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Increased understanding of the interactions between the gut microbiota, diet and
environmental effects may allow us to design efficient treatment strategies for addressing
global health problems. Existence of symbiotic microorganisms in the human gut provides
different functions for the host such as conversion of nutrients, training of the immune
system, and resistance to pathogens. The gut microbiome also plays an influential role
in maintaining human health, and it is a potential target for prevention and treatment of
common disorders including obesity, type 2 diabetes, and atherosclerosis. Due to the
extreme complexity of such disorders, it is necessary to develop mathematical models
for deciphering the role of its individual elements as well as the entire system and such
models may assist in better understanding of the interactions between the bacteria in the
human gut and the host by use of genome-scale metabolic models (GEMs). Recently,
GEMs have been employed to explore the interactions between predominant bacteria
in the gut ecosystems. Additionally, these models enabled analysis of the contribution
of each species to the overall metabolism of the microbiota through the integration of
omics data.The outcome of these studies can be used for proposing optimal conditions for
desired microbiome phenotypes. Here, we review the recent progress and challenges for
elucidating the interactions between the human gut microbiota and host through metabolic
modeling. We discuss how these models may provide scaffolds for analyzing high-
throughput data, developing probiotics and prebiotics, evaluating the effects of probiotics
and prebiotics and eventually designing clinical interventions.
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INTRODUCTION
The mammalian gut has been colonized with different types
of microorganisms which has dynamic and beneficial symbi-
otic relationships. This metabolically active organ serves multiple
functions such as assimilation of food that is indigestible by
human cells and shaping of the immune system (Backhed et al.,
2005). The microbes that inhabit our colon assist in ensuring
resistance against different pathogens, while perturbations in
metabolism of this complex ecosystem can cause different dis-
orders (Kinross et al., 2011). To date, different studies have used
DNA sequencing technology to depict the association of the gut
microbiota with different complex diseases: type 2 diabetes (Qin
et al., 2012; Karlsson et al., 2013b), obesity (Turnbaugh et al.,
2006; Ridaura et al., 2013), and atherosclerosis (Karlsson et al.,
2012). However, it has been reported that diet, age, environ-
ment, and ethnicity of the subjects have crucial impact on the
microbial gut composition and these important factors should
be accounted for during the conduction of association studies
(Claesson et al., 2012). Historically, the study of microbial consor-
tia has been restricted due to difficulties in culturing individual
species. During the past few years, with the improvement of
high-throughput technologies and culture-independent genomic
methods, it has become possible to accurately characterize the
composition of microbial ecology (Su et al., 2012). This has
made it possible to understand the contribution of microbiota

to different disorders through analyses of the species abundance
(Handelsman, 2004).

Metagenomics studies on the human gut have reported that
the gut microbiota gene set is at least 150 times larger than the
human gene set in a given individual (Qin et al., 2010; Aru-
mugam et al., 2011). The numbers of species in the gut consortia
can exceed 1000 while at least 160 species are common among
individuals (Karlsson et al., 2013a). These studies suggest that
the bacterial composition in the gut mainly belong to the phyla
Firmicutes and Bacteroides (Qin et al., 2010; Huttenhower et al.,
2012). The gut microbiota is also dominated by less abundant
phyla such as Proteobacteria, Actinobacteria, and Euryarchaeota
(Arumugam et al., 2011; Ridaura et al., 2013). Studying the inter-
actions between these microbes in the consortia as well their
interactions with the human host may enable us to elucidate
the molecular mechanisms of interaction between the micro-
biome and the human host and eventually human diseases. This
knowledge can also be applied to reveal the details of dysregula-
tion in the gut microbiome (Figure 1). The major interactions
between the gut microbes occur through the exchange of metabo-
lites and the mediator of these interactions is the production of
important metabolites, including short chain fatty acids (SCFAs;
acetate, propionate, and butyrate; Ruppin et al., 1980). Species
of Roseburia, Eubacterium, Bacteroides, and Faecalibacterium are
examples of bacteria in the gut ecosystem that produces these
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FIGURE 1 | Lessons from systems biology of single organisms to a

community. The model reconstruction for single organism based on
genotype–phenotype connections has been developed. Identifying the local
interactions between organisms in a community and the application of

models for each organism-host interactome will enable the modeling of the
microbiome and at the final step enable interpretation of the phenotype for
the whole ecosystem. Hereby mathematical models can be used to test
different hypotheses.

