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Neurodegenerative diseases share pathogenic mechanisms at the cellular level including
protein misfolding, excitotoxicity and altered RNA homeostasis among others. Recent
advances have shown that the genetic causes underlying these pathologies overlap,
hinting at the existence of a genetic network for neurodegeneration. This is perhaps
best illustrated by the recent discoveries of causative mutations for amyotrophic lateral
sclerosis (ALS) and frontotemporal degeneration (FTD). Once thought to be distinct
entities, it is now recognized that these diseases exist along a genetic spectrum. With
this wealth of discoveries comes the need to develop new genetic models of ALS and
FTD to investigate not only pathogenic mechanisms linked to causative mutations, but to
uncover potential genetic interactions that may point to new therapeutic targets. Given the
conservation of many disease genes across evolution, Caenorhabditis elegans is an ideal
system to investigate genetic interactions amongst these genes. Here we review the use
of C. elegans to model ALS and investigate a putative genetic network for ALS/FTD that
may extend to other neurological disorders.
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INTRODUCTION
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative dis-
order affecting 1–2/100,000 individuals. Most cases of ALS are
sporadic, but 10% of cases are familial (Turner et al., 2013b).
Mutations in the gene superoxide dismutase 1 (SOD1) were
identified in 1993 (Rosen et al., 1993) as the first cause of
familial ALS. Thanks to the recent advances in genetics, more
than 20 genes are now linked to ALS (Chen et al., 2013)
(Table 1). Genes recently shown to be mutated in ALS include
the DNA/RNA binding proteins TAR DNA binding protein 43
(TARDBP) and Fused-in-sarcoma (FUS) (Kabashi et al., 2008;
Sreedharan et al., 2008; Vance et al., 2009). More recently, muta-
tions in C9ORF72 have turned out to be a major cause of familial
and sporadic ALS (DeJesus-Hernandez et al., 2011; Renton et al.,
2011).

ALS is characterized by the selective loss of motor neurons in
the motor cortex, the brainstem and the spinal cord, the loss of
myelin in the spinal cord, and the presence of neuroinflamma-
tion (Robberecht and Philips, 2013). Onset of the disease usually
begins in the lower limb and spreads toward the upper motor
neurons leading to muscle weakness, fasciculation, and wasting.
Death occurs 3–5 years after the beginning of the symptoms
(Kiernan et al., 2011) and is caused by respiratory failure due to
denervation of the respiratory muscles.

50% of ALS patients show cognitive impairment, of which
15% met the criteria of frontotemporal dementia (FTD)
(Ringholz et al., 2005). FTD is a group of non-Alzheimer

dementias characterized by atrophy of the frontal and/or tem-
poral lobes causing mid-life behavioral changes or language
impairment (Warren et al., 2013). Over the past few years, the
identification of TDP-43, C9ORF72 and UBQLN2 as genes caus-
ing ALS and FTD has suggested a similarity for both diseases
(Morris et al., 2012). Similar pathogenic mechanisms have been
suggested for ALS and FTD (Van Langenhove et al., 2012; Ling
et al., 2013) but so far it is unclear how patients with the same
genetic mutations can have either ALS, FTD or both.

The genes involved in ALS have diverse functions and we still
do not know how they interact to cause motor neuron degen-
eration. Most of the research over the past 20 years has focused
on the toxicity caused by mutant SOD1. Among the proposed
mechanisms of toxicity are mitochondrial dysfunction, axonal
dysfunction, excitotoxicity and neuroinflammation (Turner et al.,
2013b). However, TDP-43, FUS, and C9ORF72 proteins seem to
point toward RNA toxicity (Ling et al., 2013). Most importantly,
only one drug, riluzole, is used to slow disease progression and has
only modest effects (Kiernan et al., 2011). Diagnosis is difficult
and requires an experienced neurologist to differentiate between
ALS and other neurological diseases (Turner et al., 2013a). It is
thought that the clinical manifestations of ALS are downstream
events that occur much later after the initial insult to the ner-
vous system (Turner et al., 2013a). Therefore, the identification
of biomarkers is essential for the rapid, early diagnosis of ALS,
and the identification of new drugs limiting the degeneration of
motor neuron is an essential unmet need for ALS patients.
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Table 1 | ALS genes and their C. elegans orthologs.

Human gene Function C. elegans gene

MOST COMMON ALS GENES

SOD1 Superoxide metabolism sod-1

TARDBP RNA metabolism tdp-1

FUS RNA metabolism fust-1

OPTN Vesicular transport –

VCP Vesicular transport cdc-48.1/2

UBQLN2 Proteasome ubqnl-1

C9ORF72 Unknown, DENN protein alfa-1

SQSTM1 Autophagy sqst-2

PFN1 Cytoskeleton dynamics pfn-1

OTHER GENES INVOLVED IN ALS

DCTN1 Cytoskeleton dynamics dnc-1

ALS2 Endocytosis –

CHMP2B Vesicular transport –

FIG4 Vesicular transport C34B7.2

HNRNPA2B1 RNA metabolism hrp-1

ELP3 –

SETX RNA processing –

HNRNPA1 RNA processing hrp-1

ATXN2 atx-2

ANG Blood vessels formation –

SPG11 DNA damage –

VAPB Vesicular transport vpr-1

NEFH Cytoskeleton dynamics H39E23.3

ARHGEF28 RNA metabolism rhgf-1

To understand better the impact of the genetic mutations on
the function of the different proteins involved in ALS, in vivo
models have proved to be essential. Ever since the first SOD1
mouse was developed in 1994 (Gurney et al., 1994), several groups
have tried to investigate ALS pathogenesis by expressing differ-
ent ALS related mutations in mice, an approach that has recently
been extended to other genes including TDP-43 and FUS for
example. While the over expression of wild type SOD1 causes
a mild denervation of neurons (Epstein et al., 1987), the over
expression of SOD1G93A causes a loss of motor neurons, neuroin-
flammation, and reduces life span (Gurney et al., 1994; Guo et al.,
2009). One model expressing mutant TDP-43Q331K or M337V in
the mouse central nervous system has shown selectivity for large
caliber motor neuron neurodegeneration (Arnold et al., 2013),
while others over expressing mutant TDP-43G348C, A315T and
FUSR512C, 14� have limited neuronal loss (Swarup et al., 2011;
Verbeeck et al., 2012). Some rodent models display relevant ALS
pathology, but given the time and expense to develop models for
many of the recently discovered ALS genes, not to mention the
difficulty of manipulating several genes at once, some laboratories
have turned to simpler organisms to model ALS toxicity.

