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Estimates from large scale genome sequencing studies indicate that each human carries up
to 20 genetic variants that are predicted to results in loss of function (LOF) of protein-coding
genes.While some are known disease-causing variants or common, tolerated, LOFs in non-
essential genes, the majority remain of unknown consequence. We explore the possibility
of using imputed GWAS data from large biorepositories such as the electronic medical
record and genomics (eMERGE) consortium to determine the effects of rare LOFs. Here,
we show that two hypocholesterolemia-associated LOF mutations in the PCSK9 gene
can be accurately imputed into large-scale GWAS datasets which raises the possibility of
assessing LOFs through genomics-linked medical records.
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INTRODUCTION
Complete loss of function (LOF) variants are defined as vari-
ants expected to correlate with complete LOF of affected tran-
scripts; i.e., nonsense mutations, splice site mutations, and
insertion/deletion (indel) variants that result in downstream pre-
mature stop codons, or larger deletions removing either the first
exon or more than 50% of the protein-coding sequence of the
affected transcript (MacArthur et al., 2012). Partial LOF variants
reduce gene activity but do not ablate it completely.

Data from the 1000 genomes project (1KGP), a large scale
human genome sequencing study of 1,092 individuals from 14
populations, constructed using a combination of low-coverage
whole-genome and exome sequencing data indicates that on aver-
age individuals carry ∼150 LOFs (Genomes Project Consortium
et al., 2012). However, as detailed in Table 1, the majority of
LOFs are common (>5%) and are distributed across a very small
number (100–200) of genes. Genes containing common LOFs
are strongly enriched for functional categories related to olfac-
tory reception that are apparently unessential and do not result in
any severe medical consequence. LOF enriched genes are typically
depleted for genes implicated in protein-binding, transcriptional
regulation, and anatomical development. Common LOFs are
also enriched at the 3′ ends of genes as these mutations escape
nonsense-mediated decay and are less subject to purifying natu-
ral selection. Finally, at the most highly conserved coding sites,
more than 90% of stop-gain and splice-disrupting variants have
a frequency below 0.5%. The population frequency of individual
LOFs would therefore appear to correlate with their potential to
adversely affect human health.

The 1KGP data indicates that each individual carries 10–20
LOF variants with a minor allele frequency (MAF) below 0.5%
(Table 1). As these LOFs are under purifying selection they are less
likely to be present in non-essential genes and at low conservation
sites and therefore are likely to present pathological candidates.

The population frequency of rare variants differs consider-
ably compared with common variation. Variants with frequencies
above 10% were found in all of the populations studied in the
1KGP (Genomes Project Consortium et al., 2012), albeit with dif-
ferences in MAF. Low-frequency variants in the 0.5–5% range were
also largely shared between ancestral groups with only 17% of
variants observed in a single ancestry group. For rare frequency
variants with MAFs <0.5%, the majority (53%) were observed in a
single population. Population stratification therefore represents a
major confounder for rare variant analyzes which would ideally be
controlled using principal component analysis from high-density
GWAS arrays to select ancestrally matched cases and controls.

As a consequence of their rarity, LOFs will have largely been
overlooked in GWAS studies which are best suited to the study of
variants with minor alleles >3–5%. However, due to their rarity,
very large, GWAS-type sample sets will be necessary to determine
phenotypic association.

PCSK9 is expressed primarily in the liver, it is a secreted pro-
tein that acts by reducing the amount of low density lipoprotein
receptor (LDLR) at the cell surface. Structurally, the PCSK9 pro-
tein product is composed a signal peptide, a prodomain, a catalytic
domain, and a C-terminal domain. Cleavage of the prodomain is
required for PCSK9 maturation and secretion. Cleaved PCSK9
is transported along the secretory pathway, which ultimately
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Table 1 | Loss of function allele counts in 1,092 human genomes

across three allele frequency bins.

