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INTRODUCTION

Differences in gene

transcriptional

We evaluated the relevance of the BovineHD Illumina SNP chip with respect to genes
involved in epigenetic processes. Genotypes for 729,068 SNP on two tropical cattle
breeds of Australia were used: Brahman (n = 2112) and Tropical Composite (n = 2550).
We used data mining approaches to compile a list of bovine protein-coding genes involved
in epigenetic processes. These genes represent 9 functional categories that contain
between one (histone demethylases) and 99 (chromatin remodeling factors) genes. A
total of 3091 SNP mapped to positions within 3000 bp of the 193 coding regions of
those genes, including 113 SNP in transcribed regions, 2738 in intronic regions and 240
in up- or down-stream regions. For all these SNP categories, we observed differences in
the allelic frequencies between Brahman and Tropical Composite cattle. These differences
were larger than those observed for the entire set of 729,068 SNP (P = 1.79 x 1072). A
multidimensional scaling analysis using only the 113 SNP in transcribed regions allowed
for the separation of the two populations and this separation was comparable to the
one obtained with a random set of 113 SNP (Principal Component 1 r? > 0.84). To
further characterize the differences between the breeds we defined a gene-differentiation
metric based on the average genotypic frequencies of SNP connected to each gene and
compared both cattle populations. The 10% most differentiated genes were distributed
across 10 chromosomes, with significant (P < 0.05) enrichment on BTA 3 and 10. The
10% most conserved genes were located in 12 chromosomes. We conclude that there
is variation between cattle populations in genes connected to epigenetic processes, and
this variation can be used to differentiate cattle breeds. More research is needed to fully
characterize the use of these SNP and its potential as means to further our understanding
of biological variation and epigenetic processes.
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acetyl groups to DNA or histone proteins [DNA methyltrans-

regulation between ferases (DNMT), histone methyltransferases (HMT) and histone

individuals are likely to contribute to quantitative variation
in important livestock production traits such as growth,
metabolic efficiency, immunological competence, and repro-
ductive performance. A recent example is the mutation on the
Bos taurus autosome (BTA) 14 that regulates the expression of
various genes in the PLAGI region and is associated with many
production traits as well as reproductive phenotypes (Karim
etal, 2011; Fortes et al., 2013). Epigenetic modifications of DNA
and of histone proteins contribute to the regulation of tissue- and
developmental stage-specific gene expression.

Variations in transcriptional activity have been linked to a
number of epigenetic processes including: differences in DNA
methylation (Doerfler, 1983), the incorporation of histone vari-
ants into chromatin (Jin et al., 2009), histone modifications
such as methylation and acetylation (Barth and Imhof, 2010),
and Polycomb Group (PcG) proteins (Leeb et al., 2010). The
epigenetic machinery that underpins these dynamic changes
includes enzymes that catalyze addition or removal of methyl or

acetyltransferases (HAT)], and chromatin remodeling factors.

In an example with promising relevance to livestock produc-
tivity, Lomniczi et al. (2013) have shown that the timing of
female puberty in rats is driven by transcriptional activation of
the KISSI promoter in the hypothalamus in a complex inter-
play of several components of the epigenetic machinery: DNA
methylation, PcG proteins, and histone modifications. It is plau-
sible that fertility traits in livestock may be subject to the same or
similar regulatory mechanisms. Individual or breed differences in
the epigenetic machinery could bring about changes that could,
for example manifest themselves in an earlier age at puberty.
Regulatory transcription factors associated with cattle puberty
and heifer pregnancy have been proposed previously (Fortes et al.,
2010, 2011, 2012).

DNA variations can affect regulatory elements of gene
expression (Dunham et al., 2012). Adding complexity to this
problem, recently DNA variations have been implicated in dif-
ferential pattern of gene expression via epigenetic modulation
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(Furey and Sethupathy, 2013). Allele-specific activity of his-
tone post-translational modifications affects transcriptional and
chromatin activities (Kilpinen et al., 2013). Polymorphisms in
transcription factor binding sites are, in some cases, causally
responsible for alteration in histone marking (Kasowski et al.,
2013; McVicker et al., 2013). Importantly, these alterations are
largely transmitted from parent to offspring.

Cancer researchers have provided a number of recent exam-
ples where altered epigenetic patterns can be linked back to
genetic alterations in the epigenetic machinery itself (Miremadi
et al., 2007; Weichenhan and Plass, 2013). While these exam-
ples describe mutations that result in disease, it is plausible that
subtle changes in the epigenetic machinery that affect quanti-
ties, binding affinities or target specificities of one of the elements
could lead to slight shifts in gene regulations that can manifest as
quantitative trait differences.

