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Genome-wide association studies (GWAS) are widely applied to identify susceptibility loci
for a variety of diseases using genotyping arrays that interrogate known polymorphisms
throughout the genome. A particular strength of GWAS is that it is unbiased with respect
to specific genomic elements (e.g., coding or regulatory regions of genes), and it has
revealed important associations that would have never been suspected based on prior
knowledge or assumptions. To date, the discovered SNPs associated with complex human
traits tend to have small effect sizes, requiring very large sample sizes to achieve robust
statistical power. To address these issues, a number of efficient strategies have emerged
for conducting GWAS, including combining study results across multiple studies using
meta-analysis, collecting cases through electronic health records, and using samples
collected from other studies as controls that have already been genotyped and made
publicly available (e.g., through deposition of de-identified data into dbGaP or EGA).
In certain scenarios, it may be attractive to use already genotyped controls and divert
resources to standardized collection, phenotyping, and genotyping of cases only. This
strategy, however, requires that careful attention be paid to the choice of “public controls”
and to the comparability of genetic data between cases and the public controls to
ensure that any allele frequency differences observed between groups is attributable to
locus-specific effects rather than to a systematic bias due to poor matching (population
stratification) or differential genotype calling (batch effects). The goal of this paper is to
describe some of the potential pitfalls in using previously genotyped control data. We
focus on considerations related to the choice of control groups, the use of different
genotyping platforms, and approaches to deal with population stratification when cases
and controls are genotyped across different platforms.
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INTRODUCTION
Genome-wide association studies (GWAS) have been widely used
in recent years as a tool for identifying susceptibility loci for a
number of complex human traits and, in particular, multifactorial
diseases. Indeed, the NHGRI-maintained Catalog of Published
Genome-Wide Association Studies includes 1788 publications
and 12,329 SNP (single nucleotide polymorphism)-trait asso-
ciations as of 1/10/2013 (http://www.genome.gov/gwastudies/)
(Hindorff et al., 2009). With few exceptions, the associated loci

have small effect sizes, and large sample sizes were required to
detect them.

One popular approach to increase sample size and power
for GWAS has been to combine information (either individual-
level data or summary statistics) across multiple studies through
meta-analysis (Panagiotou et al., 2013). As more and more geno-
type data are being made publicly available through various
databases such as the database of Genotypes and Phenotypes
(dbGaP) or the European Genome-phenome Archive (EGA), an
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alternative approach to increase the statistical power of a study
at no extra cost is to devote available clinical and genotyping
resources almost entirely to cases and use publicly available data
from already genotyped samples as controls. Using available con-
trols may be particularly attractive for registry-based studies from
which a large number of cases can be rapidly identified. While
this strategy has the obvious benefit of allocating scarce resources
toward genotyping a larger number of cases, it can also introduce
potential bias into the experimental design leading to spurious
associations if not applied carefully. For example, control popu-
lations must be comparable to cases in terms of ancestry so that
any allele frequency differences observed between cases and con-
trols can be attributed to disease susceptibility loci and not just to
differences in ancestral background between the two populations
(i.e., population stratification). Ascertainment of the population
to be used as controls is also critical. For example, a study of
low-density lipoprotein (LDL) concentration could recruit par-
ticipants at high LDL (a risk factor for stroke) as well as low LDL
(not a risk factor); thus, inclusion of all participants as controls
could introduce a different bias in the comparison with cases.
Equally important is the requirement that genotyping quality and
allele calls be comparable between the two groups. Even minor
differences in genotype calling, possibly attributable to a labora-
tory or technician bias, may translate into subtle but systematic
differences in allele frequencies between cases and controls that
can result in false positive associations.

The goal of this paper is to describe some of the potential
pitfalls in using previously genotyped control data. To provide
context for these discussions we present as an example the Stroke
Genetics Network (SiGN), an international collaboration initi-
ated to carry out a GWAS of ischemic stroke and stroke subtypes
that utilizes site-collected cases and already genotyped controls
for nearly all sites. We focus on considerations related to the
choice of control groups, the use of different genotyping plat-
forms, and approaches to deal with population stratification
when cases and controls are genotyped on different platforms.