metabolites (Holmes et al., 2012). SCFAs have potential effect on
the host physiology since 60–90% of these SCFAs are absorbed
by the epithelial cells (Ruppin et al., 1980). Thus, SCFAs reg-
ulate the energy supply for epithelial cells, control the pH in
the colon and provide resistance to growth of pathogens (Gib-
son, 2004). Abnormalities in the metabolism of SCFAs lead to
the occurrence of obesity, type2 diabetes, and colorectal cancer
(Davie, 2003; Comalada et al., 2007; Sekhavat et al., 2007; Dumas,
2011).

Moreover, there are other metabolites that mediate the com-
munication of the gut ecosystem with the human host. The
interactions between microbe and host can be through the
exchange of bile acids (Ridlon et al., 2006; Dawson et al., 2009),
phenolic and aromatic acids (Lord and Bralley, 2008; Serino et al.,
2012), cholines (Wang et al., 2011), fatty acids, and phospho-
lipids (Serino et al., 2012). The primary bile acids, which are
produced by the liver, are dehydroxylated by bacteria from the
genus of Lactobacillus, Bifidobacterium, Clostridium, and Bac-
teroides. A small part of secondary bile acids is also absorbed
by enterocytes which promote the lipid absorption and regulate
the colonic energy homeostasis (Ridlon et al., 2006; Dawson et al.,
2009). Choline is synthesized by Faecalibacterium prausnitzii and
Bifidobacterium species and has a key role in lipid metabolism,
and is implicated in liver and cardiovascular diseases (Wang et al.,
2011). These microbial derived metabolites may also result in the
dysregulation in the host by affecting the metabolism of different
organs.

The synthesis of all these metabolites is strongly related to the
composition of the microbiota as well as to the dietary pattern of

each individual. The correlation of diet intake, composition of the
gut microbiota and physiology of the host has been studied in ani-
mals and humans (Faith et al., 2011; Cotillard et al., 2013; David
et al., 2014). Recently a study on dietary interventions and gene
abundances in the gut microbiota of 38 obese and 11 overweight
individuals was described. By taking up diet-induced weight-loss
and weight stabilization interventions, a decrease in gene rich-
ness and differences in clinical phenotypes was observed (Cotillard
et al., 2013).

To elucidate the interactions between the microbes in the gut
ecosystems and further their interaction with the host, computa-
tional models can assist. In this context, genome-scale metabolic
models (GEMs) can be employed to gain insights about the mech-
anistic details of the complex ecosystems and its interactions with
the host (Mardinoglu et al., 2013a, 2014; Shoaie et al., 2013).
GEMs provide a scaffold for integration and interpretation of
high-throughput data to investigate the molecular details of such
a community. Here, we review the latest progress on genome-
scale metabolic modeling and how these models can be used
to analyze the interactions between the gut ecosystem and the
human host. We also discuss the elements of success toward whole
body metabolism and increase our understanding of this complex
system.