Allele frequency (%)

Variant type <0.5 0.5–5 >5

Stop-gain 3.9–10 5.3–19 24–28

Stop-loss 1.0–1.2 1.0–1.9 2.1–2.8

Indel frameshift 1.0–1.3 11–24 60–66

Splice site donor 1.7–3.6 2.4–7.2 2.6–5.2

Splice site acceptor 1.5–2.9 1.5–4.0 2.1–4.6

promotes LDLR degradation [for review see (Marais et al., 2012)].
One LOF missense mutation in PCSK9, Q152H, has been shown
to impair cleavage and hence inhibit PCSK9 secretion (Mayne
et al., 2011). The Q152H LOF mutation was shown to result in a
79% decrease in circulating PCSK9 and a 48% decrease in LDL-C
in carriers compared with non-carriers (Mayne et al., 2011). The
C679X mutation results in a processed, partially-folded protein
that remains in the ER and is not secreted. As LDLR is degraded at
the cell surface and endosomes, the C679X mutant has no activity
toward the LDLR because of its inability to leave the ER and traf-
fic to LDLR (Benjannet et al., 2006). R46L is also a LOF PCSK9
mutation, the R46L-PCSK9 undergoes near normal autocatalytic
cleavage and is secreted, yet cells expressing the mutant displayed a
16% increase in of cell surface LDLR and a 35% increase in inter-
nalized LDL compared with WT-PCSK9, suggesting that R46L
causes hypocholesterolemia through a decreased ability to degrade
LDLR (Cameron et al., 2006).

Mutations in PCSK9 were first identified in two French families
with hypercholesterolemia that screened negative for mutations
in both the LDLR and the apolipoprotein B (apoB) genes (Abi-
fadel et al., 2003). The hypercholesterolemia PCSK9 mutations
were all missense variants that are thought to confer a gain of
function as overexpression of pcsk9 in the liver of mice produces
hypercholesterolemia by reducing LDLR numbers (Lambert et al.,
2006).

In 2005, causative LOF mutations in PCSK9 were identified in
individuals with low plasma LDL-C levels, the LOF variants were
shown to be present in ∼2% of the African–American population
but rare in European Americans (<0.1%; Cohen et al., 2005). LOF
mutation carriers displayed reduced or no PCSK9 activity, and
their plasma LDL-C levels were reduced by 40% compared with
non-carriers. Further, coronary heart disease risk in those individ-
uals was reduced by 88% compared to non-carriers (Cohen et al.,
2006). This observation sparked interest in the biology of PCSK9
and led to the development of several LDL-reducing drugs (Stein
et al., 2012).

While the cost of whole genome and exome sequencing experi-
ments has dropped dramatically with improvements in yield from
second generation sequencing technologies, very large scale stud-
ies remain prohibitively expensive. For sample sets with existing
genotypes from dense whole-genome arrays, genotype imputation
presents a viable alternative to direct sequencing. Data generated
from large sequencing projects such as the 1KGP (Genomes Project
Consortium et al., 2012) and the NHLBI exome sequencing project

(ESP; Tennessen et al., 2012) is phased (Delaneau et al., 2012) and
the haplotypes can be used as reference panel to impute miss-
ing variation into the sample genotype data (Howie et al., 2009).
Recent improvements in imputation algorithms and the expan-
sion of reference datasets have improved accuracy of imputation
for even low MAF variants. Imputed data can then be annotated
using tools developed for the annotation of sequencing data such
as SnpEff (Cingolani et al., 2012) which determine the genomic
location (i.e., exonic, intronic or intergenic, and the effects of
variants, missense, nonsense etc. on known genes). Imputed LOF
variants can then be assessed against binary phenotypes or quan-
titative laboratory values derived from patients electronic medical
records (EMR).

We sought to determine if two PCSK9 LOF mutations that are
present in the 1KGP data, the C679X nonsense mutation and the
R46L missense mutation, could be imputed into our dataset and
the previously reported association of the LOFs with decreased
serum LDL-C replicated.

