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Next-generation sequencing (NGS) technologies have dramatically expanded the breadth
of genomics. Genome-scale data, once restricted to a small number of biomedical model
organisms, can now be generated for virtually any species at remarkable speed and
low cost. Yet non-model organisms often lack a suitable reference to map sequence
reads against, making alignment-based quality control (QC) of NGS data more challenging
than cases where a well-assembled genome is already available. Here we show that by
generating a rapid, non-optimized draft assembly of raw reads, it is possible to obtain
reliable and informative QC metrics, thus removing the need for a high quality reference.
We use benchmark datasets generated from control samples across a range of genome
sizes to illustrate that QC inferences made using draft assemblies are broadly equivalent
to those made using a well-established reference, and describe QC tools routinely used in
our production facility to assess the quality of NGS data from non-model organisms.
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INTRODUCTION

Until 5 years ago, genomic research was largely confined to a rel-
atively small number of taxonomic groups in which sequencing
efforts were focused on a handful of model organisms. Next-
generation sequencing (NGS) technologies have expanded the
scope of genomics research by increasing throughput many fold
compared to traditional Sanger sequencing, at a much lower cost
per base (Pareek et al., 2011) With genome-scale studies now
possible in virtually any species within the budget of a standard
grant, NGS data are being generated in non-model organisms at
an unprecedented pace. However, NGS can be affected by a range
of artifacts that arise during the library preparation and sequenc-
ing processes, which can negatively impact the quality of the raw
data for downstream analyses. These issues include platform spe-
cific error profiles, systematic variation in quality scores across the
sequence read, biases in sequence generation driven by base com-
position, departure from optimal library fragment sizes, variation
in the proportions of duplicate sequences introduced by PCR
amplification bias, and contamination from known and unknown
species other than the sequencing target (Schmieder and Edwards,
2011a; Zhou et al., 2013).

Several software tools have been published that can highlight
quality issues in NGS data, including low base quality, contamina-
tion with adapter sequences and biases in base composition (e.g.,
Andrews, 2010; Lohse et al., 2012; Patel and Jain, 2012). Initial
steps in the quality control (QC) process typically involve assess-
ing the intrinsic quality of the raw reads using metrics generated
by the sequencing platform (e.g., quality scores) or calculated
directly from the raw reads (e.g., base composition). One of the
most popular tools for the generation of these quality metrics
is FastQC (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/). FastQC and other similar tools are useful for assessing
the overall quality of a sequencing run and are widely used in
NGS data production environments as an initial QC checkpoint.
Further QC steps commonly performed involve mapping the
raw reads to a known reference to calculate a range of metrics
from alignment profiles. These include the mapping rate to the
expected target, levels of fragment or sequence duplication, and
estimates of the library insert sizes. These metrics are routinely
calculated for NGS data derived from model organisms where
a well-established reference is available and generally included
in QC reports. However this alignment-based approach is not
directly possible when sequencing a novel genome. Tools exist
that can calculate QC metrics such as sequencing errors and over-
represented sequences in k-mer space without a reference genome
(Schroder et al., 2010; Keegan et al., 2012; Wang et al., 2012).
However, these do not generally predict library insert size and
duplication rate. The preqc component of SGA (Simpson and
Durbin, 2011; Simpson, 2014) can predict genome characteris-
tics and QC metrics including fragment length and duplication
levels but as these metrics are calculated only on a subset of the
data in k-mer space, duplicate rate for a large dataset can be mas-
sively underestimated. Also, estimating insert size for mate pair
libraries is not practical with this approach. Other tools includ-
ing PRINSEQ (Schmieder and Edwards, 2011b), FASTX-Toolkit!
(http://hannonlab.cshl.edu/fastxtoolkit/), and CD-HIT (Fu et al.,
2012) can predict the rate of fragment or read duplication without
a reference, but have significant limitations. As these techniques
are based on sequence-clustering algorithms, identical sequences,

IFASTX-Toolkit. [Online]. Available online at: http://hannonlab.cshl.edu/
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which might or might not be duplicates, can be erroneously
removed. In addition, these approaches are both time consum-
ing and computer memory intensive, and can create bottlenecks
in a high throughput production environment where rapid and
efficient QC of raw NGS data is necessary.

Detecting contaminants in the absence of a reference is equally
challenging. Published methods exist for the detection of read
contaminants, e.g., DeconSeq (Schmieder and Edwards, 2011a)
and FastQ Screen (Andrews, 2011). These tools are based on
identification of contamination from known sources by opti-
mized alignment methods. However they fail when the sequence
of the contaminant is not present in the screening database.
Similarly, BLAST-based methods are computationally expensive
when applied to large raw read datasets and cannot be imple-
mented in a production environment.

In this study, we show how it is possible to generate a
draft assembly from the raw data, rapidly and without opti-
mization, and then use this for the generation of reliable QC
metrics. To illustrate the utility of this approach, we gener-
ated benchmark sequence datasets from control samples of
three model species (Escherichia coli, Arabidopsis thaliana and
Homo sapiens), for which a high quality reference sequence
is available, and applied our QC tools to the raw reads.
By employing both standard mapping-based tools to esti-
mate PCR duplicate rates and library insert sizes, and new
approaches such as the taxon-annotated GC-coverage (TAGC)
plot pipeline (Kumar et al., 2013) to identify contaminants, we
show broad equivalence of the de novo and reference-based QC
approaches.

