENTIFICATION OF ARTIFACT
AND ChIP SIGNAL
The use of cross-correlation to predict fragment length provides
further information about the overall quality of a ChIP-sample
(Landt et al., 2012; Marinov et al., 2013). By assessing the correla-
tion at the fragment length and at the read length, an evaluation
of the degree of ChIP and artifact signal within a sample may be
made. Metrics to quantify the fragment length signal and the ratio
of fragment length signal to read length signal have been coined
as the Normalized Cross Correlation (NSC) and Relative Cross
Correlation (RSC) metrics (Landt et al., 2012; Marinov et al.,
2013).

In contrast to SSD, which is agnostic of signal structure, RSC
and NSC metrics are dependent on the clustering of Watson and
Crick strand reads around binding sites. Since for TFs, fragment
lengths are often greater than the size of the DNA binding event,
the distinct clustering of Watson and Crick reads around this site
is very apparent whereas for longer epigenetic marks this cluster-
ing may be more diffuse. This highlights an important distinction
between SSD and NSC/RSC metrics where ChIP samples with
broad signal enrichment (e.g., histone marks) typically achieve
higher SSD and lower NSC or RSC scores than those with sharper
signal enrichment over narrow regions (e.g., TFs).

The cross-correlation profile for c-Myc (SRR568130;
Figure 7A) and CTCF (SRR568129; Figure 7B) ChIP-seq samples
exemplifies the contribution of the DAC blacklist and duplicates
to cross-correlation profiles. After blacklisting the total loss of
the read-length peak at the 28 bp position is observed, while
duplicate removal confers a more subtle effect (Figures 7A,B).

In order to investigate the effects of differing filtering steps on
cross-correlation profiles and hence NSC/RSC scores, reads were
separated into those overlapping peaks, overlapping blacklists
and duplicated reads. Whereas cross-correlation profiles derived
from reads in peaks show the expected hump around the frag-
ment length, the cross-correlation profile obtained by considering
solely the DAC blacklist shows only the read-length spike illustrat-
ing the presence of the artifact signal within blacklisted regions
and its influence in the read-length cross-correlation spikes for
ChIP and input samples (Figure 7C). Interestingly the cross-
correlation of duplicated reads shows peaks at both the read
length and the fragment length, which is indicative of both artifact
and structured ChIP signal within the duplicated reads. Further
sub setting of duplicated reads to those within and outside of
peaks confirms the presence of two classes of duplicated signal
with those outside of peaks contributing to artifact signal and
those within peaks contributing to structured ChIP signal over
binding sites (Figure 7D).

To systematically evaluate the effect of filtering steps on
ChIP and background signal, cross-correlation profiles and
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FIGURE 5 | An example and illustration of the assessment of

cross-correlation following shifting of the reads on the Watson strand.

The cross-correlation of the CTCF ChIP sample (SRR568129) shows the
dominance of the fragment-length cross correlation peak over the read-length

cross correlation peak. The c-Myc ChIP sample (SRR568130) in contrast
shows greater cross-correlation at the read-length peak than at the expected
fragment length highlighting potential problems in fragment length prediction
for that sample.

FIGURE 6 | Scatterplots show the fragment lengths predicted by

cross-correlation analysis for transcription factor datasets from the

ENCODE/SYDH set, with no filtering and following blacklisting by the

DAC consensus, UHS, and DER blacklists.

their fragment-length and relative strand cross-correlation scores
were assessed after blacklisting, duplicate removal and both
simultaneously.

The effect of blacklisting and/or duplicate removal on FSC
scores is shown in Figure 8A (ENCODE samples) and Figure 8B
(TF/CRUK samples) by the ratios of FSC scores after filtering
to that observed with no filtering. Duplication filtering is seen
to have more influence on the FSC than any blacklist filtering
illustrating the greater depletion of fragment length signal by
duplicate removal and hence depletion of signal related to binding
events.