OVERVIEW OF THE STROKE GENETICS NETWORK (SiGN)
The SiGN was initiated in 2009 to carry out a GWAS of ischemic
stroke and stroke subtypes using previously collected DNA sam-
ples from multiple centers throughout the US and Europe. These
centers included 19 sites contributing 9789 cases to be genotyped.
Because of the well-recognized heterogeneity within ischemic
stroke, a key feature of SiGN was its focus on standardizing the
assignment of stroke subtypes (presumed etiology) for the pur-
pose of performing subtype-specific association analyses. In order
to increase the sample size, the decision was made to channel
resources into genotyping as many cases as possible and use pub-
licly available control genotypic data wherever possible. A detailed
description of the design of SiGN has been previously published,
including collection of stroke cases at each study site and the stan-
dardizing procedures for assigning stroke subtype (Meschia et al.,
2013).

Briefly, stroke research centers with carefully phenotyped
ischemic stroke cases were invited to join SiGN and have their
stroke cases genotyped using an existing GWAS array. The three
requirements for joining SiGN were (1) that the stroke research

center have at least 100 cases with DNA immediately available
for genotyping, (2) that participating sites must have informed
consent on the participants to permit genotypes to be deposited
into dbGaP, and (3) that sufficient imaging and additional clini-
cal information had been collected to allow assignment of stroke
subtype by Causative Classification of Stroke (CCS) methodol-
ogy (Ay et al., 2007). CCS phenotyping was performed under a
standardized protocol using a web-based system (Meschia et al.,
2013).

As indicated in Table 1, the 19 participating sites contributed
a total of 11,033 samples for genotyping. With the exception of
two sites (Leuven, Belgium and Krakow, Poland) all sites pro-
vided cases only. The decision was made to genotype both cases
and controls from Leuven and Krakow because of the difficulty in
locating previously genotyped controls from those areas.

Genotyping of SiGN cases was performed at the Center
for Inherited Disease Research (CIDR) in Baltimore, Maryland,
using the Illumina HumanOmni 5M Exome genotyping array.
This array consists of a total of 4,511,703 variants, including
1,084,398 (24%) “rs” (refSNP) SNPs, 3,178,220 (70%) “kgp”
(1000 Genomes) SNPs, 231,910 (5%) “exm” (exome) SNPs, and
17,175 (0.4%) other SNPs.

IMPROVEMENT IN POWER IN SiGN BY PREFERENTIALLY
GENOTYPING CASES
There may be multiple reasons to consider utilizing already geno-
typed control groups for a genetic association study. Foremost
among these is the increase in sample size of cases for the same
genotyping budget to allow detection of variants with smaller
effect sizes, assuming a sufficient number of genotyped controls.
Within the context of SiGN, we contrasted the power to detect
stroke-associated loci using the strategy of genotyping cases only
(with already genotyped controls) vs. genotyping a comparable
number of cases and controls at each site. The results of these
analyses are shown in Figure 1 for a range of allele frequencies and
an alpha level of p = 5 × 10−8. Sample size estimates are guided
by the SiGN genotyping budget of ∼11,000 subjects. Power is
shown for three sets of results: (1) genotyping 11,000 cases and
utilizing 27,000 previously genotyped controls (as per SiGN); (2)
genotyping 5500 cases and 5500 controls and utilizing no pre-
viously genotyped controls; and (3) genotyping 5500 cases and
5500 controls but also utilizing an additional 21,500 previously
genotyped controls for a total of 27,000. Shown in Figure 1 are the
minimal odds ratios detectable at 80% power at a genome-wide
significance alpha level of p = 5 × 10−8.

As indicated in Figure 1, substantially lower odds ratios can
be detected at 80% for sample 1, which includes 11,000 geno-
typed cases and 27,000 previously genotyped controls, vs. sample
2, which includes only 5500 genotyped cases and 5500 genotyped
controls. While much of the gain in power seen in sample 1 comes
from the increased number of controls, sample 3 shows that there
remains a sizable increase in power in sample 1 that is attributable
to genotyping more cases even when the same number of con-
trols is used (e.g., detectable odds ratios of 1.11–1.18 across a
range of minor allele frequencies in sample 1 vs. 1.14–1.23 in
sample 3). One caveat about applying power calculations to data
that includes publicly available controls is that if controls have
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Table 1 | Ischemic stroke cases genotyped as part of the SiGN study and previously genotyped control groups, according to study site*.