MATERIALS AND METHODS

LIBRARY PREPARATION AND SEQUENCING OF CONTROL SAMPLES
DNA and RNA samples used to generate control libraries were
obtained from commercial sources (E. coli K12 DNA: Invivogen,
catalog no. tlrl-ednaef; H. sapiens DNA: Coriell Institute for
Medical Research, catalog no. NA10857; A. thaliana DNA:
AMS Biotechnology, catalog no. D1634310; H. sapiens RNA:
Ambion, catalog no. AM7962). All samples were quantified
by fluorescence-based measurements (Invitrogen Qubit) and
assessed for quality using Life Technologies E-gels (DNA) or
Agilent Technologies Bioanalyzer (RNA) before library prepara-
tion.

Genomic libraries with insert sizes of 180, 300, and 600 bp
were prepared for all three species using Illumina TruSeq DNA
Sample Prep Kit following the manufacturer’s instructions with
some modifications. Briefly, 3 ug of genomic DNA was sheared
using a Covaris S2 instrument (180 bp: duty cycle 10%, inten-
sity 5, cycles/burst 200, time 420s; 300bp: duty cycle 10%,
intensity 4, cycles/burst 200, time 110 s; 600 bp: duty cycle 5%,
intensity 3, cycles/burst 200, time 80 s) in 120 pl reactions with 1X
TE bulffer, cleaned up with 1:1 ratio Ampure XP beads (Beckman
Coulter Inc.), and ligated to unbarcoded Illumina paired-end
adapters. Post-ligation, each library was individually size selected
to the target size with a Sage Science BluePippin DNA size selec-
tion system using the 1.5% agarose gel cassette protocol and
tight cuts at 320bp (180bp insert), 440bp (300bp insert) and
740 bp (600 bp insert). Size selected libraries were eluted in 40 pul

volumes and enriched by PCR using library-specific indexed
primers complementary to the Illumina paired-end adapters.

The E. coli mate-pair library was constructed using a com-
bination of Life Technologies SOLiD Long Mate-Paired Library
Construction Kit and Illumina Mate Pair Library Prep Kit v2
following the manufacturers’ recommendations.

H. sapiens transcriptome (RNAseq) libraries were prepared
using Ilumina TruSeq RNA Sample Prep Kit v2 following the
manufacturer’s instructions, using 1 g total RNA input and 12
PCR cycles in the enrichment step.

The mock-contaminated library was created by spiking the
300 bp insert E. coli library (Eco300) into the 300 bp insert H.
sapiens library (Hsa300) in proportions 1:20.

All libraries were checked on a Bioanalyzer High Sensitivity
DNA Chip (Agilent Technologies) and quantified by qPCR (Kapa
Library Quantification Kit) before Illumina sequencing on GAIIx,
HiSeq 2500 or MiSeq platforms as per the manufacturer’s instruc-
tions. Summary of all libraries is given in Table 1. Raw sequence
data were submitted to the Short Read Archive with acces-
sion number ERP004578 (http://www.ebi.ac.uk/ena/data/view/
ERP004578).

BIOINFORMATICS ANALYSES

Pre-processing of reads

All reads were trimmed for adapter sequences and poor qual-
ity bases (<Q30) using fastq-mcf (http://code.google.com/p/
ea-utils) with the following parameters g = 30, [ = 35 and qual-
mean = 30.

Mapping to reference

Reads were aligned to draft assemblies and reference
genomes/transcriptomes using BWA 0.6.1 (Li and Durbin,
2009a,b) with default parameters. Insert size and PCR dupli-
cation rate metrics were obtained using PICARD? (v.1.99)
and alignment rate was calculated using SAMtools (v.0.1.18).
The genomes of E. coli K12 MG1655 (http://www.ncbi.nlm.
nih.gov/nuccore/NC_000913.3), A. thaliana TAIR10 (ftp://ftp.ara
bidopsis.org/home/tair/Sequences/whole_chromosomes/), and
H. sapiens hgl9 (http://hgdownload.soe.ucsc.edu/goldenPath/
hg19/bigZips/) were used as references for mapping of reads
derived from the relevant genomic libraries. For transcriptome
data, mRNA sequences from UCSC were used as a second
reference (along with the genome) to compare QC results using
genomic versus transcriptomic references.

Contig assembly
We generated genome assemblies from genomic data using CLC
Assembly Cell®> (v.4.2.0, thereafter referred to as CLC) and
SOAPdenovo2 (Luo et al., 2012), and transcriptome assemblies
from mRNA reads using CLC and SOAPdenovo-Trans (Xie et al.,
2013). Paired-end and mate-pair data were treated as single-end
data by combining both reads in a single file.

Two parameters were defined for SOAPdenovo2 and
SOAPdenovo-Trans: k-mer size (K) was set to 31 and the

2PICARD. [Online]. Available online at: http://picard.sourceforge.net/
3CLC-bio assembly-cell. [Online]. Available online at: http://www.clcbio.
com/
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Table 1 | Summary of benchmark datasets.

