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Inositol-requiring enzyme 1 (lre1) is an important transducer of the unfolded protein
response (UPR) that is activated by the accumulation of misfolded proteins in the
endoplamic reticulum (ER stress). Activated Ire1 mediates the splicing of an intron from
the mMRNA of Xbp1, causing a frame-shift during translation and introducing a new carboxy!
domain in the Xbp1 protein, which only then becomes a fully functional transcription
factor. Studies using cell culture systems demonstrated that Ire1 also promotes the
degradation of mRNAs encoding mostly ER-targeted proteins, to reduce the load of
incoming ER “client” proteins during ER stress. This process was called RIDD (regulated
Ire1-dependent decay), but its physiological significance remained poorly characterized
beyond cell culture systems. Here we review several recent studies that have highlighted
the physiological roles of RIDD in specific biological paradigms, such as photoreceptor
differentiation in Drosophila or mammalian liver and endocrine pancreas function. These
studies demonstrate the importance of RIDD in tissues undergoing intense secretory
function and highlight the physiologic role of RIDD during UPR activation in cells and
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ENDOPLASMIC RETICULUM STRESS AND THE UNFOLDED
PROTEIN RESPONSE

The endoplasmic reticulum (ER) is the entry site for the secretory
pathway; all proteins targeted to the plasma membrane, extracel-
lular space, and some organelles are translated into the ER, where
they are folded and modified (Cooper, 2000). Proteins that fail to
fold into their native conformation are targeted for ER-associated
degradation (ERAD). Proteins marked as terminally misfolded
are dislocated to the cytoplasm, where they are degraded by the
ubiquitin—proteasome system (Smith etal., 2011; Claessen etal.,
2012).

A number of cellular stress conditions such as low glu-
cose levels, redox stress, or abnormal ER calcium content may
perturb protein maturation in the ER or interfere with the
capacity of the folding machinery in the ER (Marciniak and
Ron, 2006). Many physiological processes may further chal-
lenge the ER by imposing suddenly large amounts of “client”
proteins (Moore and Hollien, 2012). The imbalance between
the ER folding capacity and the burden of incoming proteins
may lead to the accumulation of misfolded proteins, causing
ER stress. Adaptation to ER stress is mediated by the unfolded
protein response (UPR; Ron and Walter, 2007; Hetz, 2012;
Gardner etal., 2013). The UPR is a collection of integrated
signaling pathways activated by ER-localized transmembrane pro-
tein sensors, which have luminal domains that detect misfolded
proteins in the ER and cytoplasmatic effector domains that
transduce signaling to the transcriptional and/or translational
apparatus.

The UPR was first described in budding yeast, where it is
represented by a single linear pathway (Mori etal.,, 1992). In
higher eukaryotes the UPR is more complex and is mediated by
three ER transmembrane sensors: pancreatic ER kinase (PKR)-like

ER kinase (PERK), activating transcription factor 6 (ATF6), and
inositol-requiring enzyme 1 (Irel; Harding etal., 2002). The UPR
outcomes are temporally coordinated: first, translation is atten-
uated to reduce the load of proteins into the ER; second, genes
encoding ER chaperones and enzymes are up-regulated to increase
the ER folding capacity; and third, genes encoding ERAD compo-
nents are induced to enhance degradation of misfolded proteins
from the ER.

If the mechanisms activated by the UPR are insufficient to
decrease ER stress and restore ER homeostasis, cells may undergo
apoptosis (Rasheva and Domingos, 2009). Chronic ER stress
and defective activation of the UPR have been involved in the
pathology of several human diseases, such as cancer, diabetes,
neurodegenerative disorders, and chronic inflammation (Wang
and Kaufman, 2012). Therefore, there has been increasing interest
in controlling the ER stress pathways and discover new therapeutic
targets to treat these diseases.

Ire1 SIGNALING

Being the most evolutionarily conserved arm of the UPR, Irel
is a type I ER-resident transmembrane protein with a ER lumi-
nal dimerization domain and a cytoplasmic domain with Ser/Thr
kinase and endoribonuclease activities (Figure 1; Cox etal., 1993;
Mori etal., 1993; Shamu and Walter, 1996; Tirasophon etal., 1998;
Wang etal., 1998; Liu etal., 2000; Koizumi etal., 2001; Shen etal.,
2001; Korennykh and Walter, 2012).