We used two populations of Bos indicus influenced cattle to
investigate the genetic variability within epigenetic genes. We
focused on this type of beef cattle because they are the most
frequent in tropical and sub-tropical regions, corresponding to
the largest proportion of beef production in the world (Herrero
et al., 2013). Bos indicus cattle are much more tolerant to the
tropical environment than are Bos taurus cattle, and Bos indi-
cus X Bos taurus crosses often present at intermediate tolerance
levels. However, once cattle crosses are bred under tropical con-
ditions, natural and human-oriented selection starts to shape the
herd speciation. Using these contrasting populations we aimed to
explore if (1) there are SNP variations linked to genes belong-
ing to epigenetic processes in a commercially available genotyping
platform, if (2) the allelic frequency of these SNP varies between
tropically adapted cattle breeds, and if (3) we could use these SNP
to characterize the genetic diversity of cattle populations.

MATERIALS AND METHODS

CATTLE AND GENOTYPES

The cattle were sourced from two populations, a Bos indicus
(Brahman, n = 2112) and a cross-bred Bos taurus x Bos indi-
cus (Tropical Composite, n = 2550) (Barwick et al., 2009).

These animals were genotyped using either the BovineHD
(Ilumina, San Diego, California; http://res.illumina.com/
documents/products/datasheets/datasheet_bovinehd.pdf) or the
BovineSNP50 (Illumina, San Diego, California) (Matukumalli
et al., 2009). Genotypes acquired with the lower density panel
were imputed to higher density using Beagle (Browning and
Browning, 2011). The imputation process and quality control
applied to genotypes were described previously (Bolormaa
et al, 2013). In brief, imputations were done within breed
applying 30 iterations of Beagle using related individuals
that were genotyped using the BovineHD as reference. SNP
and individuals were filtered using stringent quality control
parameters. All SNP were mapped to the UMD 3.1 assembly
of the bovine genome sequence up-dated from Zimin et al. (2009)
(http://www.cbcb.umd.edu/research/bos_taurus_assembly.shtml).

GENES AND TRANSCRIPTS INVOLVED IN EPIGENETIC PROCESSES
Data mining based on literature information and publicly
available databases served to compile a list of 217 bovine
protein-coding genes (and their transcript variants) involved in
9 categories of epigenetic processes (Esteller, 2006; Miremadi
et al., 2007; Lomniczi et al., 2013; http://www.bioguo.org/
AnimalTFDB/index.php). Similar data mining could be done for
other species. The gene list used in this study is not intended to
be comprehensive, but representative of the main biological pro-
cesses with epigenetic consequences (Table 1). Where a gene had
more than one transcript described, Ensemble tags (http://www.
ensembl.org) were used as unique identifiers. The resulting list of
genes and transcripts was the target for SNP selection.

SNP SELECTION AND ANNOTATION

We used four sources of information for SNP selection and anno-
tation: (1) the annotation file of coding and non-coding tran-
scripts (ftp://ftp.ensembl.org/pub/release-73/gtf/bos_taurus), (2)
the list of targeted genes and transcripts, (3) the BovineHD SNP
list, and (4) the Variant Effect Predictor (http://asia.ensembl.
org/info/docs/tools/vep/index.html, Bos taurus release 73), all
mapped using the bovine UMD 3.1 assembly as reference

Table 1 | Epigenetic categories, number of transcripts tagged, and number of SNP tagging these transcripts.

Epigenetic category Gene function

Number of transcripts tagged Number of SNP tagging

transcripts*

CAT1 CAT2 CAT3
a DNA methyltransferases (DNMT) 2 33 6
b Methyl-binding domain proteins (MBD) 6 2 43 8
c Histone acetyltransferases (HAT) M 8 164 13
d Histone deacetylases (HDAC) 8 2 318 9
e Histone methyltransferases (HMT) 32 26 637 37
f Histone demethylase 1 0 12 2
g Histones 30 3 18 43
h Polycomb-group proteins 3 0 14 6
i Chromatin-remodeling factors 99 70 1499 116
TOTAL 193 113 2738 240

*CAT1, SNP at transcribed regions (exon, splice region, 3'- and 5'-UTR); CAT2, SNP at transcripts intron; CAT3, SNP down- or up-stream of a transcript (up to 3Kb).
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sequence. First we identified all SNP from the BovineHD
(Illumina, San Diego) located at targeted transcripts or within
3Kb up- or downstream. Then, using the Variant Effect Predictor,
we defined each SNP position relative to its target transcript
and classify them in three categories accordingly: CAT1—
corresponding to SNP mapped to exons, splice site, 3’ and 5’
UTR (transcribed SNP); CAT2—corresponding to intronic SNP;
and CAT3—for SNP located up- or down-stream to selected
transcripts.