In keeping with the observations of DAC blacklisted reads
contributing to the read-length cross-correlation peak, an
increase in RSC scores across both ENCODE (Figure 8C) and
CRUK (TFs only; Figure 8D) datasets was observed following
removal of DAC regions. Duplication filtering can be seen to have
no significant effect on RSC due to its expected reduction of both
fragment-length and read-length cross-correlation peaks. Further
to this, the additional step of duplication filtering has little effect
on RSC after blacklisting but shows a drop in the fragment-length
cross-correlation peak as seen with standard duplication filtering
(Figures 8C,D). The lack of change in RSC observed here is due to
prior blacklisting which removes reads contributing to the read-
length cross-correlation peak and so the read length score reflects
a tail of fragment-length cross-correlation peak as opposed to
true read-length peak. This highlights an important caveat of RSC
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FIGURE 7 | (A,B) Example cross-correlation profiles for a c-Myc (A) and a CTCF
(B) sample (SRR568130 and SRR568129, respectively). Cross-correlation
profiles after no filtering, filtering of duplicated reads, exclusion of DAC
consensus blacklist and simultaneous blacklisting and duplicate removal. (C)

Cross correlation profiles of reads in DAC blacklisted regions, reads in peaks
and duplicated reads for an example ER ChIP-seq sample (ERR336952). (D)

Cross correlation profiles for duplicated reads inside and outside of peaks for an
example ER ChIP-seq sample (ERR336952).

scores where removal of aberrant signal may cause RSC to reflect
the width of fragment-length cross-correlation peak instead of the
extent of background signal.

APPLICATION OF CROSS-CORRELATION ANALYSIS TO ChIP-exo DATA
The use of cross-correlation analysis and NSC/RSC metrics for
ChIP-exo data has not been previously investigated. Due to the
enzymatic digestion of DNA fragments around binding sites
cross-correlation profiles are expected to have a very different
shape to that of successful ChIP. Neither the ER (Figure 9A)
or FoxA1 ChIP-exo (Figure 9B) have any evidence of a conven-
tional fragment-length peak and all spikes in cross correlation
can be seen to be close to the read length. Separation of ChIP-
exo reads into those overlapping peaks and blacklist regions,
allows for the identification of the true profile of ChIP-exo
enrichment and illustrates the persistent presence of the cross-
correlation read length peak. This highlights the continued need
of blacklisting to filter regions of artifact signal in this new tech-
nology despite their relatively lower rate of blacklisted signal
(Figure 2B).

Cross-correlation profiles for ChIP-exo can be seen to be dis-
tinct between ER and FoxA1 ChIP. ER shows a broad enrichment

over the read-length cross-correlation peak (Figure 9A, dashed
lines) whereas FoxA1 (Figure 9B) shows a more complex profile
of peaks around this point typically seen at the fragment
length for ChIP-seq enzymatic fragmentation (Marinov et al.,
2013). The co-occurrence of the artifact signal and ChIP signal
cross-correlation peaks makes the disentanglement of different
types of signal difficult and the calculation of NSC and RSC
impossible using the standard methods.

Assessment of the effects of filtering on ChIP-exo shows that
duplicate filtering has a dramatic effect on the overall cross-
correlation profile whereas blacklisting has a specific effect in
FoxA1 at the 28 bp cross-correlation peak and little effect at the
12 bp peak (Figure 10). In this case, by identifying the elements of
the cross-correlation profile relating to aberrant and ChIP signal,
new metrics related to NSC and RSC may be calculated.

Following the removal of aberrant signal and the contribution
of this to the read-length cross-correlation peak, the ratio between
the highest and minimum values of cross-correlation may replace
the use of typical NSC scoring for ChIP-exo quality and so pro-
vide an equivalent measure of ChIP efficiency. The use of a
metric equivalent to RSC’s evaluation of signal to noise in ChIP-
seq however is confounded by the overlap between read-length
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FIGURE 8 | (A,B) Boxplots of the RSC scores for TF datasets from the
ENCODE/SYDH (A) and from CRUK (B) sets after differing filtering steps.
For the CRUK set only the DAC consensus set was used to evaluate the
effect of blacklisting given its observed greater enrichment for artifact
signal over the DER/UHS sets within ENCODE data. (C,D) Boxplots of

the change in cross-correlation signal at the fragment length (fragment
strand cross-correlation; FSC) for TF datasets from the ENCODE/SYDH
(C) and from CRUK (D) sets following the removal of blacklisted regions,
duplicated reads and removal of both blacklisted regions and duplicated
reads.

and fragment-length cross-correlation peaks. Nonetheless, in
ChIP-exo data the observation of loss of a defined read-length
cross-correlation peak after removal of artifact signal can act as
an indication of successful removal of artifact signal.

CONCLUSIONS
The processing of ChIP-seq data and the evaluation of ChIP
quality remains an area of continued research. Following recent
publications of ChIP quality metrics and analysis standards, we
have performed the first systematic evaluation of the effects of
ChIP-seq pre-processing steps on such metrics and an assess-
ment of their application to the emerging technology of ChIP-exo
sequencing.