In the budding yeast the only known substrate of Irel is the
mRNA of the bZIP transcription factor Hacl (Cox and Walter,
19965 Mori etal., 1996; Nikawa etal., 1996). In case of ER stress,
Irel associates in oligomers after Binding immunoglobulin protein
(BiP) release and activates its RNase domain by autophosphory-
lation (Shamu and Walter, 1996; Welihinda and Kaufman, 1996;
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FIGURE 1 | Schematic representation of Ire1 signaling. Binding
immunoglobulin protein (BiP) binds Ire1 luminal domain and maintains it in
a monomeric inactive form. In stressed cells, BiP is recruited to misfolded
proteins and Ire1 is activated following conformational changes induced by
dimerization of monomers in the plane of the membrane and
trans-autophosphorylation. Higher order oligomers, which might form upon
additional stress stimuli, reinforce Ire1 RNase activity. Activated Ire1
mediates the splicing of Xop1T mRNA in higher eukaryotes (or Hac1 in
yeast). Splicing of the intron from the Xbp1 transcript results in a
frame-shift and the production of a potent transcription factor, Xbp1-spliced,
that regulates many UPR target genes to promote protein folding in the ER
lumen, ER-associated degradation (ERAD) of misfolded proteins and ER
biogenesis. Ire1 can also act by alternative pathways; phosphorylated Ire1
associates with TRAF2 and activates the JNK pathway via ASK1. In the
regulated Ire1 dependent decay (RIDD) pathway, Ire1 degrades mRNAs
localized to the ER membrane through its RNase activity leading to a
reduction in the amount of proteins imported into the ER lumen.

Liu etal., 2000; Papa etal., 2003; Lee et al., 2008; Korennykh etal.,
2009, 2011a). Activated Irel recognizes a double stem loop flank-
ing a 252bp intron in Hacl mRNA and cleaves it twice (Sidrauski
and Walter, 1997; Korennykh etal., 2011b), while a transfer RNA
ligase joins the exons (Sidrauski etal., 1996). This Irel-mediated
unconventional splicing event releases the translational repression
exerted by the 252bp intron and allows the Hac1%Pd protein to
actas a transcription factor (Chapman and Walter, 1997; Riiegseg-
ger etal., 2001). The functional homolog of Hacl in mammals is
Xbp1 (Yoshida etal., 2001; Calfon etal., 2002), which is also only
active as a transcription factor after the Irel-mediated splicing of
the Xbpl mRNA. In this case, however, Xbp1"tsPliced i translated
and originates a protein that is rapidly degraded (Calfon etal.,
2002; Yoshida et al., 2006).

Genetic profiling and analyses revealed that Hac1/Xbp1 control
the expression of genes related to the UPR including chaperone
induction, up-regulation of ERAD machinery, membrane bio-
genesis, and ER quality control (Lee etal., 2003; Shaffer etal,
2004; Shoulders etal., 2013). In mammals, Xbpl also activates
the expression of cell type specific targets linked to cell differenti-
ation, signaling, and DNA damage (Acosta-Alvear etal., 2007; Lee
etal., 2003).

TARGETING OF mRNAs TO Ire1

The mechanism of recruitment of Hacl/Xbpl mRNAs to the ER
membrane seems to differ considerably between yeast and mam-
mals. Under non-stressed conditions, unspliced Hacl mRNA is
found mostly in the cytoplasm, in association with stalled ribo-
somes. Upon ER stress, Hacl mRNA is recruited to Irel clusters
in the ER membrane, in a process that depends on translational
repression and on a bipartite element (BE) present at the 3’
untranslated region of the Hacl mRNA (Aragon etal., 2009).

In mammals, the XbplunSpliced mRNA is translated under
normal conditions and originates a protein that associates with
membranes via two hydrophobic regions (HR1 and HR2). The
HR2 is a conserved region predicted to form a a-helix that has
propensity to interact with the lipid bi-layer of the membrane
(Yanagitani etal., 2009, 2011). Presumably, upon Xbpl mRNA
translation, HR1 and HR2 on the nascent polypeptide associate
with the ER membrane and bring the Xbpl mRNA-ribosome-
nascent chain (RNC) complex to the vicinity of Irel, facilitating
Irel-mediated splicing of Xbpl mRNA.