Library Species Source #Reads #Bases #Coverage Insert size Platform Reads
(Gb) (X) (bp)

GENOMIC LIBRARIES
Eco180 Escherichia coli Invivogen 2,823,400 0.28 70.59 180 MiSeq 100PE (v2)
Eco300 Escherichia coli Invivogen 3,325,790 0.33 83.14 300 MiSeq 100PE (v2)
Eco600 Escherichia coli Invivogen 3,369,406 0.34 84.24 600 MiSeq 100PE (v2)
Eco3K Escherichia coli Invivogen 17479,364 175 436.98 2500 GAlIx 100PE (vb)
Ath180 Arabidopsis thaliana Amsbio 59,777644 5.98 46.7 180 HiSeq 2500 100PE (rapid)
Ath300 Arabidopsis thaliana Amsbio 72,813,974 728 56.89 300 HiSeq 2500 100PE (rapid)
Ath600 Arabidopsis thaliana Amsbio 58,823,560 5.88 45.96 600 HiSeq 2500 100PE (rapid)
Hsa180 Homo sapiens Coriell 318,394,090 31.84 10.61 180 HiSeq 2500 100PE (rapid)
Hsa300 Homo sapiens Coriell 319,230,116 31.92 10.64 300 HiSeq 2500 100PE (rapid)
Hsa600 Homo sapiens Coriell 255,145,408 25.51 8.5 600 HiSeq 2500 100PE (rapid)
EH-mock Homo sapiens and Hsa300 Eco300 283,522,600 28.35 8.96 300 HiSeq 2500 100PE (rapid)

Escherichia coli
TRANSCRIPTOME LIBRARIES
HsaRNA1 Homo sapiens Ambion 111,953,730 1.2 44.50 200 HiSeq 2500 100PE (rapid)
HsaRNA2 Homo sapiens Ambion 99,968,630 10 39.74 201 HiSeq 2500 100PE (rapid)
HsaRNA3 Homo sapiens Ambion 79,656,332 797 31.66 202 HiSeq 2500 100PE (rapid)

minimum contig length cutoff was set to 100. The choice of
k-mer was not optimized, as our aim was to assemble reads into
longer contigs and not to generate the best assembly. By default
SOAPdenovo2 reports contigs with minimum length cutoff of
K*2, but we observed that very small contigs (62 bases, if K = 31)
were too short for the QC analyses we wanted to perform. No
parameter optimization was used for CLC because the program
estimates optimal parameters based on the data.

Two quality metrics were calculated to describe draft assem-
blies: % assembly size (the proportion of the reference covered
by the draft assembly) and % chaff contig size (the proportion of
the assembly made up of contigs less than or equal to 300 bases)
(Salzberg et al., 2012).

Contamination check

The proportion of G and C bases (GC content) and the read
coverage for each contig in the draft assembly of this mixed
dataset were calculated using the TAGC plot pipeline (available at
https://github.com/sujaikumar/assemblage; Kumar and Blaxter,
2011; Kumar et al., 2013). To identify potential contaminants
de novo, contigs or a subset of contigs from the assemblies of
the genomic data were compared to the National Center for
Biotechnology Information (NCBI) non-redundant nucleotide
database (nt) using megablast program in BLAST (ncbi-blast-
2.2.284) (Altschul et al., 1990). The hits obtained were then used
to generate TAGC plots (Kumar et al., 2013), which were reviewed
manually.

RESULTS

OVERVIEW OF QC ASSEMBLIES

We generated draft QC assemblies for each library using CLC,
which we used in-house in our QC pipeline, and another,
open-source assembler, SOAPdenovo2, for comparison. Detailed
metrics of all the assemblies are given in Table 2.

ESCHERICHIA COLI GENOMIC DATA

CLC assembled the E. coli 180bp insert (Ecol80), 300 base
pair insert (Eco300), 600 bp insert (Eco600) and 3 kb mate-pair
(Eco3K) libraries into 151, 183, 168, and 246 contigs, respectively.
Most contigs in each assembly were over 1 kb. SOAPdenovo2 con-
sistently produced larger numbers of contigs: 3569 contigs for
Eco180, 5411 contigs for Eco300, 12,296 contigs for Eco600, and
589 contigs for Eco3K.

ARABIDOPSIS THALIANA GENOMIC DATA

CLC assembled the A. thaliana reads into 40,865, 37,278, and
25,436 contigs from the 180, 300, and 600 bp insert libraries
respectively, with fewer than 2% of bases in chaff contigs.
SOAPdenovo2 produced 643,869, 976,946, and 714,501 contigs
with 57.62, 81.60, and 59.85% of bases in chaff contigs (contigs
<300bp) for the 180bp (Ath180), 300 bp (Ath300) and 600 bp
(Ath600) libraries respectively.

HOMO SAPIENS GENOMIC DATA

Both CLC and SOAPdenovo2 produced highly fragmented
assemblies from the H. sapiens reads containing millions of con-
tigs for each library. The chaff contig size proportion was higher
for the SOAPdenvo2 assemblies (11-20%) than for the CLC
assemblies (3-5%). The proportion of the genome assembled
for all libraries was ~75%. Obviously, much greater coverage
is required to generate full assembly representation of the 3 Gb
human genome.