GENOME-SCALE METABOLIC MODELS: A PLATFORM FOR
INTEGRATION OF OMICS DATA
Over the last decade, the concept of predicting the phenotype of
single organisms from their genotype using GEMs has been well
established (Fleischmann et al., 1995; Edwards and Palsson, 1999).
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This type of computational models has been used to describe
the molecular mechanism of the organism under study based on
genome annotation, biochemical reaction databases, and litera-
ture reviewing. GEMs are the collection of bio-chemical reactions
and associated genes, which indicate the existence of proteins in
the target organism (Price et al., 2004; Liu et al., 2010). The man-
ual construction of GEMs is time consuming and laborious, so
different approaches have been generated to automate the recon-
struction process (Henry et al., 2010; Liao et al., 2012; Agren et al.,
2013). Among them, the RAVEN toolbox was recently described,
which has the capability to reconstruct a model based on homology
or sequence of the target organism (Agren et al., 2013). Gap-
filling and quality control procedures are also included in the
toolbox that thereby enables generation of connected models in
an automated fashion. The RAVEN toolbox has been used for
reconstructions of several GEMs such as Pichia stipitis (Caspeta
et al., 2012), Saccharomyces cerevisiae (Osterlund et al., 2013), and
Penicillium chrysogenum (Agren et al., 2013). The quality control
step of the toolbox allows for consistency check of the mod-
els with experimental data. This step is done with the impact
of imposing different constraints such as thermodynamics and
secretion and uptake fluxes can be evaluated. Finally the RAVEN
toolbox allows for contextualizing omics-data, setting up hypoth-
esis in metabolic engineering and studying the interactions of
organisms by network-based discovery (Oberhardt et al., 2009;
Figure 2).

The computational methods for studying the metabolism of
single organisms has been developed and applied successfully
(Thiele and Palsson, 2010). GEMs were traditionally limited to
metabolism, but there are large portions of the genome that encode
for proteins involved in translation, transcription, signaling, and
replication (Gil et al., 2004). Recently macromolecular expression
data have been integrated with GEMs to present improved descrip-
tion of the target organism (Lerman et al., 2012). The progress in
sequencing technology has allowed us to unravel the molecular
mechanisms of complex communities (Zomorrodi and Maranas,
2012). The GEMs for each organism may assist to gain insight
about the different metabolic interactions, identify the specific
metabolism of each species and set hypothesis for finding the
optimal conditions for the community (Stolyar et al., 2007; Shoaie
et al., 2013). In addition, community modeling can be used to find
the correlation between the individuals of each community and
detailed mechanisms behind these communities, enabling studies
of the gut microbiome.

METABOLIC MODELING OF GUT MICROBIOTA
Setting up a metabolic model for each species and integrating these
models may allow us to study the overall function of a micro-
bial community. Metagenomics studies can quantify the relative
abundance of each species in a community but it does not enable
description of the function of each individual. Abubucker et al.
(2012) have used the outcome of metagenomics studies to recon-
struct metabolic models for each abundant species. The content
of these metabolic models were similar to each other, but they had
diverse functions for different environmental conditions. While
it comes to metabolic modeling of communities, the interactions
between the species has a key role in shaping of the consortia.

Predictive methods have been established to delineate the inter-
actions between bacterial species. In this context, 118 bacterial
metabolic models have been deposited (Freilich et al., 2011) into
the Seed database (Henry et al., 2010). Through the possibility
of a co-growth concept for the community, three types of con-
ditions were introduced: (i) no interaction (the species don’t
have overlapping substrates), (ii) competition (species are com-
peting for the same substrates resulting in higher growth for one
species), and (iii) cooperation (the overall growth increase with
positive interactions between species; Freilich et al., 2011). The
distribution values for competition and cooperation across the
species were identified by implementing constraint-based mod-
eling, setting growth as an objective function and predicting a
competition-inducing media. In a recent study, 154 metabolic
models of species have been used to understand the competition
and complementarity of species by means of co-occurrence of
species (Levy and Borenstein, 2013). It has been reported that
co-occurrence of competitive species is more frequent among the
individuals. Although this generic method assists in delineating
the interactome between a large number of metabolic models of
bacteria, the correct set of metabolites in the media and the lack
of functionality in these metabolic models decrease the reliability
of the method for understanding the interaction between species
and further the identification of the role of single species in the
overall metabolism.