Xbp1 INDEPENDENT FUNCTIONS OF Ire1

Non-overlapping defects in Irel or Xbpl mutant Caenorhab-
ditis elegans first supported the existence of alternative roles
for Irel, besides Xbpl mRNA splicing (Shen etal, 2005).
Irel is thought to regulate apoptosis, autophagy, and ERAD
through interaction with cytoplasmic partners independently
of its RNase activity (Hetz and Glimcher, 2009). The cytoso-
lic domain of Irel interacts with Traf2 (TNFR-associated factor
2) and activates ASK1 (Apoptosis signal-regulating kinase 1),
triggering the JNK (cJun-N terminal kinase) pathway (Urano
etal.,, 2000; Nishitoh etal., 2002). This Irel/Traf2 interac-
tion may lead to the activation of apoptosis under irreversible
ER stress (Mauro etal., 2006). Irel may also control levels
of autophagy under ER stress through activation of the JNK
pathway (Ogata etal., 2006). The phosphorylation of the anti-
apoptotic BCL2 at the ER by JNK stimulates autophagy by
modulating the activity of Beclinl. Dissociation of the complex
formed by BCL2 and Beclinl induces autophagy (Pattingre etal.,
2009).

The cytoplasmic domain of unphosphorylated (inactive) Irel
physically interacts with the ubiquitin specific protease 14
(USP14), and this association is inhibited by ER stress and Irel
activation (Nagai etal.,, 2009). USP14, which is recruited to
the ERAD machinery via interaction with Irela, inhibits ERAD
through a deubiquitination-independent mechanism (Nagai et al.,
2009). Finally, non-muscle myosin IIB interacts with Irel during
ER stress, revealing that interaction of Irel with the cytoskeleton
is required for optimal regulation of Irel activity (He etal., 2012).

REGULATED Ire1-DEPENDENT DECAY (RIDD)

A breakthrough report uncovered that the Irel RNase has broad
range of mRNA substrates besides Xbpl mRNA in Drosophila S2
cells. The group of Jonathan Weissman found through gene pro-
filing experiments that a subset of mRNAs are degraded during
ER stress by a mechanism that is dependent on Irel but not Xbp1
(Hollien and Weissman, 2006). The degraded mRNAs encoded
mostly proteins with signal peptide/transmembrane domains that
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would represent an additional challenge to the ER folding machin-
ery under ER stress. This mechanism was named RIDD, for
Regulated Irel-Dependent Decay, and was later also described
in mammalian cells and in the fission yeast (which lacks any
Hacl/Xbpl homolog; Hollien etal.,, 2009; Cross etal., 2012;
Kimmig etal., 2012). While in Drosophila S2 cells RIDD down-
regulates many RNAs by 5—10 fold, in mammals the magnitudes
of the changes in expression were smaller, twofold or less for many
targets (Hollien and Weissman, 2006; Hollien et al., 2009).

The mechanism of targeting mRNAs to RIDD seems to have
diverged throughout evolution (Hollien, 2013). In Drosophila S2
cells, RIDD has a broad scope of targets and there is a strong
correlation between interaction of a mRNA with the ER mem-
brane and the extension of its degradation by RIDD (Hollien and
Weissman, 2006; Gaddam etal., 2013). In fact, deletion of the sig-
nal peptide from a known RIDD target prevents its degradation
and conversely, addition of a signal peptide to GFP is sufficient
to promote its degradation by RIDD. One interesting exception is
the mRNA of PlexinA, which is strongly associated with the ER
membrane, but it is protected from RIDD and is continuously
translated, even during ER stress (Gaddam etal., 2013). PlexinA
mRNA has regulatory upstream ORFs, which are necessary for
its protection from RIDD. Another interesting exception is the
mRNA encoding Smt3, a homolog of SUMO (small ubiquitin-like
modifier), which is cleaved by RIDD on a stem loop structure,
despite not being stably associated to the ER membrane (Moore
etal., 2013).

In mammalian cells, RIDD targets are enriched for mRNAs con-
taining a cleavage site with a consensus sequence (CTGCAG) and a
predicted secondary structure similar to the conserved Irel recog-
nition stem—loop of the Xbpl mRNA (Han etal., 2009;0ikawa
etal., 2010; Hur etal., 2012). Deletion of the stem—loop or muta-
genesis of the conserved bases abrogated RIDD (Oikawa etal.,
2010).

PHYSIOLOGICAL RELEVANCE OF RIDD

The physiological relevance of RIDD has been recently demon-
strated in several different biological models, with specific cellular
and/or developmental conditions. RIDD has a role controlling the
expression of lipogenic enzymes and modulating levels of lipids
in the serum. Irelf, which is specifically expressed in the epithe-
lial cells of the gastrointestinal tract, has a protective role against
hyperlipidemia in mice fed with a high fat or high cholesterol diet
by decreasing the absorption of lipids in the intestine (Igbal etal.,
2008). Ire1p promotes the post-transcriptional degradation of the
ER chaperone microsomal triglyceride transfer protein (MTP),
involved in the assembly of apolipoproteins B and biosynthesis of
chylomicrons (Igbal et al., 2008). In the liver, Xbp1 deficiency pro-
vokes Irela hyperactivation, which contributes to a hypolipogenic
phenotype in mice characterized by reduced plasma cholesterol
and triglycerides (So etal., 2012). A comprehensive comparative
microarray analysis identified 112 genes induced by Irela siRNA
treatment in Xbpl-deficient mice. Among these genes are the
ones encoding Angiopoietin-like protein 3 (Angptl3) and cesl
genes, which are involved in lipid metabolism and were further
validated as RIDD substrates (So etal., 2012). The targeting of
Xbpl may be a therapeutic approach in dyslipidemic diseases, as