HOMO SAPIENS TRANSCRIPTOMIC DATA

The H. sapiens RNAseq libraries were assembled using CLC
and SOAPdenovo-TRANS. CLC generated fewer contigs (or
transcript fragments; 114,337, 98,113, and 106,392 contigs for
HsaRNA1, HsaRNA2, and HsaRNA3 respectively) than did
SOAPdenovo-TRANS (346,228, 228,311, and 339,888 contigs for
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Table 2 | Assembly metrics.

Library  Assembler Max contig #Contigs Total N50 GC contigs #Contigs Total bases GC contigs Chaff Assembly
length (bp) bases (bp) (%) >1kb in contigs >1kb (%) size (%) size (%)
(Mb) >1kb (Mb)
GENOMIC LIBRARIES
Eco180  CLC 326,302 151 4.47 82,998 50.7 116 4.45 50.7 0.07 96.51
Eco180  SOAPdenovo2 25,722 3569 4.67 4555 50.5 1082 4.23 50.8 5.08 100.29
Eco300 CLC 286,650 183 4.47 76,328 50.7 122 4.45 50.7 0.1 96.67
Eco300 SOAPdenovo2 21,043 5411 4.84 3646 50.2 1236 4.12 50.7 8.91 103.84
Eco600  CLC 326,302 168 4.47 78,632 50.7 116 4.45 50.7 0.1 96.6
Eco600  SOAPdenovo2 9871 12,296 5.34 1406 50 1632 3.31 50.7 21.35 114.64
Eco3K CLC 171,461 246 4.45 43,133 50.7 202 4.43 50.7 0.09 96.23
Eco3K SOAPdenovo2 127995 589 4.46 18,364 50.7 378 4.4 50.7 0.53 95.78
Ath180 CLC 132,653 40,865 116.41 14,227 375 13,208 104.71 36.5 1.8 9768
Ath180 SOAPdenovo?2 45,556 643,869 170.25 910 43.8 24,315 83.44 36.4 5762 141.99
Ath300 CLC 184,969 37278 120.34 16,119 376 13,493 110 36.9 1.55 100.97
Ath300 SOAPdenovo2 51,622 976,946  202.46 392 44.7 26,270 85.71 37 81.6 168.82
Ath600 CLC 152,702 35,436 112.8 15,306 36.8 11,836 103.19 36.1 1.71 94.65
Ath600 SOAPdenovo2 41,984 714,501 170.19 826 42.5 24,038 82.01 36.2 59.85 141.92
Hsa180 CLC 42,593 2,212,575 223736 1724 40.4 665,315 1524.53 41 3.22 72.07
Hsa180 SOAPdenovo2 23,451 3,966,705 229779 1185 39.9 664,849 1291.64 40.7 11.02 73.57
Hsa300 CLC 42,643 2,135,062 2173.2 1720 40.6 648,840 1484.65 41.2 3.07 70
Hsa300 SOAPdenovo2 33,412 4,179,352 2291 1141 39.9 649,236 1255.44 41 11.95 73.35
Hsa600  CLC 42,628 2,465,124 1639.48 926 421 424,045 781.62 44.3 5.14 52.83
Hsa600  SOAPdenovo2 13,924 6,048,329 2029.43 570 40.8 402,649 673.79 44.3 20.62 65
TRANSCRIPTOME LIBRARIES
HsaRNA1 CLC 14,039 114,337 79.71 1069 46.8 18,807 41.13 47 1.69 16.12
HsaRNA1 SOAPdenovo-TRANS 14,350 346,228 106.18 587 46.3 19,740 41.68 474 763 21.36
HsaRNA2 CLC 16,645 98,113 69.55 1077 474 16,762 36.04 477 1.34 14.06
HsaRNA2 SOAPdenovo-TRANS 12,835 228,311 84.44 747 472 17674 36.78 48.1 5.04 16.98
HsaRNA3 CLC 16,591 106,392 73.95 1069 46.9 17574 38.17 47 1.6 14.95
HsaRNA3 SOAPdenovo-TRANS 12,198 339,888 100.75 559 46.3 18,579 38.69 475 75 20.27

Values for Assembly size and Chaff size are expressed as a percentage of the true genome size.

HsaRNA1, HsaRNA2, and HsaRNA3 respectively). The propor-
tion of chaff contigs was relatively low for both assemblers: <2%
for CLC assemblies and <8% for SOAPdenovo2 assemblies. The
assembly size for both tools was ~20% of the UCSC mRNA
reference, indicating significant incompleteness relative to the
whole human transcriptome, but likely reflecting restricted gene
expression in the tissue surveyed.

DUPLICATE RATE

Genomic libraries

The mapping rate for the three E. coli libraries was 98%
when mapped to the standard reference. Mapping to the draft
CLC assembly produced a similar mapping rate. When the
SOAPdenovo2 assembly was used as a reference the mapping
rate was slightly reduced to 95% for the Ecol80 and Eco300
libraries, and to 90% for the Eco600 library (Table 3, Figure 1).
Fewer PCR duplicates were identified against the reference and
the CLC assemblies than against the SOAPdenovo2 assemblies.
The mapping rate for the E.coli 3 kb mate pair library was ~98%
to the standard reference genome, the CLC assemblies and the

SOAPdenovo?2 assemblies, with consistent duplicate rates across
methods (Table 3, Figure 1).