POPULATION AND GENE DIVERSITY

Allelic and genotypic frequencies for all selected SNP (refer-
ence allele A) were calculated for each breed using PLINK v1.07
(Purcell et al., 2007). To further characterize the genetic dif-
ferences between breeds using the target genes we applied a
gene-differentiation metric derived from the Euclidean distance
according to the following formulae:

POsp POTC>2 " <p1BB _ Pch)2
100 100 100 100
+<PZ£ _ PZTC)2
100 100

Where p0, pl, and p2 are the average genotypic frequencies for
all SNP within each gene (homozygous A, heterozygous and
homozygous B) within each breed, and BB and TC are the
Brahman and Tropical Composite genotypic frequencies, respec-
tively. The hypergeometric test was applied to evaluate the signifi-
cance of the distributions of individual allelic frequency categories
and also to gene-differentiation metric. The hypergeometric test
was set as the number of occurrences in one domain vs. the num-
ber of occurrences in another domain, e.g., number of SNP with
allelic frequency difference between BB and TC > 0.3 within all
SNP vs. the same situation within epigenetic SNP. The popula-
tion differentiation was also evaluated using multidimensional
scaling analyses, implemented in PLINK, using only the SNP at
transcribed regions (CAT1, n = 113), and comparing its result

to the average value obtain after 10 runs of 113 transcribed SNP
randomly selected from the entire HD dataset.

gene — differentiation = (

RESULTS AND DISCUSSION

We have evaluated the possibility of using SNP from the
BovineHD panel to tag genes and transcripts involved in
epigenetic processes. Out of the 729,068 SNP available, 3091
SNP could be linked to an epigenetic gene. All autosomes and
the X chromosome were represented by a varying number of
SNP per chromosome, from n = 17 (BTA24) to n = 364 (BTA3)
(Figure 1). The SNP were split in 3 categories according to their
position in relation to the transcript tagged. The SNP in CAT1
were located in an exon, or the splice region, or 3'- and 5'-UTR
(n =113). The SNP in CAT2 were intronic (n = 2738) and in
CAT3 were down- or up-stream of a transcript (up to 3Kb)
(n = 240). In order to define unique pairs of transcripts and
SNP, only the closest transcript was mapped against each SNP.
Therefore, if two transcripts mapped close together, and one of
them had an intronic SNP and the next SNP was more than

3 Kb distant from the coding sequence, only the transcript with
an intronic SNP was tagged. This step might have reduced the
number of genes and transcripts that were tagged, but was needed
to define unique SNP-gene pairs. As a result, 193 members of
the target epigenetic transcripts contained SNP from BovineHD
at or close by their coding sequence (Supplementary Table 1).
These were classified into nine categories related to the biological
processes in which they are involved (Table 1). The chromatin-
remodeling factor category was the largest, with 99 transcripts,
while the histone demethylase category was represented by just
one transcript (n = 1). All main biological processes with poten-
tial direct epigenetic consequence were represented by at least
one gene and 14 SNP. Hence, the BovineHD panel can be used
to retrieve information regarding genes related to epigenetic
processes.

Allelic frequency differences between Brahman and Tropical
Composites were observed for all gene- and SNP-categories across
the genome. The number of SNP with allelic frequency dif-
ferences > 0.3 within the selected SNP were larger than those
observed for the entire dataset (P = 1.79 x 107°). Moreover,
breaking the analyses by epigenetic SNP-categories, all had sig-
nificant (P < 0.05) accumulation of SNP with allelic frequency
difference > 0.3 between breeds, with higher significance for
the CAT1 (transcribed SNP, P = 0.005) and CAT2 (intronic,
P =0.001). For gene-SNP categories that had more than 10
SNP frequencies were also calculated. These averages carried
large standard deviation. Nevertheless, the top 3 averages of
allelic frequency differences were for intronic SNP (CAT2) at
methyl-binding domain proteins, polycomb-group proteins and
transcribed SNP (CAT1) at Chromatin-remodeling factors. In
contrast, the top 3 averages for allelic similarity were for intronic
SNP (CAT?2) at histones, histone demethylases, histone deacety-
lases. Overall, there was a significant accumulation of SNP with
divergent allelic frequency between the studied cattle breeds,
and often these SNP were located in potentially functional sites
within the genes involved in epigenetic processes. It has been
described that several epigenetic regulatory elements are evolu-
tionary conserved across species (Xiao et al., 2012; Long et al,,
2013), nevertheless we observed large variability between these
two populations, which are very closely related, in evolution-
ary terms. The markers selected here per se may not necessarily
be functionally active. However, their genome location and vari-
ability defines potential power for identification of variability on
regulatory elements linked to functional DNA mutation.