One model showing increasing popularity is the nematode
Caenorhabditis elegans. This 1 mm long worm has a painstakingly
characterized, invariant cell lineage that includes 302 neurons.
The nervous system, its interconnections and its synapses are well
studied which makes it an ideal model to study mechanisms of

neuronal toxicity. The C. elegans genome was the first to be fully
sequenced in 1998 and includes more than 19,000 genes on 6
chromosomes (C. elegans Sequencing Consortium, 1998). Since
then, deletion mutants have been produced for many C. elegans
genes and approximately 80% of C. elegans genes have a human
homolog (Lai et al., 2000) (Shaye and Greenwald, 2011). C. ele-
gans behavior is well studied and many experimental assays are
available, including for worm locomotion. Worms initiate move-
ment by bending their body to advance forward in a sinusoidal
pattern, a process that is orchestrated by GABAergic and cholin-
ergic neurons. Cholinergic neurons initiate the contraction along
the dorsal or ventral body wall muscles while the GABAergic neu-
rons send an inhibitory signal on the opposite side (Jorgensen,
2005).

C. elegans has been an important tool for the characteriza-
tion of many neurodegenerative disorders (Li and Le, 2013).
Many protein-misfolding disorders have been modeled in worms
including Alzheimer’s disease, Parkinson’s disease, Huntington’s
disease and different spinocerebellar ataxias. Also, the toxicity of
non-coding mutations in C. elegans resemble the toxicity in mam-
malian tissues (Wang et al., 2011b). Since many cellular stress and
survival pathways are conserved in worms, our group and others
have used C. elegans to model ALS. This review aims to summa-
rize the work done modeling ALS in C. elegans and highlights the
future possibilities and applications.

USE OF C. elegans TO MODEL SOD1 TOXICITY
SOD1 is an enzyme that catalyzes the conversion of O2- into
O2 and H2O2. More than 160 mutations causative for ALS
have been found in SOD1 since 1993 (Al-Chalabi et al., 2012).
Phenotypic heterogeneity is observed among SOD1 mutation car-
riers where SOD1A4V seems to cause an aggressive form of ALS
while SOD1D90A causes a milder, long duration ALS (Renton
et al., 2014). It is hypothesized that SOD1 mutations cause toxicity
through a gain of function, even though a loss of enzyme activ-
ity have been observed in patients and some models (Saccon et al.,
2013). Many pathogenic mechanisms have been hypothesized but
no consensus has been reached, although it is thought that the
misfolding of mutant SOD1, and sometimes wild type SOD1, may
be an important first step of the pathogenesis observed in patients
(Pickles and Vande Velde, 2012). Based on pathological evidence,
it is now acknowledged that ALS caused by mutations in SOD1 is
a distinctive form of ALS (Mackenzie et al., 2007).

Several groups have used C. elegans to model SOD1 toxic-
ity (Table 2) starting with Oeda and colleagues who showed that
the ubiquitous expression of human mutant SOD1 impairs the
worm’s response to oxidative stress and causes protein aggregates
(Oeda et al., 2001). It was later shown that expression of mutant
SOD1 throughout the worm’s entire nervous system resulted in
locomotion defects and impaired neuronal transmission (Wang
et al., 2009). Interestingly, the formation of aggregates seemed to
be restricted to certain mechanosensory neurons despite the pan
neuronal expression of SOD1. Other models are non-neuronal
in nature and have relied on the expression of SOD1 proteins in
the body wall muscles where it was observed that distinct SOD1
mutations have varying propensities to aggregate (Gidalevitz
et al., 2009). More recently a C. elegans model was generated
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Table 2 | Summary of transgenic SOD1 models.

Study Promoter Gene Motor Aggregation Neuro- Synaptic

phenotype degeneration dysfunction

Oeda et al., 2001 hsp-16.2: all tissues except the germline SOD1A4V n.d n.d. n.d n.d
SOD1G37R n.d n.d n.d n.d
SOD1G93R n.d n.d n.d n.d

myo-3: muscle cells SOD1A4V n.d yes n.a n.a

Wang et al., 2009 snb-1: entire nervous system SOD1WT No No n.d Normal
SOD1G83R Yes Yes n.d Impaired

Gidalevitz et al., 2009 unc-54: muscle cells SOD1WT No No n.a. n.a
SOD1G85R Yes Yes n.a. n.a.
SOD1G93A Yes Yes n.a. n.a.
SOD1127X Yes Yes n.a. n.a.

Li et al., 2013a unc-25: GABAergic motor neurons SOD1WT Yes Yes Yes n.d.
SOD1G93A Yes Yes Yes n.d.

n.d., not determined; n.a., not applicable.

based on the expression of SOD1 in the worm’s motor neu-
rons showing neurodegeneration in the absence of caspases (Li
et al., 2013a), an intriguing finding since the motor neuron loss
observed in mouse models is associated with caspase activation
(Pasinelli et al., 2000). Whether this reflects a difference between
invertebrate and vertebrate systems, or reflects a novel mechanism
of neurodegeneration remains to be determined.

The C. elegans sod-1 gene has a similar function to human
SOD1. sod-1 loss of function mutants have increased O2- levels,
shorter lifespan and are sensitive to some environmental stresses
(Yanase et al., 2009). Inversely, overexpression of the worm sod-1
increases lifespan and increases the level of H202, the by-product
of the catalase reaction of SOD1. However, the increased lifes-
pan seems to be independent of SOD-1 catalase activity, but may
be due to altered endoplasmic reticulum (ER) stress signaling
(Cabreiro et al., 2011). Interestingly, Van Raamsdonk et al. have
generated a sod null worm, where all five C. elegans sod genes
have been mutated and these worms have a normal lifespan and
response to oxidative damage but are sensitive to many acute
environmental stresses (Van Raamsdonk and Hekimi, 2012).