The mapping rate for the A. thaliana libraries was ~96%
when mapped to the standard reference genome. This was ~90%
when mapped to the CLC assemblies but dramatically lower
(~59%) when mapped to the SOAPdenovo2 assemblies. In addi-
tion, the duplicate rate was predicted to be ~12% for all three
libraries using the standard reference genome and CLC assem-
blies, but only 2% when using the SOAPdenovo2 assemblies
(Table 3, Figure 1). To investigate this discrepancy, we examined
the Ath180 library data further. All reads which were marked
as duplicates after mapping to the standard reference genome
were extracted and mapped to the SOAPdenovo2 assembly: 95%
of these reads remained unmapped against the SOAPdenovo2
assembly. We observed that the SOAPdenovo2 assemblies con-
tains a large proportion of bases in chaff contigs indicating that
there are many regions of the genome failing to assemble, thus
fragmenting the assembly. This fragmentation is likely to cause
an “edge-effect” when reads are aligned with BWA. Internally,
BWA concatenates all reference sequences (contigs in our case)
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Table 3 | Mapping statistics for genomic libraries.

Sample

ID

#Reads mapped

%Reads mapped

#Duplicate reads

%Duplicate reads

Mean insert length

SD insert length

ALIGNMENT TO REFERENCE GENOME

Eco180 2,792,154 98.89 22,999 0.82 176.59 21.44
Eco300 3,289,021 98.89 25,202 0.77 291.71 20.37
Eco600 3,321,671 98.58 18,691 0.56 573.1 70.04
Ecoli-3K 26,814,289 98.48 9,953,903 36.55 2720.28 315.33
Ath180 57514,318 96.21 6,947328 12.08 165.02 18.67
Ath300 69,958,509 96.08 8,749,750 12.51 293.22 2748
Ath600 56,213,701 95.56 6,567,271 11.68 598.77 56.91
Hsa180 303,848,802 95.43 33,019,701 10.87 160.86 19.73
Hsa300 303,592,964 95.10 43,557,165 14.35 274.15 24.3
Hsa600 237,453,840 93.07 61,514,814 25.91 489.52 112.38
ALIGNMENT TO CLC ASSEMBLY
Eco180 2,801,935 99.24 24,069 0.86 176.53 21.73
Eco300 3,301,631 99.27 27735 0.84 291.42 20.8
Eco600 3,328,844 98.80 23,556 0.71 572.84 70.29
Ecoli-3K 26,843,812 98.59 10,347,907 38.00 2719.67 305.54
Ath180 54,747819 91.59 6,319,279 11.54 164.56 19.01
Ath300 66,917,669 91.90 8,269,427 12.36 289.86 33.49
Ath600 52,667,137 89.53 6,087,843 11.56 594.36 71.53
Hsa180 254,730,241 80.00 30,966,336 12.16 159.64 20.13
Hsa300 257,834,392 80.77 40,049,368 15.53 268.47 30.5
Hsa600 184,136,326 72.17 50,589,333 2747 453.27 135.32
ALIGNMENT TO SOAPdenovo2 ASSEMBLY
Eco180 2,719,197 96.31 26,608 0.98 175.69 22.02
Eco300 3,185,622 95.78 35,419 1.1 289.55 22.76
Eco600 3,058,613 90.78 58,099 1.90 565.64 76.81
Ecoli-3K 26,696,300 98.05 10,338,237 3796 2715.88 305.67
Ath180 35,381,329 59.19 492,038 1.39 163.44 19.01
Ath300 43,453,271 59.68 987491 2.27 291.18 25.74
Ath600 34,367,686 58.43 1,233,130 3.59 599.55 4713
Hsa180 212,773,751 66.83 20,335,478 9.56 158.82 19.74
Hsa300 214,568,006 6721 27419,943 12.78 268.52 29.82
Hsa600 158,562,678 62.15 39,751,153 25.07 466.71 124.63
30.00%
25.00%
20.00%
&
2 15.00% M Genome
ki @ CLC-bio
'g. [0 SOAPdenovo2
o 10.00%
ST ] e ] .

0.00%
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FIGURE 1 | Estimation of duplicate rate for paired-end genomic libraries. Duplicate rates are plotted for each species and each target size using reads
mapped against the species reference, CLC, and SOAPdenovo2 assemblies.
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into one long, contiguous sequence and a read can be mapped
to the junction of two adjacent reference sequences. In this case
BWA will flag the read as unmapped (http://bio-bwa.sourceforge.
net/). This leads to an apparent reduction in both the mapping
rate and the duplicate rate through the exclusion of reads aligned
to the edge of contigs in the calculations of the PCR duplicate rate.
To test this, we altered the k-mer used by SOAPdenovo2 in order
to assemble the reads into longer contigs. We used KmerGenie
(Chikhi and Medvedev, 2013) to select optimized parameters for
the assembly. This suggested using a k-mer size of 45 and coverage
cutoff of 2. We ran SOAPdenovo2 again using these parameters,
which produced an improved assembly with 146,503 contigs and
an N50 of 5748 bases. Reads for Ath180 were mapped to this
assembly, which yielded a 25% increase in the mapping rate and
a 3 % increase in the duplicate rate. When we mapped reads
which were flagged as duplicates, against the standard reference
genome to the improved assembly, we also observed an increase
in the mapping from 5% to 20% (i.e., 80% of these remained
unmapped).