MATERIALS AND METHODS
The Center for Applied Genomics (CAG) at The Children’s Hos-
pital of Philadelphia (CHOP) maintains a biorepository of over
160,000 genotyped samples, 60,000 of which are pediatric samples
randomly recruited from CHOP with complete EMRs. As a proof
of principle, we imputed the proprotein convertase subtilisin kexin
type 9 (PCSK9; NM_174936) LOFs C679X (dbSNP:rs28362286)
and R46L (dbSNP:rs11591147) into a random selection of 8,028
unrelated samples of Northern European ancestry genotyped on
the Illumina HumanHap 550 array from the CAG biorepository.
The study was approved by the Institutional Review Board at the
CHOP, and written informed consent for sample collection and
DNA genotyping/sequencing was provided by the parents of all
participating children.

Genetic ancestry was determined by computing principal com-
ponents on the dataset using smartpca, a part of the EIGENSTRAT
package, on 100,000 random autosomal SNPs in linkage equilib-
rium. Samples were clustered into 4 Continental ancestry groups
(Caucasian, African including admixed African–American, Asian,
and native American/admixed Hispanic) by K-means clustering
using the kmeans package in R. The European ancestry grouping
in our dataset mapped most closely to the HapMap CEU pop-
ulation of Utah residents with Northern and Western European
ancestry from the CEPH collection1.

Duplicate samples and cryptic relatedness were assessed by
pairwise IBD. IBD values were generated for all 8,028 samples of
Northern European ancestry using the plink genome command.
A random sample from any pair with a PI_HAT value exceeding
0.3 was excluded from further analysis.

Imputation of untyped markers (∼39 M) was carried out using
IMPUTE2 after prephasing with SHAPEIT. Each chromosome
was prephased separately. Reference phased cosmopolitan hap-
lotypes and recombination rates were obtained from the 1000
genomes project (1000 Genomes Phase I integrated variant set b37
March 2012 release). Imputation was carried out in 5Mb intervals
using an effective population size of 20000 as recommended. As

1http://hapmap.ncbi.nlm.nih.gov
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FIGURE 1 | Box and whisker plot of additively encoded PCSK9 R46L

genotypes on the X-axis versus age corrected serum LDL

concentrations on theY-axis (n = 1432; min LDL concentration 4; max

LDL concentration 241; mean LDL concentration 85). Genotype 0
indicates no copies of the mutant allele, genotype 1 indicates one copy of
the mutant allele and genotype 2 indicates 2 copies of the mutant allele.

a measure of the overall imputation accuracy we compared the
concordance between the imputed and known genotypes in the
subset of SNPs for which genotyping data was available. At a call
threshold of 0.9, over 99% of the imputed genotypes were called
and over 96% of those were concordant with the known genotypes.

RESULTS
Following imputation using SHAPEIT2 and IMPUTE23 and anno-
tation using SnpEff 4, we extracted and additively re-encoded
genotypes for C679X and R46L from the 8,028 European American
samples from the CAG biorepository. Both variants were imputed
with high confidence, info scores C679X = 0.9 and R46L = 1. The
C679X mutation was previously reported to be present in 0.1%
of European Americans (Cohen et al., 2005). We identified nine
C679X carriers out of 8,028 samples for a frequency of 0.11%,
consistent with previous reports. As the samples were randomly
selected from the biorepository, not all contained serum lipid data
in their EMR. Three of the nine C679X carriers had serum LDL
data. The frequency of the R46L was also consistent with the
NHLBI ESP data, homozygous wild-type R46L 0.98 (1432 unique
individuals with lab values mean age 12.1 years); heterozygous
R46L 0.02 (10 unique individuals with lab values mean age 13.5)
and homozygous derived allele R46L 0.001 (12 unique individuals
with lab values mean age 11.5). A total of twenty-two R46L carriers
had LDL data in the EMR.