Site Location Genotype platform Cases (n) Controls (n)

CASES GENOTYPED THROUGH SiGN (US SITES)

GASROS Boston, USA Illumina HumanOmni 5M Exome 470
GCNKSS Greater Cincinnati region, USA Illumina HumanOmni 5M Exome 499
ISGS Multi-center, USA Illumina HumanOmni 5M Exome 187
MCISS New Jersey, USA Illumina HumanOmni 5M Exome 630
MIAMISR Miami, USA Illumina HumanOmni 5M Exome 299
NHS National sample, USA Illumina HumanOmni 5M Exome 316
NOMAS(S) Manhattan, USA Illumina HumanOmni 5M Exome 363
REGARDS National sample, USA Illumina HumanOmni 5M Exome 311
SPS3 Multi-center; USA; Latin America, Spain Illumina HumanOmni 5M Exome 962
SWISS Multi-center, USA Illumina HumanOmni 5M Exome 271
WHI National sample, USA Illumina HumanOmni 5M Exome 458
WUSTL St. Louis, USA Illumina HumanOmni 5M Exome 455
CASES GENOTYPED THROUGH SiGN (INTERNATIONAL SITES)

BASICMAR Barcelona, Spain Illumina HumanOmni 5M Exome 930
BRAINS London, England Illumina HumanOmni 5M Exome 114
GRAZ Graz, Austria Illumina HumanOmni 5M Exome 639
KRAKOW Krakow, Poland Illumina HumanOmni 5M Exome 952 776
LEUVEN Leuven, Belgium Illumina HumanOmni 5M Exome 482 468
LUND Lund, Sweden Illumina HumanOmni 5M Exome 651
SAHLSIS Gothenburg, Sweden Illumina HumanOmni 5M Exome 800
PREVIOUSLY GENOTYPED CONTROL GROUPS

HABC Multi-center, USA Illumina 1M-Duo 2802
HRS Multi-center, USA Illumina HumanOmni 2.5M 12507
OAI Multi-center, USA Illumina HumanOmni 2.5M 4011
ADHD Barcelona, Spain Illumina HumanOmni 1M 435
GRAZ Graz, Austria Illumina 610 829
INMA Barcelona, Spain Illumina HumanOmni 1M 1061
KORA Southern Germany Illumina Human 550 820
WTCCC United Kingdom Illumina 660 5186

*SiGN cases genotyped at the Center for Inherited Diseases (CIDR) on the Illumina HumanOmni 5M Exome array.

not been screened for the absence of disease, there is the poten-
tial for misclassification and a subsequent loss in power. Potential
misclassification was not taken into account in the power calcula-
tions above. We further note that such misclassification bias will
be more pronounced for common diseases. The power calcula-
tions provided also assume equivalent type 1 error rates across the
three samples—i.e., no inflation of type 1 error rates introduced
by use of publicly available controls.

CHOICE OF ALREADY GENOTYPED CONTROL GROUPS
An important consideration in the design of case-control stud-
ies is that cases and controls come from comparable underlying
populations so that any differences observed between the groups
can be attributed to the exposure under study and not to other
unmeasured factors that might differ between the groups (i.e.,
confounding). Compared to other types of epidemiologic studies,
however, genetic association studies are well-suited for utilizing
already available control groups because of the limited role of
confounding in genetic epidemiology studies. When germ-line
variation in DNA sequence is the measured exposure of interest,
confounding is limited to the presence of population stratifica-
tion, that is, the ancestral differences between cases and controls.

Choosing already genotyped controls from a similar ancestral
background as the cases is thus highly important. Fortunately,
the high density of coverage of modern SNP platforms makes
this a feature that can be empirically investigated from the data
themselves without making any assumptions.

The multicenter design of SiGN that included cases with
diverse ancestral origins required the inclusion of multiple con-
trol groups. In addition to the samples included for GWAS
genotyping through CIDR, SiGN also included cases previously
genotyped on multiple genotyping arrays and platforms (see
Table 1). To reduce variability between cases and controls that
could be introduced solely from artifacts related to genotyp-
ing platform, the availability of potential controls was limited to
those genotyped on a platform believed to be compatible with
the Illumina HumanOmni 5M Exome genotyping array used
to genotype the cases. This decision limited potential controls
groups to sets that had previously been genotyped on a com-
patible Illumina array and were available to the Network upon
request.