For the H. sapiens data, the mapping rate was 95% against the
standard reference genome. This reduced to 80% against the CLC
assemblies for Hsal80 and Hsa300. The mapping rate was 70%
for Hsa600 against the CLC assembly. The duplicate rate for these
data was ~25% when reads were aligned against the standard
reference and the SOAPdenovo2 assemblies, and slightly higher
(27%) against the CLC assembly (Table 3).

Transcriptome libraries

For the transcriptome (RNAseq) libraries, mapping results
against the reference genome, reference transcriptome and the
two assemblies were very similar (Table 4). The mapping rate was
~90% for alignment to the CLC assemblies and reference tran-
scriptomes, and 94% for alignment to the SOAPdenovo-TRANS
assemblies. The duplicate rate was consistent across all three
mapping approaches for each replicate library (Figure 2). Some
differences were observed between replicates, which can be
attributed to differences in coverage (Table 1).

INSERT SIZE DISTRIBUTION

Insert size distributions estimated for the genomic libraries,
including the mate-pair library, against the standard refer-
ence closely matched the target, for all insert sizes and species
(Figures 3—-6). Distributions estimated against the draft assem-
blies gave very similar results. Mapping to the SOAPdenovo? draft
assemblies yielded lower numbers of mapped pairs, but gave sim-
ilar insert size estimates. Similarly, insert size distributions for the
RNAseq libraries were consistent across replicates and assemblies,
and consistent with the reference-based estimates (Figure 7).

CONTAMINATION CHECK

Approximately 4% of the reads derived from the mock E.
coli-H. sapiens library (EH-Mock) mapped to the E. coli
reference (Table 5). TAGC plots generated for the CLC and the
SOAPdenovo?2 assemblies using all contigs revealed two clusters
(Figure 8): a large cluster with read coverage between 1 and 500
and GC between 20 and 80%, and a small, well-defined cluster
with coverage greater than 100 and GC between 40 and 60%.
Contigs in the large cluster were annotated with BLAST matches
from the taxonomic order Primates, and those in the smaller
cluster were annotated with matches from the taxonomic order
Enterobacteriales. Overall, ~4 and 3% of the raw reads mapped
to the small cluster contigs in the CLC and SOAPdenovo?2 assem-
blies, respectively (Table 5). TGAC plots generated from a subset
of randomly selected contigs (5%) resolved SOAPdenovo2 contigs
into Enterobacteriales and Primate-annotated clusters but failed
to identify distinct but clusters among CLC contigs (Figure9).
4.5% of reads mapping to the randomly selected SOAPdenovo2
contigs mapped to contigs annotated as Enterobacteriales, while
this figure was only 0.04% for CLC contigs (Table 5).

DISCUSSION

We have described a rapid assembly and QC protocol that permits
robust estimation of a number of key QC metrics (duplication
rates and library insert sizes) in the absence of a high quality
reference genome. We tested the performance of this protocol by

Table 4 | Mapping statistics for RNAseq libraries.

Sample ID #Reads mapped %Reads mapped #Duplicate reads %Duplicate reads Mean insert length SD insert length
ALIGNMENT TO GENOME hg19

HsaRNA1 102,189,446 91.28 50,803,861 49.72 215.99 72.03
HsaRNA2 72,036,569 90.43 32,114,542 44.58 184.88 64.15
HsaRNA3 91,195,551 91.22 45,907.384 50.34 211.94 6764
ALIGNMENT TO TRANSCRIPTOME

HsaRNA1 101,085,843 90.29 48,569,451 48.05 221.99 73.19
HsaRNA2 72,043,659 90.44 30,536,011 42.39 191.66 67.62
HsaRNA3 90,151,071 90.18 43,899,305 48.70 217.69 68.43
ALIGNMENT TO CLC ASSEMBLY

HsaRNA1 102,553,145 91.60 50,224,113 48.97 214.16 6759
HsaRNA2 72,815,405 91.41 31,802,909 43.68 184.07 62
HsaRNA3 91,194,129 91.22 45,376,410 49.76 210.12 63.27
ALIGNMENT TO SOAPdenovo-TRANS ASSEMBLY

HsaRNA1 105,695,602 94.41 50,837,146 48.10 213.49 674
HsaRNA2 74,505,094 93.53 31,718,199 42.57 183.55 61.72
HsaRNA3 94,064,116 94.09 45,826,021 48.72 209.46 63.14
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FIGURE 2 | Estimation of duplicate rate for transcriptomic libraries. Duplicate rates are plotted for each replicate RNAseq library using reads mapped
against the human genome and transcriptome references, CLC, and SOAPdenovo2 assemblies.
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FIGURE 4 | Estimation of insert sizes for A. thaliana paired-end genomic libraries. Insert sizes are plotted for each target size using reads mapped against
the A. thaliana reference genome, CLC, and SOAPdenovo2 assemblies.