2http://www.shapeit.fr
3http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
4http://snpeff.sourceforge.net

FIGURE 2 | Box and whisker plot of additively encoded PCSK9 R46L

genotypes on the X-axis versus age corrected serum HDL

concentrations on theY-axis (n = 1495; min HDL concentration 5; max

HDL concentration 128; mean HDL concentration 47). Genotype 0
indicates no copies of the mutant allele, genotype 1 indicates one copy of
the mutant allele and genotype 2 indicates 2 copies of the mutant allele.

There was insufficient data to assess the statistical signifi-
cance of C679X genotypes. Linear regression of EMR-derived
age-corrected serum LDL concentrations against R46L genotypes
was statistically significant (P-value 7 × 10−4) and directions of
effect consistent with the LOF allele reducing LDL cholesterol
(Figure 1). Serum HDL concentrations also showed a trend toward
association (P-value 0.04; Figure 2). By contrast, serum triglyc-
eride levels showed no association with R46L genotype (P-value
0.58; Figure 3) as previously described (Kotowski et al., 2006).
The mean age-adjusted LDL concentration for R46 wild-type
homozygotes was 85.7, mean age-adjusted LDL concentration for
R46L heterozygotes was 63 and 62.6 for R46L homozygotes which
corresponds approximately to a 26% decrease of serum LDL con-
sistent with the 23.5 mean LDL-C difference previously reported
in European American R46L carriers (Kotowski et al., 2006).

DISCUSSION
Recent genome sequencing studies have shown that each indi-
vidual carries a significant number of variants that are predicted
to result in a loss of protein function. The phenotypic effect of
the majority of these LOFs remains to be determined. Here, we
have shown a successful proof of concept that rare LOFs can
be imputed into high density genotyping array data using data
from large scale sequencing projects such as the 1KGP as a refer-
ence. While second generation sequencing remains prohibitively
expensive in large numbers, high density genotyping data has
been generated on hundreds of thousands of individuals. The
eMERGE consortium biorepository includes ∼60,000 individuals
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FIGURE 3 | Box and whisker plot of additively encoded PCSK9 R46L

genotypes on the X-axis versus age corrected serum triglyceride

concentrations on theY-axis (n = 1856; minTG concentration 12; max

TG concentration 566; meanTG concentration 82). Genotype 0 indicates
no copies of the mutant allele, genotype 1 indicates one copy of the
mutant allele and genotype 2 indicates 2 copies of the mutant allele.

that have been genotyped on high-density GWA arrays (review at
http://www.genome.gov/27540473), all of which has been linked
with EMRs. As such eMERGE would be ideally suited for the
assessment of rare LOF variants across multiple phenotypes either
by direct assessment through single variant tests or through bur-
den tests. For future analyses, in order to identify all possible
association signals, the data would be analyzed using more than
one statistical approach as detailed below.

Annotated, imputed variants, in vcf format5, would be ana-
lyzed for association using both single point and agglomerative
tests. Single variant tests for association against the EMR traits
would be implemented in EMMAX (Kang et al., 2010), a mixed
model algorithm that controls for both population substructure
and relatedness between individuals in the test. In addition to
the principal components for population stratification applicable
covariates such as age could be included. For the agglomerative
gene-based association tests, three complementary algorithms, the
sequence kernel association test (SKAT; Ionita-Laza et al., 2013),
the variable threshold test (Price et al., 2010) and the combined
multivariate and collapsing (CMC) test which assess the bur-
den of variation within the gene (Li and Leal, 2008) would be
implemented. Gene-based association tests can achieve substan-
tial increases in power to detect associations with rare variation
compared with single variant tests (Ionita-Laza et al., 2013).

5http://www.1000genomes.org/wiki/analysis/variant-call-format/vcf-variant-call-
format-version-42

We anticipate that for the single variant tests greatest power
would be achieved against quantitative phenotypes such as lab
values, however, gene burden scores could equally be applied
using a pheWAS approach (Denny et al., 2010), i.e., EMR derived
ICD9-based pseudo-case control analyzes for binary traits. These
approaches will be validated on multiple LOF variants across the
eMERGE networks in the near-future.
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