Three different multicenter studies were identified for
SiGN to serve as controls for the cases from the US sites:
The Health and Retirement Study (Juster and Suzman, 1995)
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FIGURE 1 | Minimum odds ratio to detect SNP associations at 80%

power for three different sample sets. (1) 11,000 cases and 27,000
previously genotyped controls; (2) 5500 cases and 5500 controls; and (3)
5500 cases and 27,000 previously genotyped controls∗.

(HRS; phs000428.v1.p1), The Osteoarthritis Initiative (Lester,
2008) (OAI; http://www.oai.ucsf.edu/datarelease/About.asp),
and HealthABC (Yaffe et al., 2009) (HABC; phs000169.v1.p1).
These studies were selected because of their large sizes (12,500,
4000, and 2800, for HRS, OAI, and HABC, respectively), their
geographic diversity within the US, and the dense genotyping
available on each (Illumina HumanOmni 2.5M array in HRS and
OAI and Illumina Human 1M array for HABC). All three studies
included substantial representation of European Caucasians and
African Americans, while HRS also included substantial numbers
of Hispanics.

For each international (non-US) site, studies with previously
genotyped controls were identified from the same ancestral back-
ground. For two sites (Leuven and Krakow), previously geno-
typed ancestry-matched control groups could not be identified,
and so controls at these sites were genotyped alongside SiGN
cases. For other sites (e.g., Barcelona), multiple control groups
were identified to allow cases to be matched to suitable controls
at a later stage, where we initially included as many genotyped
controls as possible to improve power.

AVAILABILITY OF DISEASE RISK FACTORS AND OTHER
COVARIATES
One drawback of using an already available control group is that
that the clinical and covariate data may be limited or even absent
altogether. This issue is of particular importance when effect
decomposition is of interest, for example, whether a SNP acts
through a modifiable risk factors such as smoking, or interacts
with such a factor (Vanderweele and Hernan, 2012). Additionally,
utilizing properly selected publically available controls can pro-
duce unbiased estimates of total genetic effects, even in the
presence of gene by environment interactions, but these estimates
may not be generalizable to populations with drastically different
covariate distributions. If covariate information is missing in the

controls, extending research findings to other populations may
be limited. This limitation is mitigated in the absence of gene
by environment interaction or the low prevalence of the genetic
variant.

A second potential drawback of using already available con-
trols is that misclassification bias can result if controls are not
“disease free.” In studying an aging-related disease such as stroke,
one may want to choose already genotyped controls that are
disease-free and older so that genetically susceptible individuals
are under-represented in the control pool. To the extent that phe-
notypic characterization is limited and disease status unknown,
the use of publicly available controls may be better suited for
studies of rare/uncommon diseases for which the likelihood that
controls are affected is small. The prevalence of stroke in the adult
population is approximately 3–4% (Go et al., 2014). We note that
misclassification bias only reduces power and does not influence
type 1 error (false positives).

COMPARABILITY OF GENOTYPING PLATFORMS BETWEEN
CASES AND CONTROLS
In case-control studies it is critical to obtain measurements from
cases and controls in comparable fashion to ensure that any mea-
surement differences between groups are not due to artifacts in
measurement procedures. In the case of genetic association stud-
ies, spurious differences between cases and controls can occur by
virtue of systematic differences in sample processing, genotype
assays (choice of genotyping platform), and genotype calling pro-
cedures. Potential biases due to different genotyping procedures
constitute perhaps the biggest challenge for genetic association
studies that utilize previously genotyped controls. This poten-
tial source of bias can be minimized by choosing control groups
that have been previously genotyped on the same, or a highly
compatible, platform as the one used for cases.