comparing QC metrics derived from analyses against the unop-
timized assemblies to those derived from mapping to reference
assemblies, using E. coli, A. thaliana, and H. sapiens raw data.
Because speed is essential within a production environment, we
currently use CLC to generate preliminary assemblies in our cur-
rent QC pipeline. To test our strategy using open-source software,
we also included SOAPdenovo2 as it is widely used and can
assemble larger genomes using significantly reduced time and
memory relative to other assemblers (Li et al., 2010). We recog-
nize that other assembly tools may give different results in this
context but we note that comparing our results across a range of
assemblers is outside the scope of this study focused on describing
methodology established and routinely used in our facility.
Despite the fact that some of the assemblies were fragmented
(for example, millions of contigs for human samples), we found
that QC results such as insert size and detection of contami-
nants derived from alignment of data to QC assemblies using
CLC were equivalent to those obtained after alignment to the
reference genome. In particular, insert size estimates predicted
from alignment to CLC and reference genome assemblies were
highly similar for both genomic (including the mate-pair library)
and transcriptome libraries. These insert size frequency plots
(Figures 3-6) are very helpful for general data QC, but also for
directing filtering strategies to remove reads from very short
inserts (a common finding in Illumina libraries generated using

PCR), and in estimating parameters for full, optimal assem-
bly. The duplicate rate estimates obtained against the reference
and CLC assemblies were essentially identical across all genomic
libraries. For RNAseq samples, we found that mapping to tran-
scriptome and genome provided similar results, and that dupli-
cate rate estimates were dependent on coverage.

The QC metrics estimated from the SOAPdenovo2 assem-
blies gave essentially the same results, except for the A. thaliana
genomic libraries, where mapping rates were significantly lower
than predicted by both reference-based mapping and the CLC
approach. SOAPdenovo2 generated a larger number of short con-
tigs in all assemblies, but especially for the A. thaliana libraries,
perhaps because of features characteristic of plant genomes such
as families of highly similar genes and repeats (Claros et al.,
2012). As a result, many reads mapped to contig edges, remained
unmapped or mapped to a different contig than their mate.
Optimizing assembly parameters for SOAPdenovo2 improved
mapping rates and gave estimates closer to those derived from
mapping to the reference genome. Although the exact reasons
for low duplicate rates assessed during mapping against the
SOAPdenovo?2 assemblies remain unclear, our data suggest that
an excess of small contigs can lead to an underestimate of the
duplicate rate.

Our contamination check protocol successfully identified the
presence of exogenous reads in the mock-contaminated human
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FIGURE 5 | Estimation of insert sizes for H. sapiens paired-end genomic libraries. Insert sizes are plotted for each target size using reads mapped against
the H. sapiens reference genome, CLC, and SOAPdenovo2 assemblies.

[ Genome CLC-bio SOAPdenovo2

10k~
7.5k
5k-
2.5k-
0-

0 1000 2000 3000 4000 5000 O 1000 2000 3000 4000 5000 O 1000 2000 3000 4000 5000
insert size

number read pair

FIGURE 6 | Estimation of insert sizes for E. coli mate pair library. Insert sizes are plotted using reads mapped against E. coli reference genome, CLC, and
SOAPdenovo2 assemblies.

www.frontiersin.org May 2014 | Volume 5 | Article 111 | 9


http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Trivedi et al. QC of NGS data without a reference

200k‘ HsaRNAT HsaRNA2 \ HsaRNA3
150 k- o
100 k- o
o
50 k- o
200 R- L
150 k- o
=100 k- 3
< (o)
2 50k- &
©
©

dad

awoyduosuel] |

~FPP

0 200 400 600

0 200 400 600
insert size

0 200 400 600
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Table 5 | Mapping statistics for the mock-contaminated E. coli-human genomic library.

Reference #Sequences Total bases %Reference #Reads %Reads
bases mapped mapped*
ALIGNMENT TO ALL CONTIGS
Human hg19 25 3,157,607875 100.00 258,647575 91.23*
E.coli K12 MG1655 1 4,705,957 100.00 11,536,466 4.07*
CLC all contigs 2,316,927 2,081,896,905 65.83 224,568,185 79.21*
CLC contigs annotated as enterobacteriales 159 4,464,778 94.88 11,514,531 4.06*
CLC contigs annotated as primates 953,061 649,718,210 20.58 68,061,165 24.01*
SOAPdenovo?2 all contigs 4,548,560 2,269,464,719 7177 192,053,787 67.74*
SOAPdenovo?2 contigs annotated as enterobacteriales 4869 3,579,938 76.07 8,421,772 2.97*
SOAPdenvo2 contigs annotated as primates 3,697548 1,848,428,560 58.54 146,728,858 51.75%
ALIGNMENT TO 5% CONTIGS SELECTED AT RANDOM
CLC contigs in subset (5%) 115,846 104,264,699 - 15,840,263 5.569*
CLC contigs in subset (6%) annotated as enterobacteriales 4 2248 0.05 7073 0.04*
CLC contigs in subset (6%) annotated as primates 47440 32,471,856 1.03 5,027.091 31.74%*
SOAPdenovo?2 contigs in subset (56%) 227428 113,433,961 - 9,675,703 3.41%*
SOAPdenovo2 contigs in subset (5%) annotated as enterobacteriales 227 184,821 3.93 435,254 4.5%*
SOAPdenvo?2 contigs in a subset (5%) annotated as primates 184,892 92,556,545 2.93 7.382,636 76.3**

*Mapped reads is relative to the total number of reads generated from the library.
**Mapped reads is relative to the total number of reads mapped to the subset (5%) of randomly selected contigs.