In order to have an increased understanding of the metabolism
in microbial communities, Shoaie et al. (2013) studied the
gut ecosystem based on previously published high-throughput
metagenomics studies (Samuel and Gordon, 2006; Mahowald
et al., 2009). Phylogenetic information was collected and three
species were chosen as the representative of the three different
abundant phyla in the gut microbiota (Qin et al., 2010; Aru-
mugam et al., 2011). Functional GEMs for three bacteria were
reconstructed based on different biochemical reaction databases
and intensive manual curation. Bacteroides thetaiotamicron from
the Bacteroides phyla and Eubacterium rectale from the Firmicutes
phyla were selected since these two phyla are the most abun-
dant in the human gut. Methanobrevibacter smithii as a dominant
archaeon, which has a capability to mediate hydrogen metabolism,
was also chosen to simulate the interactions between these three
species. Three GEMs including iBth1201, iEre400 and iMsi385
were validated individually and used for prediction of each specie’s
contribution to the metabolism of the mono-colonized germ-free
mice (Samuel and Gordon, 2006; Mahowald et al., 2009). First, the
uptake of substrates and secreted by-products were predicted and
compared with experimental values by constraining the biomass
and using a minimization algorithm. In metabolic modeling of
the ecosystem with two species, the main exchangeable metabo-
lite between the B. thetaiotamicron and E. rectale was found to
be acetate. It was observed that the butyrate level in the ecosys-
tem increased due to the mediation of acetate between the species.
After partly absorption of these two SCFAs by the epithelial cells,
their predicted levels were in agreement with the measured values
in co-colonized germ-free mice experiments. It was also shown
that glucan was mainly consumed by B. thetaiotamicron as a main
substrate. Next, the interactions of three species were studied in the
gut ecosystem through metabolic modeling. The simulations were
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FIGURE 2 | Pipeline for high-quality GEM reconstruction. This approach
has been applied to the reconstruction of GEMs for microbes, tissue, and cell
types. The Raven Toolbox is mainly applied for GEMs reconstruction based on
template models and different databases 35. After having the draft model,
sets of quality control can be applied to generate a fully functional model. This
toolbox enables integration of omics data for more comprehensive analysis. It

can generate the models in different formats, visualizing the simulations and
overlaying the model in a metabolic map. Another powerful plug in is the INIT
algorithm, which can be used for reconstruction of tissue-specific models
based on a human generic metabolic model (Agren et al., 2012). The GEMs for
tissues and microbes can be validated through constraint-based modeling
approaches and available experimental data.

performed based on maximization of the community biomass
while the substrate was fixed and the SCFAs profile was predicted.
It was observed that there was competition for acetate uptake
between E. rectale and M. smithii, while the major part of CO2 and
H2 were consumed by M. smithii and converted to CH4 through
methanogenesis.

Basically, the above simulations have been categorized as two
different mathematical formulation referred as α and β problems.
These two types of simulation can assist to test hypotheses regard-
ing the occurrence of metabolic abnormalities. By knowing the
relative abundance of gut bacteria for specific disorders, solving
the α problem enables prediction of the profile of secreted SCFAs,

i.e., this method simulates the secretion of metabolites as a func-
tion of bacterial abundance. However in order to test the impact
of diet composition on the gut microbiota and its association to
metabolic disorders, solving the β problem may assist in estimation
of the relative abundances of each bacteria in the gut ecosystem.
Integrating the result of the analysis with different metabolic dis-
orders associated with the gut microbiome would facilitate the
design of diet as a key factor in shaping the gut bacterial composi-
tion. The formulations of these two types of problem are depicted
in details in Figure 3.