As additional quality control, it may be useful to genotype a
small number of previously genotyped individuals alongside the
cases to evaluate genotype discordance across different platforms.
SiGN cases are genotyped using the Illumina HumanOmni 5 M
Exome genotyping array, but controls had previously been geno-
typed on different arrays, primarily the Illumina Omni 1 M and
the Illumina Omni 2.5 M. To evaluate genotyping quality between
these platforms, DNA from 30 previously genotyped subjects
were identified from five of the control populations (HRS, OAI,
INMA GRAZ, and LUND) and then re-genotyped at CIDR along-
side the cases so that genotype calls from the same sample could
be compared across the two arrays. Genotype concordance rates
were calculated across each set of 30 samples and all SNPs hav-
ing one or more discordant genotypes (n = 17, 401 SNPs) were
flagged as potentially problematic and excluded from subsequent
imputation and case-control analysis. The effectiveness of this fil-
ter can be evaluated empirically by assessing type 1 error rates in
association analysis among these SNPs.

POST-GENOTYPING QUALITY CONTROL PROCEDURES TO
ENHANCE GENOTYPE COMPARABILITY BETWEEN CASES
AND CONTROLS
Differential genotyping quality between newly genotyped cases
and previously genotyped controls is a primary source of spurious
results in GWAS. Thorough quality control analysis of the case
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and control data sets is therefore critical. The first step is to
identify poor quality samples in cases and controls and remove
these from further analyses. In SiGN preference was given to
control groups genotyped and cleaned by the same labs that pro-
cessed case genotype data. Genotyping of cases was performed
on the Illumina HumanOmni5Exome-4v1 array at CIDR, which
also performed initial quality control (QC), including manual
review and, as needed, manual re-clustering of SNPs selected as
potentially problematic (such as many low minor allele frequency
exome SNPs). Additional QC was performed at the University
of Washington using methods described by Laurie et al. (2010)
in general and by Meschia et al. (2013) specifically for SiGN.
Among ∼11,000 subjects genotyped, 8 were excluded due to
unresolved identity issues (e.g., sex mismatches and unexpected
relatedness).

Using the KING-robust method (Manichaikul et al., 2010)
to analyze cryptic relatedness revealed that 99% of the sub-
jects are mutually unrelated. We defined a related pair of sub-
jects as connected by a kinship coefficient achieving the lower
limit of the 95% prediction interval for second-degree relative
pairs (KC > 0.088). Among 4.5 million SNPs assayed, 4.2%
were either failed by CIDR or flagged as potentially low qual-
ity. Starting with 4.3M non-monomorphic and unique SNPs,
110K were failed by CIDR (for various reasons, including
manual review of zCall-flagged SNPs), an additional 60K for
missing call rate ≥2%, an additional 5K for 3 or more dis-
cordant calls among 343 duplicate pairs, an additional 1.8K
for 2 or more Mendelian errors among 24 HapMap trios,
and an additional 2.5K for HWE p-value <0.0001 (in con-
trols only), resulting in 4.1M SNPs passing QC. The median
call rate was 99.9% and the error rate estimated from 343
pairs of sample duplicates was 2 × 10−5, indicating very high
quality data.

The QC procedures were applied to all SNPs regardless of
minor allele frequency, but standard quality metrics have less
power to detect problems with rare than with common variants.
A post-processing procedure has been proposed for modifying
GenomeStudio calls to improve accuracy of genotypes for rare
variants (Goldstein et al., 2012). CIDR used a modified version of
zCall to flag SNPs with potential problems as those with specific
differences in genotype calling between GenomeStudio and zCall.
Specifically, the CIDR QC process for low MAF SNPs includes
running zCall to identify SNPs where possible heterozygous clus-
ters were missed by GenCall (parameters T = 21 and I = 0.2).
SNPs with 4 or more possible new heterozygotes were manually
reviewed and manually re-called (or failed) as needed.

ASSESSMENT OF POPULATION STRATIFICATION,
IMPUTATION, AND DATA ANALYSIS STRATEGY
Identifying matching control groups from the same ancestral
background as cases is a necessary step to ensure case-control
comparability in GWAS studies. Analysis of population sub-
structure was particularly challenging in SiGN because of the
desirability in generating population substrata that were based
not only on ancestry but also on array content to minimize the
pairing of samples genotyped on very dense arrays (e.g., Illumina
HumanOmni 5M Exome) with samples genotyped on relatively
sparse (e.g., Illumina 610) arrays. The approach we took in SiGN
to accommodate these two competing strategies is summarized in
Figure 2. Our first step was to define four array groups (Illumina
610, Illumina 660, Illumina 1M, and Illumina 2.5/5M). Within
each array group, we then defined three different continental
groupings (Europe, Africa, and Admixed) using principal com-
ponents analysis (PCA) (Price et al., 2010), projecting onto the
HapMap 3 samples. Only “high-quality” SNPs were used for
these analyses, defined as those with extremely low missingness

FIGURE 2 | Flowchart of the proposed analysis by SiGN.
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Table 2 | Considerations when using already genotyped controls.