Xbpl deficiency in the liver, in leptin-deficient ob/ob mice, low-
ers hepatic triglycerides and plasma cholesterol levels (So etal.,
2012).

Irelp was also found to have a homeostatic role in the secre-
tory goblet cells of the intestine through the down-regulation of
mRNA levels of the major secretory product mucin 2 (Tsuru et al.,
2013). The knock-out of Irelp isoform in mouse colon results in
disorganization of the ER in the goblet cells at early stages of mat-
uration with accumulation of a precursor form of mucin 2 in the
expanded ER lumen and induction of ER stress. Remarkably, Irela
seems to have a distinct role in goblet cells mediating Xbp1 splicing
and promoting the activation of UPR targets like BiP (Tsuru etal,,
2013). Irela has a protective role in rodents against the liver dam-
age caused by an overdose of the analgesic drug acetaminophen
through the degradation of the mRNA of two P450 enzymes,
Cypla2 and Cyp2el, that are responsible for metabolizing the
drug into a cytotoxic metabolite (Hur etal., 2012). Again, hyper-
activation of Irela, caused by the liver specific deletion of Xbpl,
prevents prolonged JNK activation and improves the morphology
of the liver in mice injected with acetaminophen (Hur etal., 2012).

Several studies demonstrate that Irela plays an important role
regulating pancreatic B-cells homeostasis by controlling the lev-
els of insulin synthesized in the ER. Treatment of p cells with
high levels of glucose hyperactivates Irel, which correlates with a
decrease of insulin mRNA expression (Lipson etal., 2008). Later,
Irel was shown to cleave Insulin 1 and Insulin 2 mRNAs at specific
sites in vitro (Han etal., 2009). Chronic stimulation of f-cells
with high glucose concentrations might impose insurmount-
able levels of ER stress and promote the shift from a protective
response (Xbpl splicing and up-regulation of chaperones) to a
deleterious response (RIDD and degradation of insulin). Sup-
porting this hypothesis, islets from mice heterozygous for Irela
are more resistant to chronic high glucose and had higher gene
expression for both Insulin 1 and Insulin 2 (Lipson etal., 2008).
Deletion of Irel may be beneficial in the case of diabetes type II
models.

Maturation of insulin is also inefficient in B-cells deficient for
Xbpl due in part to RIDD. Irela is activated by Xbpl1 silencing
in Min6 insulinoma cells and activated Irela reduces the levels of
components of the insulin secretory pathway, namely PC1, PC2,
and CPE enzymes, by cleaving the respective mRNAs (Lee etal.,
2011). Xbpl deficient islets of the pancreas present morpholog-
ical abnormalities, including disorganized structure, few insulin
granules, and distended ER, consistent with Xbp1 being required
for expression of ER chaperone genes such as BiP (Hspa5), ERdj4
(Dnajb9), and p58IPK (Dnajc3; Lee etal., 2011).

Regulated Irel-dependent decay was also associated with innate
and adaptive immunity. Irel is activated by binding part of the
cholera toxin to induce an inflammatory response (Cho etal,
2013). In this case, Xbpl is dispensable for signaling but RIDD
is required for the activation of RIG-1 (retinoic acid inducible
gene 1), NF-kB and interferon pathways (Cho etal., 2013). RIDD
is necessary in CD8a™ dendritic cells for cross-presentation of
cell-derived antigens via MHC-class I to CD8+ T cells (Osorio
etal., 2014). Xbpl is necessary to maintain a normal morphol-
ogy of the ER in CD8a™ conventional dendritic cells, whereas
RIDD has a critical function in regulating the expression of
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integrins and components of the major histocompatibility com-
plex class I antigen-presentation machinery in these cells (Osorio
etal., 2014). Moreover, RIDD is also active in B cells, where
it cleaves the mRNA of secretory p chains (Benhamron etal,
2014).