In summary, many aspects of SOD1 function and toxicity are
conserved in worms, but some questions remain. It is known that
mutant SOD1 is found in association with the mitochondria in
SOD1 mouse model and ALS patients (Pickles and Vande Velde,
2012). To our knowledge, no group has yet investigated the effects
of human mutant SOD1 in worm mitochondria. However, it was
recently shown that a cleavage product of vpr-1, the ortholog of
VAPB also involved in ALS, affects mitochondrial organization in
muscle cells (Han et al., 2013). A similar analysis of the differ-
ent SOD1 transgenic models would be interesting and could help
identify pathways and drugs that act specifically on this important
aspect of ALS pathogenesis.

USE OF C. elegans TO MODEL TDP-43 TOXICITY
TDP-43 is a protein encoded by the TARDBP gene on chro-
mosome 1. The protein contains two RNA binding domains,
a glycine rich domain and nuclear export and import signals.

TDP-43 is similar to the members of the ribonucleoprotein fam-
ily. TDP-43 was identified in 2006 as the main constituents
of sporadic and familial ALS/FTD aggregates (Neumann et al.,
2006). In patients, the ubiquitinated aggregates are present in the
most affected regions of the brain and spinal cord. These aggre-
gates contain a hyperphosphorylated form of TDP-43 and the
C terminus cleaved fragment (Neumann et al., 2006). In 2008,
mutations in the TARDBP gene were linked to familial and spo-
radic ALS/FTD cases (Kabashi et al., 2008; Sreedharan et al., 2008;
Sreedharan and Brown, 2013). So far, more than 40 mutations
in TARDBP have been linked to ALS/FTD and most of them are
found in the C terminus region of the protein, a region involved
in protein-protein interactions (Al-Chalabi et al., 2012).

Under normal cellular conditions, TDP-43 protein shuttles
from the nucleus to the cytoplasm. The normal function of TDP-
43 is still unclear but the protein participates in transcription,
miRNA processing, mRNA splicing, RNA transport and stress
granule formation (Ling et al., 2013). The pathogenic effect of
the mutant proteins is not well understood and it is still unclear if
the toxicity is a gain of function, a loss of function, or both (Ling
et al., 2013; Vanden Broeck et al., 2014). An important aspect of
TDP-43 toxicity was discovered when characterizing TDP-43 wild
type mice. Mice with elevated expression of wild type TDP-43 also
have characteristics of TDP-43 mutant proteins (Xu et al., 2010).
Therefore, expression level is important and should be considered
when generating different transgenic models.

To clarify the toxicity caused by the expression of mutant TDP-
43, several groups have developed C. elegans models (Table 3).
In 2010, Ash and colleagues developed the first TDP-43 over-
expression model in C. elegans. The pan neuronal expression
of human TDP-43 and C. elegans TDP-1 resulted in worms
with uncoordinated, slow movements and defasciculation of the
GABAergic motor neurons (Ash et al., 2010). The results regard-
ing the expression of human TDP-43 were confirmed by Liachko
and colleagues who also observed motility defects and degenera-
tion phenotypes from the expression of mutant TDP-43 proteins
throughout the worms nervous system (Liachko et al., 2010).
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Table 3 | Summary of transgenic TDP-43 models.

Study Promoter Gene Motor phenotype Aggregation Neuro- Synaptic

degeneration dysfunction

Ash et al., 2010 snb-1: entire
nervous system

TDP-1 Yes n.d. n.d. n.d.

TDP-43WT Yes n.d. GABAergic n.d.

TDP-43�RRM1 No n.d. n.d. n.d.

TDP-43�RRM2 No n.d. n.d. n.d.

TDP-43�C terminus No n.d. n.d. n.d.

TDP-43no caspase Yes n.d. n.d. n.d.

TDP-43no NLS No n.d. n.d. n.d.

Liachko et al., 2010 snb-1: entire
nervous system

TDP-43WT Yes Yes No n.d.

TDP-43G290A Yes Yes GABAergic and dopaminergic n.d.

TDP-43A315T Yes Yes GABAergic and dopaminergic n.d.

TDP-43M337V Yes Yes GABAergic and dopaminergic n.d.

Zhang et al., 2012b snb-1: entire
nervous system

TDP-43WT Yes Yes No Impaired

TDP-43G331K Yes n.d. No Impaired

TDP-43M337V Yes n.d. No Impaired

TDP-43C terminus Yes Yes No Impaired

Vaccaro et al., 2012c unc-47 : GABAergic
neurons

TDP-43WT No No No No

TDP-43A315T Yes Yes GABAergic Impaired

n.d., not determined; NLS, nuclear localization signal; �RRM, deletion of RNA recognition motif; �C terminus, deletion of C terminus; no caspase, mutations in

TDP-43 that block caspase cleavage.

These phenotypes also highly correlated with protein phospho-
rylation levels where hyperphosphorylation increased the toxi-
city of mutant TDP-43 proteins similarly to what is observed
in ALS patients (Liachko et al., 2010). The TDP-43 C termi-
nus fragment shows another similarity with patients. Zhang and
colleagues showed that the pan neuronal expression of human
TDP-43 C′ fragment caused a phenotype similar to the expres-
sion of wild type or mutant TDP-43 (Zhang et al., 2011). Even
though no neuronal loss was observed in the latter model, all
strains displayed synaptic transmission abnormalities. In worms,
GABAergic neurons seem to be particularly sensitive to the
expression of TDP-43 (Liachko et al., 2010). To evaluate if the
effect of TDP-43 expression in these neurons could cause loco-
motor defects, our group developed models in which human wild
type or mutant TDP-43 were expressed specifically in GABAergic
motor neurons as directed by an unc-47 promoter (McIntire et al.,
1997). Interestingly, the overexpression of mutant TDP-43, but
not wild type TDP-43, caused an adult-onset, progressive paral-
ysis phenotype accompanied by GABAergic neurodegeneration
and synaptic transmission impairment (Vaccaro et al., 2012b).
Finally, some of these models showed aggravation of the pheno-
types during aging recapitulating an important feature of ALS and
neurodegeneration (Liachko et al., 2010; Vaccaro et al., 2012b).