When the whole dataset was compared to the epigenetic SNP,
the distribution of allele frequencies in Brahman did not dif-
fer (Figure2). However, in the Tropical Composite, there was
an observable difference in which the epigenetic SNP dataset
had a lower density at intermediate allelic frequencies, tending
to be closer to the Brahman frequencies than non-epigenetic
SNP. It seems that some “Brahman alleles” of some epigenetic
SNP have been potentially selected within Tropical Composite.
The Brahman cattle is mostly of Bos indicus origin while the
Tropical Composite presents variable proportions of Bos indicus
and Bos taurus ancestry (Porto-Neto et al., 2013). Considering
that both types of Bos have many highly divergent phenotypes
including climate adaptation, one could speculate that some of
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FIGURE 2 | Density plot of allelic frequencies for all SNP and
epigenetic SNP in Brahman and Tropical Composite.

the markers with allelic frequency differences could be associ-
ated to these diverged phenotypes, and going a step further,
could postulate that DNA variants linked to epigenetic process
are potentially associated to environmental adaptation. Further
research, including SNP association testing, is needed to support
such speculations.

Multidimensional scaling calculated using only transcribed
SNP (CAT1, n = 113) defined clear separation between breeds.

The breeds clustering resulting from this analysis was compara-
ble to that of other sets of randomly selected SNP (n = 113).
The correlation of Component 1 between CAT1 and the average
of 10 runs of randomly selected SNP being r* = 0.91. There is
enough variability between both cattle breeds to define indepen-
dent clusters in a multidimensional analyses using 113 SNP and
this variation is also extended to epigenetic-related SNP.

The variability observed in allelic frequency was also echoed
in the gene-differentiation analysis. Within transcript, the com-
parison of averaged genotypic frequencies in each breed clearly
showed differences. The top 10% most differentiated genes were
distributed across 10 chromosomes, with significant (P = 0.05)
concentration on BTA3 and BTA10. On the other hand, the top
10% most conserved genes were distributed in 12 chromosomes
(Figure 3). Interestingly, some of the different splicing variants
or different transcripts of the same gene had highly diverged
gene-differentiation metric. For example, histone 4 has some
transcripts at lower, some at middle and some at the top of the dis-
tribution for gene-differentiation estimates. Genetic elements of
epigenetic processes are known to have redundancies and speci-
ficities in biological pathways (Comai, 2005; Haberland et al.,
2009). Here, the observed divergence between transcripts of the
same gene could characterize such redundancy that is an adap-
tive mechanism to temper the impact of specific gene variations
on vital epigenetic processes. On the other hand, this divergence
could demonstrate the plasticity of the genome in face of a diverse
environment.

DNA variants can alter epigenetic processes, and also assist
genomic mapping of epigenetic variance. Recently, the def-
inition of epigenetics as changes in gene activity without
changes in the DNA has been opened for re-consideration
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(Furey and Sethupathy, 2013). For example, it has been shown,
based on histone modifications, that DNA variants in regula-
tory regions are often linked to active/repressed stated of genes
(Kasowski et al., 2013), and that variations in transcription fac-
tors binding sites can mediate gene expression via its effect on
histone modifications (Kilpinen et al., 2013; McVicker et al,
2013). Here we show that there is variability on SNP linked
to epigenetic genes within cattle. This combined with the fact
that, at least some, epigenetic processes can be modulated by
DNA variants, opens new opportunities for further research.
Genome-wide association studies in this context are still to
be seen.

Epigenetics is a very dynamic field of research and the list of
genes and transcripts involved with epigenetic processes is grow-
ing. The ongoing gene annotation process means that the list of
genes considered here should be considered only as a starting
point. The analysis presented here are intended as a framework for
mining epigenetic information from SNP panels and in any new
analysis the list of target genes and transcripts should be revisited
to include the most recent annotation as well as the most recent
assembly of the investigated genome.

We conclude that there is variation on SNP connected to epige-
netic processes between cattle breeds. This variation can be used
to differentiate cattle breeds. Further investigation would con-
firm if SNP located near or in genes of the epigenetic machinery
are useful to “tag” biological variation associated to epigenetic
processes.
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