Regulated Irel-dependent decay has an essential role in the dif-
ferentiation of the photoreceptor cells in Drosophila to maintain
the homeostasis of the secretory pathway during the morpho-
genesis of the light gathering organelle, the rhabdomere, which
depends on the massive synthesis of membrane and proteins dur-
ing the second half of pupal development (Coelho etal., 2013).
Irel mutant photoreceptors show a very dramatic phenotype
with atrophy of the rhabdomeres and collapse of the interrhab-
domeral space (caused by a defect in the delivery of Rhodopsinl
and spacemaker protein, respectively), resulting in progressive
degeneration of the retina in adult flies (Coelho etal., 2013).
Remarkably, Xbpl mutant photoreceptors show rhabdomeres
with almost a normal morphology, evidencing Xbp1-independent
roles of Irel in this specific biological context (Coelho etal., 2013).
RIDD is activated in the Drosophila photoreceptors and pro-
motes the degradation of several mRNA substrates (Figure 2),
among them Fatp (Fatty acid transport protein), a previously
described regulator of Rhodopsinl levels in photoreceptor cells
(Dourlen etal., 2012). Fatp mediates the uptake of fatty acids
into cells and fatty acids are precursors for the biosynthesis of

FIGURE 2 | RIDD “in action” in the Drosophila eye. Clones of cells
homozygous for Ire1 mutant chromosome (PBac{WHjire 1702170) are
labeled by the absence of myrGFPR The protein levels of (A) Sparc (blue and
monochrome) and (B) Fatp (blue and monochrome) are elevated in Irel
mutant tissue, in comparison with the surrounding control tissue. Sparc
and Fatp are two RIDD substrates in the Drosophila eye. Actin is in red.
Scale bars represent 10 um. Adapted from Coelho etal. (2013).

phosphatic acids. Increased levels of phosphatic acids were previ-
ously shown to disrupt rhabdomere morphogenesis (Raghu etal.,
2009), causing a phenotype very similar to the one of Irel mutant
photoreceptors.

Under conditions of overwhelming ER stress induction or
chronic low level stress mRNAs encoding secretory cargo pro-
teins and secretory pathway resident proteins start to decay (Han
etal., 2009). Indeed, ER chaperone BiP and Golgi-localized gly-
cosylating enzyme Gyltllb are targets of RIDD. Unmitigated ER
stress may deplete important cell surface proteins or secretory
pathway proteins by continuous decay and promote apoptosis.
Expression of wild-type Irel in Xbp1~/~ MEF triggers apoptosis,
but expression of a Irel kinase active/RNase dead mutant does
not induce apoptosis, arguing that an active RNase is required to
induce pro-apoptotic signals independent of Xbpl mRNA splic-
ing (Han etal., 2009). Indeed, RIDD can also promote the cleavage
of selected microRNAs (miRs — 17, 34a, 96, 125b) that normally
repress translation of Caspase 2, to control induction of apoptosis
upon continued ER stress (Upton etal., 2012).

The two Irel functions, RIDD and splicing of Xbpl mRNA,
can be uncoupled in vitro, allowing a better understanding of
the physiological output of each pathway. The Ire1'®*?Smutant
has an enlarged kinase pocket that prevents autophosphorylation
and activation of the RNase. The need for ATP binding can be
bypassed by incubation with INM-PP1, an ATP analog that binds
specifically to the designed pocket of Ire1'®4?G and activates the
RNase by an allosteric mechanism (Papa et al., 2003; Hollien et al.,
2009). Addition of the INM-PP1 is sufficient to induce Xbp1 splic-
ing when Irel'®42G is over-expressed, even in the absence of ER
stress. However, RIDD function can only be engaged by INM-
PP1 in the presence of ER stress, suggesting different activation
modes of Trel (Han etal., 2009; Hollien et al., 2009). Other com-
pounds, known as KIRAs (kinase inhibiting RNase attenuators)
can bypass the need for autophosphorylation to activate wild-type
Irel, stimulating Xbp1 splicing, and tempering RIDD (Han etal.,
2009).

CONCLUSION

A variety of recent articles demonstrated that RIDD has sev-
eral physiological roles in different experimental conditions and
paradigms. In most cases, RIDD couples the load of ER tar-
geted mRNAs with the ER folding capacity, maintaining the ER
homeostasis during cell differentiation and ER expansion. In cases
of extreme ER stress, RIDD may trigger apoptosis since it can
promote the degradation of ER resident proteins and de-repress
Caspase 2. As always, questions remain and should be addressed
by additional studies. For example, is it possible to control the
RIDD vs. Xbpl1 splicing activities of Irel or to control the sub-
strate specificity of RIDD to cause different biological outcomes?
Stay tuned for further developments.
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