It is still unclear if the toxicity of mutant TDP-43 proteins in
ALS patients arises from a gain of function, a loss of function or if
both mechanisms are employed. The transgenic C. elegans models
of TDP-43 are based on the overexpression of TDP-43 in worms
and likely represent a gain of function rather than a loss of func-
tion. However, the C. elegans genome has an ortholog of TDP-43
called TDP-1. TDP-1 is a primarily nuclear protein expressed in

most tissues including body wall muscles, pharynx and neurons
(Vaccaro et al., 2012c; Zhang et al., 2012b). TDP-1 contains two
RNA binding motifs, a nuclear localization signal and an export
signal but lacks the glycine rich domain found in human TDP-43.
TDP-1 seems to be functionally conserved because the expression
of human TDP-43 can rescue the toxicity of a loss of function of
a tdp-1 mutant (Zhang et al., 2012b).

Mutant tdp-1 animals show numerous phenotypes includ-
ing slow development, and locomotion defects (Liachko et al.,
2010; Zhang et al., 2012b). TDP-1 was also shown to be involved
in lifespan and the cellular stress response. Somewhat para-
doxically, worms lacking tdp-1 have a longer lifespan but are
more sensitive to oxidative and osmotic stresses (Vaccaro et al.,
2012c; Zhang et al., 2012b). The expression of tdp-1 can be
induced by oxidative stress, either chemically or from activa-
tion of the ER stress response, and it is thought that chronic
induction of tdp-1 by stress is ultimately cytotoxic and reduces
the worms lifespan (Vaccaro et al., 2012c). Furthermore, several
studies have shown that wild type TDP-1 protein may con-
tribute to the neurodegeneration elicited by mutant protein in
C. elegans. Neurodegeneration was suppressed by deleting tdp-1
from worms in several ALS models (Vaccaro et al., 2012c; Zhang
et al., 2012b) as well as in a C. elegans model of Huntington’s
disease (Tauffenberger et al., 2013a) suggesting there may be
genetic interactions amongst genes linked to neurodegeneration.
Interestingly, a transcriptome analysis of tdp-1(ok803) showed
that one of the biological process that was highly affected in the
mutant worms was the ER unfolded protein response (Zhang
et al., 2012b). ER stress and proteostasis have been a recurrent
theme in ALS research (Matus et al., 2013; Musarò, 2013) which
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is of interest since sporadic and familial cases of ALS are known
to have an abnormal ER stress response (Ilieva et al., 2007; Atkin
et al., 2008; Hetz et al., 2009; Ito et al., 2009).

USE OF C. elegans TO MODEL FUS TOXICITY
After the identification of TDP-43, several groups examined
related RNA-binding proteins for their potential contributions to
ALS. In 2009, a protein with a similar function, FUS, was iden-
tified as causative of ALS (Kwiatkowski et al., 2009; Vance et al.,
2009). Similar to TDP-43, FUS contains a RNA binding domain
and a glycine rich domain but also has a two arginine glycine rich
regions and one large glutamine, glycine, serine, tyrosine domain
in N terminus. Because of their high degree of structural simi-
larity, it was hypothesized that FUS and TDP-43 share common
functions. It is known that FUS can bind DNA and RNA and is
involved in many of the same RNA processing activities of TDP-
43 (Ling et al., 2013). FUS transgenic models are relatively recent
additions to the research field and much remains to be learned
about the function of FUS and the implication of the mutant
protein in neurodegeneration.

Two transgenic models have been developed in C. elegans
for FUS (Table 4). Murakami et al. (2012) expressed several
FUS mutations and two truncated FUS proteins throughout the
worm’s nervous system. Interestingly, only the mutations that
caused aggregation resulted in motor phenotypes in worms.
The motor phenotype could not be rescued by the expression
of wild type FUS suggesting a gain of function mechanism.
Our group confirmed a similar toxicity mechanism in mod-
els expressing FUS in the worm motor neurons. Expression
of FUS wild type did not cause aggregation but expression of
mutant FUS caused aggregation accompanied by paralysis, neu-
ronal synaptic impairment and neurodegeneration (Vaccaro et al.,
2012b).

FUS is well conserved and the C. elegans ortholog is named
fust-1. In contrast to tdp-1, a fust-1 deletion mutant could not
alleviate the toxicity induced by the expression of C′ TDP-43
fragment (Zhang et al., 2012b), suggesting a different role in pro-
teotoxicity. In Drosophila, Cabeza (Caz), the Drosophila ortholog
of FUS, is expressed in motor neurons and a decreased expression
of Caz causes a motor phenotype and motor neuron degeneration

(Wang et al., 2011a; Sasayama et al., 2012). These results sug-
gest a link between the expression and function of FUS, and
the specificity of ALS neurodegeneration and we await further
investigations of fust-1 in C. elegans.

USE OF C. elegans TO MODEL C9ORF72 TOXICITY
A region of chromosome 9 had been linked to ALS for several
years (Morita et al., 2006; Vance et al., 2006; van Es et al., 2009;
Shatunov et al., 2010) but the gene was only identified in 2011
(DeJesus-Hernandez et al., 2011; Renton et al., 2011) and has
since been shown to be a major cause of sporadic and familial ALS
(Turner et al., 2013b). The basis of the mutation is a GGGGCC
repeat expansion within the first intron of C9ORF72. Many ques-
tions remain to be answered about the role of C9ORF72 in the
pathogenesis of ALS. It is still not clear whether the GGGGCC
repeat expansion results in a loss of function, a gain of func-
tion or both, or if the size of the repeat has differential effects
on these potential mechanisms. Recent reports have observed
decreased expression of C9ORF72 when the GGGGCC repeat
reaches pathogenic length (DeJesus-Hernandez et al., 2011; Ciura
et al., 2013; Xi et al., 2013). Whether decreased expression con-
tributes to ALS pathogenesis is unknown since very little is known
about the biological role of C9ORF72 other than its sequence sim-
ilarity to the GDP/GTP exchange factor “Differentially Expressed
in Normal and Neoplasia” (DENN) (Zhang et al., 2012a; Levine
et al., 2013). DENN proteins are involved in the regulation of Rab-
GTPases and endocytosis. Recently, C9ORF72 was shown to be
implicated in endosomal trafficking (Farg et al., 2014), confirm-
ing its role as a DENN protein. In C. elegans, work has been previ-
ously done regarding some Rab proteins using deletion mutants
and GFP reporters (Sato et al., 2008) to investigate endocytosis
(Fares and Grant, 2002). C. elegans would be an ideal model to
confirm the involvement of C9ORF72 in this pathway. The C. ele-
gans homolog of C9ORF72 is named alfa-1 (ALS/FTD associated
gene homolog). Our group characterized the loss of function
mutant alfa-1(ok3062) where we observed that decreased expres-
sion of alfa-1 causes a motility defect, neurodegeneration specif-
ically of the motor neurons and sensitivity to osmotic stress
(Therrien et al., 2013). Further characterization still remains
to be done but it is interesting that loss of alfa-1 is linked

Table 4 | Summary of transgenic FUS models.