The existence of the transcriptomics data for two cases for
the presence/absence of B. thetaiotamicron and E. rectale in
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FIGURE 3 | Mathematical formulations for metabolic modeling of the

gut microbiota. The formulations of the α- and β-problem have been defined.
In the α-problem the abundance of each individual species in the community
is well-defined and through minimization for substrate/diet, the profile of

SCFAs is estimated. In the β-problem the abundances of individuals can be
predicted through maximization of the community biomass and by using a
well-defined substrate/diet composition. (D: dilution rate, K

D : ratio of SCFAs
absorption, Prod: butyrate, propionate, and acetate).

mono-colonized germ-free mice 52 was used to reveal transcrip-
tional regulation at the gene and metabolite levels. Adaption
of E. rectale to B. thetaiotamicron was found to be mediated
through up-regulation of the genes associated with the TCA cycle,
purine and pyrimidine metabolism, and down-regulation of genes
associated with the carbohydrate metabolism in E. rectale. This
adaptation showed that, during growth, of E. rectale shifted to uti-
lization of amino acids, in particular glutamine, in the presence
of B. thetaiotamicron. It was proposed that this shift may be the
reason for a drop in the plasma glutamine level of obese mice that
have an increased abundance of Firmicutes. This observation has
been confirmed by a recent study where a colonization of germ-
free mice with a culture collection from obese mice resulted in
an increase in the metabolism of leucine, isoleucine, and valine
(Ridaura et al., 2013). In order to understand the effect of the gut
microbiata to the host metabolism in health and disease states, a
whole body model should be reconstructed. In this context, mod-
els for each cell/tissue type and each species in the gut should be
integrated and used for the simulation of the metabolism using a
holistic approach.

MODULATION OF GUT MICROBIOTA-HOST METABOLIC
INTERACTIONS
There are clear functional links between the gut microbiota and
its host that may lead to increase in the harvested energy and
alterations in the host metabolism. Some of the interactions of
host and gut microbiota were summarized in the introduction

section. Here, we will discuss the recent progresses in constraint-
based modeling of different cell/tissue types in the human body
and the steps toward the integration of these models with models
for the gut ecosystem. The efforts for modeling of the human
metabolism started with the reconstruction of generic human
models including Edinburgh human metabolic model (EHMN;
Ma et al., 2007) and Recon1 (Duarte et al., 2007). These literature
based models represent comprehensive collections of biochem-
ical reactions that occur in the human body. Recently, generic
models like the human metabolic reaction (HMR; Agren et al.,
2012) and Recon2 (Thiele et al., 2013), that both integrate com-
ponents of EHMN and Recon1, have been published. These
generic models are useful resources for computational model-
ing as well as network dependent analysis. However, metabolism
varies in each tissue of the human body and it is therefore neces-
sary to reconstruct cell or tissue specific models. In this context,
the INIT (integrative network inference for tissues) algorithm
(Agren et al., 2012, 2014) and several other algorithms [reviewed
in Mardinoglu et al. (2013b)] have been developed to generate
cell/tissue specific draft GEMs based on generic human mod-
els and high-throughput data, e.g., proteomics data from the
Human Protein Atlas (Uhlen et al., 2010; Fagerberg et al., 2014;
Figure 2). Recently, several functional cell type specific GEMs
have been generated for liver (Mardinoglu et al., 2014), brain
(Lewis et al., 2010), adipocyte (Mardinoglu et al., 2013a), and
alveolar macrophage (Bordbar et al., 2010) using semi-automated
approaches.
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It is feasible to understand more about whole body physiol-
ogy by studying the interactions between the functional cell/tissue
specific models and integration of clinical data (Mardinoglu and
Nielsen, 2012). This knowledge can be used to elucidate the pro-
gression of metabolic disease, make hypothesis for new therapies
and design new clinical interventions. To this end, the intercellular
interactions between three metabolically active human cell types
including adipocytes, hepatocytes, and myocytes have been stud-
ied and these models were used for integration of high-throughput
data to find metabolic variations and reaction activities (Bord-
bar et al., 2011). Furthermore, the modeling of the interactions
between different organs has provided an increased understanding
about the stages of metabolic disorders.