SUCCESSIVE ASSESSMENT OF ChIP METRICS OVER PROCESSING
STEPS IS REQUIRED TO CAPTURE ChIP-seq QUALITY
The assessment of ChIP-quality by the visualization of ChIP sig-
nal within genome browsers can be subjective to the investigator
and is prohibitive of large scale evaluation of quality. The use
of metrics of ChIP-quality therefore provides more objective

methods to evaluate ChIP success as well as allows for high
throughput classification of ChIP data. These metrics are however
dependent on processing and filtering steps applied and therefore
their interpretation must be made in their context.

The removal of artifact signal can improve fragment length
estimation and between sample normalization (Kharchenko et al.,
2008; Bailey et al., 2013; Hoffman et al., 2013). The DAC blacklist
regions provide a set of known artifact regions where enrichment
for background signal has been found to be conserved across sev-
eral human cell lines (Hoffman et al., 2013; Kundaje, 2013). The
DAC blacklist is enriched for duplicated reads, has high variation
in signal depths and directly contributes to artifact peak found
within cross-correlation profiles. The presence of this peak can
confound fragment length estimation and is a key component
of the calculation of the RSC metric. The assessment of quality
therefore is strongly influenced by the removal of these regions.

The SSD metric of signal inequality is highly sensitive to
high signal artifact regions and so to evaluate ChIP enrichment
masking of such regions is required prior to assessment of SSD.
Furthermore, due its sensitivity to artifact regions, the SSD metric
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FIGURE 9 | (A,B) Cross-correlation profiles for reads in peaks and reads in
DAC consensus blacklist for ChIP-seq and ChIP-exo ER ChIP (A) and for
ChIP-exo FoxA1 ChIP (B).

FIGURE 10 | Cross-correlation profile for FoxA1 ChIP-exo after no

filtering, removal of DAC blacklisted regions and removal of duplicated

reads.

can be used as a flag for the persistence of artifact regions in
input samples where higher scores for the input sample when
compared to the ChIPed sample highlights the requirements for
further artifact removal.

The RSC metric provides a measure of ChIP to artifact sig-
nal, however the removal of blacklisted regions has been shown
to eliminate the presence of the artifact peak and so the interpre-
tation of RSC after blacklisting is obscured. In contrast to SSD,
the assessment of RSC should be performed prior to blacklist-
ing and the inspection of cross-correlation profiles be made after
blacklisting to confirm the loss of the read-length peak within the
cross-correlation profile.

The treatment of duplicated reads in ChIP-seq varies between
applications and the inclusion of duplicated reads is often
performed in the context of differential affinity analysis (Ross-
Innes et al., 2012; Bailey et al., 2013). Duplicated reads can be seen
to contribute to both artifact and ChIP signal and the removal of
duplicated reads significantly reduces ChIP signal across samples.
The evaluation of ChIP quality following duplicate removal may
therefore underestimate the extent of ChIP enrichment relative to
background and so careful consideration of the contribution of
duplicates to artifact regions and ChIP signal must be made prior
to evaluation of NSC and RSC metrics.

From these finding, we show the importance of the iterative
assessment of quality over the masking of blacklisted regions and
removal of duplicated reads. We recommend the assessment of
RSC and NSC prior to blacklisting or duplicate removal and SSD
before and after these steps to capture the extent and success of
blacklisting.

ChIP-exo REQUIRES DIFFERENT PROCESSING AND AN ADAPTATION
OF CROSS-CORRELATION METRICS
ChIP-exo sequencing presents a new methodology for genome
wide ChIP analysis and provides a higher resolution and greater
efficiency than seen for conventional ChIP (Serandour et al.,
2013). An evaluation of the effects of common processing steps
as well as the use of standard ChIP metrics has however not been
previously performed.

The presence of artifact signal from blacklisted regions may
be seen in ChIP-exo data but the degree of blacklisted sig-
nal was found to be consistently lower for this technology
(Figure 2B). The significant loss of ChIP-related signal within
cross-correlation analysis following duplication removal illus-
trates the greater contribution of duplicates to ChIP-exo enrich-
ment signal. The removal of blacklists but the retention of dupli-
cates can therefore be recommended for ChIP-exo processing.

The use of standard cross-correlation analysis in the evalua-
tion of ChIP-exo quality is confounded by the co-occurrence of
both the read-length and the fragment-length cross-correlation
peaks. Although this prohibits the use of the RSC metric, by iden-
tifying the expected cross-correlation profile of enriched regions,
an adapted NSC metric may be generated as the extent of max-
imum cross-correlation within this profile over the background
cross-correlation following the blacklisting of aberrant signal.
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