Study Promoter Gene Motor Aggregation Neuro- Synaptic

phenotype degeneration dysfunction

Murakami et al., 2012 rgef-1: entire nervous system FUSWT No No n.d. n.d.

FUSR514G No No n.d. n.d.

FUSR521G No No n.d. n.d.

FUSR522G Yes Yes n.d. n.d.

FUSP525L Yes Yes n.d. n.d.

FUS501trunc Yes Yes n.d. n.d.

FUS513trunc Yes Yes n.d. n.d.

Vaccaro et al., 2012c unc-47 : GABAergic neurons FUSWT No No No Normal

FUSS57� Yes Yes GABAergic neurons Impaired

n.d., not determined; trunc, truncation.
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to neuronal integrity specifically for GABAergic motor neurons
in worm.

GGGGCC repeat expansions are found in the first intron of
C9ORF72 and the presence of such long non-coding repeats is
suggestive of a toxic gain of function mechanism driving neurode-
generation as seen in many of the trinucleotide repeat expansion
diseases. In patients, the repeat was shown to induce abnormal
translation (non-ATG translation of the repeat, also called RAN
translation) leading to the production of different dipeptides(Ash
et al., 2013; Mori et al., 2013b). Also of interest were the pres-
ence of RNA foci containing the expanded GGGGCC repeat in
patients (DeJesus-Hernandez et al., 2011). It is unknown whether
a toxic gain of function is caused by the presence of toxic RNA
or the presence of toxic protein, or both. So far, no groups have
generated transgenic worms to model this aspect of the toxicity
however the expression of the non-coding GGGGCC repeat in
Drosophila causes neurodegeneration (Xu et al., 2013). C. elegans
may be useful to model non-coding repeats based on previous
efforts studying the expression of non-coding CUG repeats that
were toxic to worms (Chen et al., 2007) and recapitulated aspects
of RNA foci toxicity (Wang et al., 2011b).

STRESS RESPONSE AND AGE-DEPENDENT
NEURODEGENERATION IN C. elegans
With the identification of TDP-43 in most ALS aggregates and
later the identification of mutations affecting TARDBP and FUS
genes, RNA metabolism has become an important area of inves-
tigation in ALS research. Under normal conditions, both proteins
are mainly observed in the nucleus but the mutant proteins
are also found in the cytoplasm. FUS and TDP-43 contain a
low-complexity prion-like domain and a RNA binding domain
suggesting a role in RNA metabolism (Li et al., 2013b). High
throughput RNA-sequencing experiments have been used to
identify targets of TDP-43 and FUS in normal or disease states. In
worms, the transcriptome of the tdp-1(ok803) mutant has been
studied (Zhang et al., 2012b) and showed the involvement of
TDP-1 in various aspects of development.

Under cellular stress, wild type and mutant TDP-43 and FUS
proteins form RNA granules (Bosco et al., 2010; Dormann et al.,
2010; Liu-Yesucevitz et al., 2010; Gal et al., 2011; McDonald et al.,
2011). These granules are usually formed in order to protect RNA
from degradation under stress conditions. In worms, a variety
of different RNA granules exist: P granules, P bodies and stress
granules. P granules are the most characterized RNA granules in
worms and are highly involved in cellular development (Updike
and Strome, 2010). However, human proteins found in P bod-
ies and stress granules, such as TIA1, the decapping enzymes and
polyA binding proteins, have C. elegans ortholog and their role
seem conserved regarding RNA granules (Jud et al., 2008; Sun
et al., 2011). An active area of research concerns whether mutant
TDP-43 and/or FUS proteins interfere with stress granule home-
ostasis. In a transgenic model of FUS, wild type and mutant FUS
were shown to colocalize to stress granules after a heat shock but
only the recruitment of mutant FUS to the stress granules caused
persistent motility defects in the worms (Murakami et al., 2012).
Most work done in C. elegans to study stress granules have used
thermal stress as an inducer of the granule (Sun et al., 2011). In

cells, formation of granules containing FUS is also initiated by
other environmental stresses such as osmotic stress (Baron et al.,
2013) and oxidative stress (Vance et al., 2013), thus the effect of
these other stresses would be interesting to evaluate. Since most
of the components of the granules are conserved in worms, C. ele-
gans could be a powerful system to investigate stress biology in the
context of aging, an aspect not easily studied in cellular systems.

Since TDP-43 and FUS are components of stress granules, this
has led to the hypothesis that both proteins may be involved
in the cellular stress response. The genetic pathways govern-
ing cellular stress signaling have been studied to great success
in C. elegans. The different stress response pathways are highly
characterized in worms with the insulin/IGF-1 pathway being a
major, conserved signaling axis (Lau and Chalasani, 2014). In
worms, the insulin/IGF-1 pathway has a sole insulin/IGF-1 recep-
tor, DAF-2, that acts through the kinases AGE-1, PDK and AKT
to phosphorylate the FOXO transcription factor DAF-16, and
regulate stress resistance and longevity (Lapierre and Hansen,
2012). The most common stresses applied to worms in labora-
tory settings include exposure to thermal, oxidative, osmotic or
hypoxic stresses (Rodriguez et al., 2013). While each is a dam-
aging stress, they can elicit distinct genetic signaling pathways
with diverse outcomes. An open question in the field of late-
onset neurodegeneration is whether environmental components
exist to account for the range in disease onset and progression for
what are many highly penetrant, monogenic, dominantly acting
disorders. A stress intrinsic to ALS and many neurodegenerative
diseases is proteotoxicity. Here mutant proteins misfold leading to
a diverse range of proteotoxic consequences. Thus, cells maintain
an extensive network of mechanisms, including the insulin/IGF-1
pathway, to maintain protein homeostasis in the face of envi-
ronmentally derived damage or genetically encoded misfolded
proteins.