There is also metabolic host- bacterial symbiosis for instance
in the small intestine and colon (Figure 4). The butyrate pro-
duced by bacterial fermentation in the lumen, provides energy for
colonic epithelium (Waterman, 1996). In addition to epithelial and

enterocyte cell types in the small and large intestine, the intesti-
nal macrophages also play a key role for maintaining homeostasis
between the host and the bacterial community. Macrophages are
present in large populations in the human intestine and can mainly
be found in the mucosa. Macrophages have been implicated as
the cause of inflammatory bowel diseases and as a target for
treatment (Mowat and Bain, 2011). Previously, a cell specific alve-
olar macrophage metabolic model has been reconstructed and its
interaction with pathogenic bacteria has been studied (Bordbar
et al., 2010). This model can be used as a draft model to recon-
struct a model for macrophages that exist in the intestine and
it can eventually be used to elucidate the interactions between
bacterial ecosystems, the mucus layer and intestinal epithelial
cells.

A metabolic model for human small intestinal enterocytes
has been reconstructed (Sahoo and Thiele, 2013). Pathways for
metabolism of carbohydrates, amino acid, dietary fibers, and

FIGURE 4 | Interaction between the gut microbiota and host. There are
different types of metabolic interactions between the bacteria in the gut
ecosystem. A simplified model community including three species where
B. thetaomicron and E. rectale consume oligo and poly-saccharides, and
M. smithii takes up CO2 or formate, and acetate. The primary interactions
in this simplified community involve acetate, H2, and CO2. The primary
products are three SCFAs: acetate, propionate, and butyrate. These
metabolites are mainly absorbed by epithelial cells. Butyrate absorbed by
colonocytes for energy, while propionate and acetate are transferred to the
portal vein and from there to other cell types, including adipocyte and
hepatocyte. The micronutrients are digested in stages as food travels
through sections of the gut. Some carbohydrates, proteins, and fats are

digested by host enzymes and indigestible ones are degraded by the
microbiota. This process initiates mainly in the stomach and continues
significantly through the small and large intestine. The available SCFAs are
transported to liver through the portal vein. Since hepatocyte regulate
cholesterol levels by synthesizing primary bile acids and lipoproteins
[chylomicrons, very low-density lipoprotein (VLDL), low-density lipoprotein
(LDL), and high-density lipoprotein (HDL)] 28. It is very likely that the
production of acetate and other compounds by the microbiome profoundly
impacts this regulation. There is also a crosstalk between adipocytes and
myocytes through free fatty acid transport. Understanding these
interactions between organs is necessary to overcome the complexity of
metabolic modeling the interaction between host and gut microbiota.
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lipids were the most occurring in this model. The effect of an
American and balanced diet was studied with this model and
different flux distributions were predicted based on the diet.
An American diet is mainly enriched in calories and the cer-
tain essential nutrients are low compared with a balanced diet
(Flock and Kris-Etherton, 2011). By comparing an American to
a balanced diet, higher flux values for conversion of glutamine to
glucose, proline, ornithine, and citrulline were found for a typical
American diet whereas lower flux values for synthesis of 5-methyl-
tetrahydrofolate were predicted through the use of this model
(Sahoo and Thiele, 2013).

EFFECT OF DIET ON COMPOSITION OF GUT MICROBIOTA
The composition of bacteria in the gut ecosystem is significantly
influenced by the diet (David et al., 2014). The three primary
macronutrients that affect the microbiota and host are carbohy-
drates, proteins, and fats (Scott et al., 2013). Carbohydrates that
cannot be digested by the host are fermented by the gut micro-
biota, e.g., resistant starch that is mainly utilized by Ruminococcus
bromii (Daniel et al., 2014). Around 40 gram of carbohydrates,
which consist of resistant starch, non-starch polysaccharides and
oligosaccharides, reach the colon on a daily basis and is here
partially fermented by the gut microbiota. The fermentation of
protein is also located in the distal compartment of the colon
and 12–18 g proteins reach the colon each day (Scott et al., 2013).
The Bacteroides and Clostridium species are examples of predom-
inant bacteria for protein fermentation (Macfarlane et al., 1986)
and they mainly use protein for production of the three major
SCFAs, ammonia, phenols, amines, and sulfides (Hamer et al.,
2012). The third macronutrient that is mainly available in the
diet is fat, which is mostly absorbed through the small intestine
and only a small percentage is excreted in the feces (Gabert et al.,
2011). As it has been studied before, the production of SCFAs
are decreased with a low fat diet compared to a high fat diet
(Brinkworth et al., 2009), while from different mouse studies it
has been concluded that, the shift in the composition of micro-
biota for different fat diets is not related to the host phenotype
(Zhang et al., 2012).