Frontiers in Genetics | Bioinformatics and Computational Biology

May 2014 | Volume 5 | Article 111 | 10


http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

QC of NGS data without a reference

Trivedi et al.
A : B :
Taxonomic Taxonomic
Classification Classification
Not annotated 1000 Not annotated
Primates Primates
® Enterobacteriales &6 ® Enterobacteriales
200
1000
100
[ )
gsoo &
[ [
$ 200 o
8 100 8
- < 20
© 50 @
(] (]
o o 10

20

Q.0 0.2

0.4 0.6
GC content

FIGURE 8 | Taxon-annotated GC-coverage (TAGC) plots for the
mock-contaminated E. coli-human library. (A) TAGC-plot generated after
alignment to the CLC assembly; (B) TAGC-plot generated after alignment to
the SOAPdenovo2 assembly. Individual contigs are plotted based on GC (X

@

0.0 0.2

0.4 06
GC content

axis) and read coverage (Y axis, logarithmic scale). Contigs are colored
according to the taxonomic order of the best megablast match to the NCBI nt
database (with E-value < 1e-50). Contigs without an annotated BLAST match
are shown in gray.

A1e+05 Taxcnomic
Classfication
Not annotated
Primates
@ Enterobacteniales
o 1e+403
(=]
o
o
>
8
©
(]
o
1
1e+01
0.00 0.25 0.50 0.75 1.00
GC content
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coli-human library. (A) TAGC-plot generated after alignment to a random
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taxonomic order of the best megablast match to the NCBI nt database
(with E-value < 1e-50). Contigs without an annotated BLAST match are
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library. The TAGC approach clearly identified two clusters of con-
tigs showing contaminating Enterobacteriales sequences against a
primate background in both draft assemblies. The proportion of
contaminating reads estimated against the E. coli reference was
in very close agreement with the estimate from the CLC assem-
bly, while the same approach using SOAPdenovo2 assemblies

slightly underestimated the proportions of contaminated reads.
These results suggest that our protocol may also be used to quan-
tify contamination levels, although accuracy may vary with the
assembly method and the proportion of contigs used to gener-
ate TGAC plots. Significant amount of time and compute for this
screening was taken by BLAST to query all contigs against NCBI
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nucleotide database (nt). Repeating the analysis using a subset of
randomly selected contigs reduced this time to several folds and
also correctly identified the presence of Enterobacteriales reads in
the data but gave variable estimates of the proportions of contam-
inating reads, presumably due to stochastic errors due to random
sampling. Thus, while sub-sampled TGAC plots may be effec-
tive to detect the presence of exogenous reads, we recommend
using all contigs to maximize the power to detect and quantify
contaminants.

CONCLUSIONS

QC of raw reads is an essential first step in the analysis of NGS
data. Mapping-based approaches are accurate and time efficient
for collecting QC metrics such as duplicate rate and insert size,
but the lack of reference sequences for non-model species has
been a major bottleneck. Here, we use the power of rapid de
novo genome and transcriptome assembly to generate contig
sets to which the original reads can be mapped. The metrics
derived from the unoptimized, CLC draft assembly and mapping
approach are closely similar to those from reference genome map-
ping, and serve to deliver equivalent QC data. While our approach
successfully estimated the insert size distribution of a 3 kb mate
pair library prepared from E. coli, we recognize that mate-pair
libraries can be challenging to assemble, especially when the vir-
tual insert size is large and/or the target genome is complex. These
will typically be generated alongside a range of standard libraries
with different insert sizes. In practice we recommend to map the
reads derived from the mate pair library against the draft assembly
of contigs generated from the standard libraries and calculate an
estimate of insert length and duplicate rate from this alignment.

The use of SOAPdenovo2 as an alternative assembler was gen-
erally successful and gave similar metrics to CLC in most cases.
However, this was not true for predicting the duplicate rate.
Assembling difficult genomes such as those of plants can lead to
an underestimate of the true duplicate rate. In this case, some
parameter optimization (e.g., k-mer size) can help in generat-
ing more robust QC metrics. While this approach is likely to be
impractical in a production environment where different libraries
may require different assembly parameters, other assemblers may
perform better in this context and further work is needed to
identify suitable alternatives to CLC.

We recommend GC, coverage and BLAST-based similarity
screening of preliminary assemblies for exclusion of contaminat-
ing data before continuing with downstream analyses. This is
easily achieved through the use of TAGC plots. For contamina-
tion check, we used all contigs as input to the TAGC pipeline.
Random selection of contigs can be useful to speed up the process
of screening for contaminants but may significantly reduce the
power to obtain quantitative estimates of contaminating reads.
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