Work from C. elegans directly linked tdp-1 to the insulin/IGF-1
pathway and proteotoxicity. In C. elegans tdp-1 is required for the
stress resistance of daf-2 mutants and the stress-induced expres-
sion of tdp-1 was dependent on daf-16. These data suggest a role
for TDP-1/TDP-43 in the insulin/IGF-1 pathway and it remains
to see if insulin/IGF-1 signaling is altered by disease-associated
TDP-43 mutations.

Interestingly, in Vaccaro et al., mutant TDP-43 and mutant
FUS proteins were only expressed in the 26 GABAergic motor
neurons but activated the ER unfolded protein response chap-
erone HSP-4 in intestinal tissue (Vaccaro et al., 2012c). This
observation suggests that proteotoxic insults can induce stress-
signaling pathways in other tissues. It is not known if this is
due to a diffusible signaling molecule, or if the mutant pro-
teins make their way from the nervous system to adjacent tissue.
TDP-43, FUS, HNRNPA1, HNRNAP2B and TAF15 all contain
a prion-like domain (Couthouis et al., 2011; Polymenidou and
Cleveland, 2011; Kim et al., 2013) and misfolded SOD1 protein
may be able to self propagate (Grad and Cashman, 2014). Thus,
these proteins could share properties with toxic prion protein
(PrPsc) that misfolds, become infectious, and spreads from cell
to cell (Kabir and Safar, 2014). The development of ALS symp-
toms, starting usually in the lower limb and spreading upward,
also suggests a propagation mechanism. Little is known about
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the propagation potential of the ALS associated misfolded pro-
teins in C. elegans transgenic models. Mutant TDP-43 and FUS
proteins in the worm’s motor neurons were shown to induce
the expression of HSP-4 in the intestine, but the proteins were
not visualized outside of the neurons where they were expressed
(Vaccaro et al., 2012c). A prion model was however character-
ized expressing Sup35NM, a yeast prion protein, in the body wall
muscle of the worm. The most toxic form of the protein was
shown between muscle cells, in the intestine and the coelomo-
cytes, and the toxic fibrils were able to induce protein misfolding
(Nussbaum-Krammer et al., 2013). Also, proteostasis, ER stress
resistance and longevity, all major ALS research topics, have
been recently shown to have important cell-non-autonomous
components (Taylor and Dillin, 2013; van Oosten-Hawle et al.,
2013). Since C. elegans is transparent, direct visualization of
tagged proteins during development and aging is possible. The
development of additional tools should help establish if a prop-
agation mechanism exists for mutant TDP-43, FUS and SOD1
proteins.

IDENTIFICATION OF GENETIC INTERACTIONS
Recent genetic advances have identified many new causative genes
for familial cases of ALS (Table 1). Moreover, genome-wide asso-
ciation studies (GWAS) have also been done in sporadic ALS
cohorts to identify potential genes (Renton et al., 2014). With
the increasing number of genes linked to ALS along with the
diverse functions of these genes, it is essential to identify com-
mon pathological pathways relevant to ALS. Genetic interactions
amongst genes can refer to functional relationships amongst a
group of genes (Boucher and Jenna, 2013). However, genetic
interactions are not always easy to interpret and do not necessarily
point toward genes that function in the same pathway but rather
identify functional similarity between genes that could be in the
same pathway or in compensatory pathways (Boucher and Jenna,
2013). Therefore, identification of genetic interactions between
ALS genes could point toward potential therapeutic avenues for
ALS patients (Figure 1).

Among the proteins identified, TDP-43, SOD1, FUS, OPTN,
UBQLN2, and NEFH proteins are found in familial and spo-
radic ALS inclusions (Al-Chalabi et al., 2012). In zebrafish and
Drosophila, FUS, and TDP-43 were shown to interact geneti-
cally together but independently of SOD1 (Kabashi et al., 2011;
Lanson et al., 2011; Wang et al., 2011a). The rapid develop-
ment of phenotypes and the availability of multiple mutants
or RNAi clones make C. elegans an expedient model to study
genetic interactions. In worms, TDP-1 was shown to partici-
pate in the neurotoxicity observed in motor neuron caused by
human TDP-43 and human FUS (Vaccaro et al., 2012c). However,
FUS and TDP-43 seem to interact differently with PGRN, a gene
involved in FTD, and C9ORF72/ALFA-1 (Tauffenberger et al.,
2013a; Therrien et al., 2013). Those results provide an inter-
esting start to the identification of common pathological path-
ways in ALS. Finally, the characterization of the loss of function
mutant of pgrn-1, the C. elegans ortholog of progranulin, showed
that PGRN-1 is involved in apoptotic cell clearance (Kao et al.,
2011). Understanding how pgrn-1 interacts with the different
genes involved in ALS/FTD could help to better understand the

FIGURE 1 | Most common ALS genes and pathogenic pathways.

Shown are mutant proteins associated with ALS and putative, shared
toxicity mechanisms including RNA toxicity, the cellular stress response,
mitochondrial impairment and cell autonomy/non-autonomy. Many of these
pathways can be easily investigated using C. elegans.

variation observed along ALS/FTD continuum (Mackenzie et al.,
2011).

At a broader level, screening for potential genetic modifiers
using RNAi has brought a new understanding of the pathogenesis.
For example, SOD1 aggregation was linked to motor dysfunc-
tion in worms, but upon decreasing the expression of chaperone
proteins, the worms exhibited larger aggregates and increased
locomotion deficits (Wang et al., 2009). A non-biased screening
approach has recently demonstrated that targeting proteins that
affect the phosphorylation levels of TDP-43 greatly affects its neu-
ronal toxicity, setting the stage for novel therapeutic approaches
(Liachko et al., 2013). Thus far, only a handful of genetic screens
have been described for C. elegans ALS models but future stud-
ies may help uncover pathogenic mechanisms and therapeutic
strategies.