Metagenomics studies based on ethnicity have shown some
evidence about the association of the long-term diet and the
composition of bacteria in the gut. The studies of fecal samples
of European adults are clustered together with American adults,
while Malawians and African are separated from them and clus-
tered together (Yatsunenko et al., 2012). Their diet information
also indicated the separation between the groups since African
and Malawians diet is rich on plant polysaccharide whereas Amer-
ican and European diet is rich on proteins. Another study on fecal
samples of rural African and urban Italian children showed signif-
icant differences in the abundance of Bacteroidetes that consume
proteins (De Filippo et al., 2010). This diversity was ascribed to
the differences in the micronutrients contents of the African and
Italian diet.

Based on different diet composition, it is possible to design
non-viable food components that modulate the composition of
gut microbiota resulting in benefits for the host metabolism
(Scott et al., 2013). Previous studies have shown the effect of dif-
ferent prebiotics on the human gut microbiota (Kleessen et al.,

1997). The prebiotic chicory inulin resulted in a decrease of
Enterobacteria and increase of Bifidobacteria species in the gut
microbiota of elderly human (Kleessen et al., 1997; Biagi et al.,
2012). In another study, using the galacto-oligosaccharides as a
prebiotic caused an increase in Bifidobacteria species and increased
the level of butyrate (Walton et al., 2012). The design of the
prebiotics can be improved through the use of metabolic mod-
eling that accounts for the interactions between the host and
gut microbiota. Gathering the information about substrates uti-
lized by bacteria and host tissues may enable the testing of
different dietary hypotheses and the rational design of prebi-
otics.

CONCLUDING REMARKS
As discussed above, it is feasible to understand the whole body
metabolism by studying the interactions between different cell
types/tissues and microbial GEMs. Genome-scale modeling may
facilitate the comprehensive analysis of clinical data and assist
in unraveling the mechanisms behind different complex disor-
ders. But to reach this goal, it is necessary to develop new
mathematical formulations, algorithms, and integrate these tools
with constraint-based modeling. Systems-level or global objective
functions should also be formulated for predicting the phe-
notype of the gut ecosystem. This has been modeled for the
simplified community that is comprised of three microorgan-
isms (Zomorrodi and Maranas, 2012). The dissipation of energy
can be applied as a global objective function to model the
whole body metabolism since the growth cannot be used as an
objective function for most human cell types. The minimiza-
tion of the energy dissipation for host, maximizing growth for
microbe can be considered as an individual objective functions
in metabolic modeling. By defining a global objective function
based on localized metabolic interactomes of these individuals,
it may be make it possible to quantitatively describe the inter-
actions and eventually predict the overall flux distributions in
the human body. This approach may assist in generating new
hypotheses about the contribution of single or a community of
microbes to the overall human metabolism. Applying the high-
throughput technologies on the collected blood, stool, urine
samples and detecting significant changes in the metabolite lev-
els may facilitate improvement of the functional accuracy of
the reconstructed models. This concept can also be expanded
for the generation of the personalized GEMs for tissue/cell
types and microbiota, which may contribute to the develop-
ment of personalized medicine (Hood et al., 2012; Nielsen, 2012;
Agren et al., 2014). Conceptualization of personalized GEMs may
enable us to reduce the time and cost of clinical studies and
assist to predict targets and potential treatment for each specific
patient.
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