SELECTION OF CONTROLS:

• When possible, identify control sets that are from similar ethnic
ancestry and were genotyped on the same platform as the cases.

• Consider using multiple control groups, especially when cases and
controls are genotyped on different platforms and/or when the size of
available control groups is small.

• Cross-study duplicates: if possible, re-genotype a small number of
previously genotyped controls to allow evaluation of SNP concordance
rates across the two platforms.

POPULATION SUBSTRUCTURE, IMPUTATION, AND ASSOCIATION
ANALYSIS:

• Combine cases and previously genotyped controls together for
assessment of population substructure, using a subset of non-imputed
markers common to all samples (and after excluding SNPs found to be
discordant from analysis of cross-study duplicates).

• Impute genotypes of cases and controls within population substrata.

• For confirmation, it is prudent to replicate observed associations after
re-genotyping cases and control samples together.

(e.g., <0.1%) on all platforms, high frequency (e.g., >20%, as
these are easier to genotype than low-frequency SNPs), outside
of regions, such as the MHC or lactase (LCT) gene, that tend to
be highly diverse even across populations of similar ancestry, and
LD-pruned at an r2 of 0.2.

Once continental groupings were defined within array groups,
we then performed a second round of quality control analy-
ses within ancestry by array group strata to remove problematic
samples and SNPs, such as those samples or SNPs with high miss-
ingness rates or samples with inbreeding coefficients further than
3 SD from the mean of the sample distribution.

With the QCed set of samples, the next task was to combine
continental groupings across array groupings to investigate pop-
ulation stratification across the full study sample. To do this, we
started with a set of SNPs that were common across all samples
and arrays (n = 206, 476 SNPS) and selected high-quality sites
only (as described above). After this SNP selection, the remaining
50–60K SNPs (depending on continental group) were used for PC
analysis to check case-control clustering across all groups. Only 10
cases were missing matched controls and were removed from the
analysis.

Iterative logistic regression and evaluation of statistical infla-
tion (lambda) (Devlin and Roeder, 1999) will be necessary to
recognize the extent of false-positives in the data and remove
SNPs showing association to the trait due to systematic genotyp-
ing differences. Following identification of discrete case-control
strata with well-behaved association statistics, imputation will be
performed in continent-specific and array-specific groups. The
SiGN analysis plan is for case-control analysis for stroke and its
subtypes to be performed separately within each stratum using
logistic regression, and then merged across strata using standard
meta-analysis procedures.

SUMMARY
GWAS have been undeniably successful in identifying novel dis-
ease susceptibility loci (e.g., Billings and Florez, 2010; Teslovich
et al., 2010; Chasman et al., 2012). Nonetheless, results from

GWAS have also made clear that very large sample sizes are
required to detect trait-associated SNPs that have small effect
sizes. Large collections of cases suitable for genetic studies can
often be obtained by pooling cases from a variety of sources, such
as case reports, registries or large epidemiologic studies or, as
demonstrated more recently, through the use of electronic health
records (Ritchie et al., 2010). As we describe in this manuscript,
there can be immense efficiency achieved in power by devoting
genotyping resources to cases and using previously genotyped
controls.

Availability of large collections of previously genotyped con-
trols has been greatly facilitated by the decision of NIH that all
genotypes for GWAS studies funded by federal dollars be made
available for further research. In 2007 the tool dbGaP was intro-
duced to facilitate community-wide access to these data (Mailman
et al., 2007). It was this decision, the making available of publicly
funded genotyping data, that affords researchers the opportu-
nity to expand further scientific discoveries, as outlined here.
Genetic researchers are thus favorably positioned to take advan-
tage of this tremendous resource and are not as beholden to
the initial study design as other etiologic research. This benefit
does not come without a cost. We have outlined here, and sum-
marized in Table 2, some considerations researchers may wish
to consider as they design case-control studies using publicly
available data.
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