TDP-43 aggregates were shown to be the main protein found
in non-SOD1 ALS cases (Neumann et al., 2006). However, the
presence of TDP-43 aggregates is not exclusive to ALS. TDP-
43 aggregates are observed in other neurodegenerative diseases
such as Huntington’s disease, Parkinson’s disease, Alzheimer’s dis-
ease, and FTD (Mackenzie et al., 2010). FUS is also found in
the aggregates of polyglutamine disorders (Woulfe et al., 2010)
and mutations in FUS were linked to essential tremor (Merner
et al., 2012). Recently, FIG4 and VCP were also identified in dif-
ferent neurodegenerative aggregates (Mori et al., 2013a; Kon et al.,
2014). Uncovering specific genetic interactions that involve these
proteins could also help our understanding of their recruitment
to the aggregates of so many neurodegenerative disorders. Using
other models, groups have shown that intermediate polyglu-
tamine repeat of ATXN2 gene and EPHA4 are potent modulators
of ALS toxicity (Elden et al., 2010; Van Hoecke et al., 2012).
Therefore, a genetic interaction map may extend the role of these
genes beyond ALS and perhaps into other neurodegenerative
disorders.
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USING C. elegans MODEL FOR ALS DRUG DISCOVERY
The small size of C. elegans, its rapid life cycle, its ease of cultiva-
tion and ability to obtain large numbers of animals makes it an
attractive model for drug discovery. Furthermore, worms can be
grown on solid media or in liquid culture, the latter being rel-
atively easy to adapt for drug screening purposes often through
use of multiwell plates and/or automated screening methods
(O’Reilly et al., 2013). The transparency of C. elegans makes it
an ideal model for neurodegeneration applications since protein
aggregation and neuronal morphology can be easily assayed as a
complement to behavioral phenotypes.

Boyd and colleagues have shown that drugs identified from
cell based systems often have relevance in C. elegans (Boyd
et al., 2013). A screen to identify compounds that decrease TDP-
43 aggregation was performed in cell lines and many of the
molecules identified were able to suppress the impaired motility
phenotype of worms expressing mutant human TDP-43 (Boyd
et al., 2013).

Our group has also developed a high-throughput drug-
screening assay. We observed that the paralysis phenotype that
typically manifests over 5–12 days on solid media can be observed
after just hours when the worms are placed in liquid culture
(Vaccaro et al., 2012b; Therrien et al., 2013). Using this tech-
nique, more than 4000 FDA approved compounds were screened
in our laboratory. From this screen, we identified a number of
molecules including methylene blue and others acting on the
ER stress response that decrease the toxicity of TDP-43 (Vaccaro
et al., 2012a, 2013). Interestingly, these drugs were also con-
firmed in zebrafish ALS models confirming that these compounds
can be effective across species. These compounds are therefore
promising leads for testing in mammalian models.

Even though in the disease state, aging and neurodegeneration
seem to go hand in hand, we have shown that the drugs that act
on neurodegeneration can be separated from those that broadly
affect lifespan (Tauffenberger et al., 2013b) suggesting that lifes-
pan extension is not a strong predictor of neuroprotection.

OTHER MOTOR NEURON DISEASES
ALS is part of the neurological group of disorders called motor
neuron diseases. This group also includes spinal muscular atrophy
(SMA), primary lateral sclerosis (PLS), hereditary spastic para-
plegia (HSP) and many others affecting the upper and/or lower
motor neurons. The causative genes of these diseases are involved
in many cellular functions, however they all share a common toxic
pathways since they mainly affect motor neurons. Finding simi-
larities and differences among those diseases could highly increase
our understanding of motor neuron toxicity. C. elegans has been
used to study two of these, SMA and HSP.

HSP is a group of disorders affecting mainly the lower motor
neurons. More than 40 loci have been linked to HSP and
the genes identify are involved in axon pathfinding and myeli-
nation, mitochondrial maintenance and membrane trafficking
(Blackstone, 2012). Recently, a large network including many
of these genes have been identify and this network is highly
similar to Parkinson’s, ALS and Alzheimer’s diseases (Novarino
et al., 2014). Using C. elegans, the function and toxicity of two
HSP genes have been investigated. First, spas-1, the C. elegans

ortholog of spastin, also called SPG4, was shown to be involved
in the development of microtubules. SPAS-1 is expressed in the
cytoskeleton and is involved specifically in the disassembly of
microtubules (Matsushita-Ishiodori et al., 2007). Then, the pan
neuronal expression of NIPA-1 associated mutations led to motor
deficits and shortened the lifespan of transgenic worms proba-
bly through the activation of caspases and increased ER toxicity
(Zhao et al., 2008). With the rapid discovery of new HSP genes,
more models are surely to come and will help unravel similarities
between these diseases.

SMA is a rare autosomal recessive disorder and a leading
genetic cause of infant death. All genetic causes of SMA lead to
a decreased expression of the proteins survival of motor neuron
(SMN) 1 and 2 (Arnold and Burghes, 2013). It mainly affects
the lower motor neurons, but recent evidences suggest that it
can be a systemic disease affecting the vascular, cardiac and hep-
atic functions as well as affecting bone formation (Hamilton and
Gillingwater, 2013). C. elegans possesses one ortholog of the SMN
gene, smn-1. In 1999, Miguel-Aliaga and colleagues showed that
decreased expression of smn-1 in worms resulted in severe loco-
motion defects and sterility (Miguel-Aliaga et al., 1999). Then
SMN-1 was shown to interact with SMI-1, a known interactor of
SMN in humans (Burt et al., 2006). Briese and colleagues charac-
terized the first smn-1 deletion mutant observing that the mutants
displayed early developmental arrest, which could be rescued by
reintroducing expression of smn-1 in the nervous system, while
expression in muscle cells was ineffective (Briese et al., 2009).
Little is known about any downstream targets of SMN and no
drugs are available. Thus, several groups have used C. elegans to
identify modifiers of the smn-1 phenotypes. In a cross-species
study, it was shown that proteins involved in endocytosis and
mRNA regulation could modify the toxicity (Dimitriadi et al.,
2010). Also, knowing that the ubiquitin-proteasome pathway
degrades SMN, decreased expression of Mibl, an E3 ligase, was
shown to ameliorate smn-1 phenotypes (Kwon et al., 2013). Since
the smn-1 deletion allele ok355 is an early larval lethal phenotype,
to aid the development of drug screening Sleigh and colleagues
identified a less severe mutant allele that more closely resembles
the severity of SMA (Sleigh et al., 2011). Using this mutant, they
identified several small molecules that alleviate smn-1 phenotypes
of the worms, therefore, being highly promising compounds for
SMA drug development (Sleigh et al., 2011).

PERSPECTIVES
With the discovery of many new ALS genes comes the need
to better understand their functions, expression patterns and
their modes of toxicity. C. elegans has proven to be an informa-
tive model to study neurodegeneration mechanisms arising from
multiple ALS related proteins. We envision that the introduction
of new transgenic and genetic models will help unravel impor-
tant questions about the normal and pathogenic roles of these
proteins.

Most models explained here recapitulate some if not many,
important features of ALS, however, phenotypic variations are
seen amongst the different models, for a number of reasons. First,
the models do not all use the same mutations, thus the result-
ing mutant proteins may not all be equally toxic, or display the
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same interactions with other proteins. Also, the level of expres-
sion is important to consider as for example, there is considerable
evidence that TDP-43 levels are tightly regulated (Budini and
Buratti, 2011), and elevated expression is toxic in nearly every
system studied (Ash et al., 2010; Xu et al., 2010; Estes et al.,
2011). The most common method to generate transgenic worms
is by microinjection to create stable lines followed by radia-
tion to integrate the transgene in the genome. This procedure
typically produces transgenics with multiple copies of the gene
inserted in the genome, thus some of the toxicity observed may
be due to overexpression. Aware of this issue, a new generation
of ALS transgenic worms should be constructed based on sin-
gle copy integration (Frøkjaer-Jensen et al., 2008) or with the
CRISPR-Cas9 method (Friedland et al., 2013) instead to ensure
that transgenic lines have a similar level of expression from the
same genomic location. Finally, the phenotypic variance may
also be due to the promoter used. Some models have used pan
neuronal expression constructs, while others have targeted trans-
genic expression to specific neuronal populations. In humans,
most of these proteins are expressed ubiquitously but only spe-
cific neuronal populations are sensitive to degeneration. Thus,
worm models based on motor neuron transgenics could be ideal
model to uncover conserved mechanisms of motor neuron degen-
eration. To confirm the specificity of each phenotype, mutant
and wild type proteins should be carefully compared and similar
changes should be confirmed in higher eukaryotes. For example,
mutant TDP-43 and FUS proteins induce an ER stress response
in worms which is not observed when the wild type proteins are
expressed (Vaccaro et al., 2012b). Also, the ER stress response was
shown to be activated in other ALS models and in patients (see
section above).

These models are setting the stage for novel toxicity hypothesis.
The immune system seems to play an important role in the
neurodegeneration observed in ALS. Protein aggregation could
activate the immune response and neuroinflammation actively
contributes to disease progression (McCombe and Henderson,
2011). C. elegans relies on an evolutionary conserved, innate
immune response (Engelmann and Pujol, 2010) that coordinates
its activity with the insulin/IGF-1 pathway (Singh and Aballay,
2009) suggesting these may be pathways worth investigating. Also,
in the past year, a convergence of data has suggested a role for
glial cells in ALS neurodegeneration (Parisi et al., 2013; Valori
et al., 2013; Chiu et al., 2014). The worm has 56 glial cells and
some are found at the neuromuscular junction (Oikonomou and
Shaham, 2011). Characterization of the cross talk between the
neurons and the glial cells would also be an interesting area of
investigation.

An important topic related to ALS and to other neurodegen-
erative disorders is aging. The risk of ALS increases with age,
peaking between 70 and 80 years old (Gordon, 2013). Aging path-
ways are well characterized in worms and among others, include
the insulin/IGF-1, the target of rapamycin (TOR) and germline
signaling pathways. There is a strong overlap between protetotox-
icity and aging where autophagy and lipid metabolism are major
targets (Lapierre and Hansen, 2012). Evaluating the toxic impact
of mutant proteins during aging is not feasible in many mod-
els, but is easily accomplished using C. elegans. The development

of models with age-related toxicity is essential and could help
understand the link between the proteotoxicity and aging.

When using C. elegans or other animal models, most studies
have focused on the toxicity of known ALS genes. It is impor-
tant to note that almost 90% of ALS cases are sporadic ALS with
no link to known genetic abnormalities. Therefore, we still do not
know how most patients develop ALS. However, it is important to
know that sporadic and familial cases of ALS are clinically indis-
tinguishable (Al-Chalabi and Hardiman, 2013). Given that ALS
patients can live between 6 months and 6 years after diagnosis, it
has been hypothesized that environmental factors may influence
disease onset and progression (Al-Chalabi and Hardiman, 2013).
Many environmental factors have been examined in relation to
ALS but there is no consensus for their contribution to the dis-
ease (Al-Chalabi and Hardiman, 2013). C. elegans could be useful
to study some of the environmental risks hypothesized. In fact,
several groups have identified compounds that could cause spe-
cific degeneration of motor neurons (Du and Wang, 2009; Negga
et al., 2012; Estevez et al., 2014) opening the door to identifying
environmental modifiers of degeneration in ALS models.

However, how relevant are any of these findings to humans?
Will any of the drugs identified in C. elegans translate to mam-
malian models let alone ALS patients? So far, many drugs identi-
fied using rodent models focusing mainly on protein aggregation
and cell death mechanisms have failed in subsequent clinical tri-
als. Using C. elegans to identify drugs acting on early neuronal
dysfunction mechanisms could be an effective way to prevent
ensuing cellular decline and death. From a liquid culture screen,
our group has identified a compound with this property (unpub-
lished results). The compound is effective in vertebrate ALS
animal models and is now being tested in ALS patients. Therefore,
large screens using C. elegans targeting specific early aspects of
neurodegeneration seem promising and show relevance in higher
organisms.
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