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INTRODUCTION

Endoplasmic reticulum is an important intracellular organelle
responsible for protein synthesis, folding, modification, and
trafficking. In addition, the ER also plays a crucial role in cal-
cium homeostasis and in regulating the biosynthesis of steroids,
lipids and carbohydrates (Borgese etal., 2006). In the ER, mil-
lions of proteins are synthesized, but not all of them are able
to be properly folded and processed. Under normal physiologi-
cal conditions, the unfolded or misfolded proteins are directed
to degradation pathways through activating an evolutionally con-
served signaling pathway, the UPR. Activation of the UPR can
either help eliminate the unfolded proteins and restore cellu-
lar homeostasis, or activate a cascade of intracellular events
resulting in cell death (Shen etal., 2004; Merksamer and Papa,
2010). The UPR is of particular importance in hepatocytes,
which are rich in ER content and responsible for the synthe-
sis of proteins, cholesterol, bile acids, and phospholipids. The
UPR and its contribution to hepatic injury have been investi-
gated in various liver diseases including ALD, NAFLD, DILD,
cholestatic liver disease, and viral hepatitis (Zhou etal., 20065
Kaplowitz etal., 2007; Colgan etal., 2011; Dara etal., 2011; Jo
etal., 2013).

Abbreviations: ABCA1, ATP-binding cassette, sub-family A, member 1; ACC,
acetyl-CoA carboxylase; ALD, alcoholic liver disease; ATE, activating transcrip-
tion factor; C/EBP, CCAAT/enhancer-binding protein; CHOP, C/EBP homologous
protein; DILD, drug-induced liver disease; eIF2a, eukaryotic translation initia-
tion factor; ER, endoplasmic reticulum; FAS, fatty acid synthase; FXRa, farnesold
X receptor a; GADD, growth arrest and DNA damage-inducible protein; HDL,
high density lipoprotein; Insig, insulin-induced gene; IREIL, inositol requir-
ing enzyme 1; JNK, c-Jun N-terminal kinase; LDL, low density lipoprotein;
MCD, methionine-choline-deficient diet; NAFLD, non-alcoholic fatty liver dis-
ease; PERK, protein kinase RNA-like ER kinase; SIP, site 1 protease; S2P, site 2
protease; SCAP, SREBP cleavage activating protein; SCD, stearoyl-CoA desaturase;
SREBBP, sterol regulatory element binding protein; UPR, unfolded protein response;
VLDL, very low density lipoprotein; VLDLR, VLDL receptor; XBP, X-box binding
protein.

The endoplasmic reticulum (ER) is an important player in regulating protein synthesis and
lipid metabolism. Perturbation of ER homeostasis, referred as “ER stress,” has been linked
to numerous pathological conditions, such as inflammation, cardiovascular diseases, and
metabolic disorders. The liver plays a central role in regulating nutrient and lipid metabolism.
Accumulating evidence implicates that ER stress disrupts lipid metabolism and induces
hepatic lipotoxicity. Here, we review the major ER stress signaling pathways, how ER stress
contributes to the dysregulation of hepatic lipid metabolism, and the potential causative
mechanisms of ER stress in hepatic lipotoxicity. Understanding the role of ER stress in
hepatic metabolism may lead to the identification of new therapeutic targets for metabolic
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ER STRESS AND THE UPR

The ER is a membranous network of cisternae responsible for
the synthesis and export of proteins and lipids. It is also crucial
for cellular calcium homeostasis (Borgese etal., 2006; Gorlach
etal., 2006). The ability of the ER to adapt to the metabolic
changes, such as an increase in protein synthesis and accumu-
lation of unfolded proteins and cholesterol in the ER lumen, is
of paramount importance for the cell. When the misfolded or
unfolded proteins accumulate in the ER, the ER stress and its
related signaling pathways, UPR, are activated (Ron and Walter,
2007; Schroder, 2008).

Three main branches of the UPR-mediated signaling pathways
have been identified so far: the IRE1 pathway, protein kinase RNA-
like ER kinase (PERK) pathway, and ATF6 pathway. As illustrated
in Figure 1, IRE1, PERK, and ATF6 are associated with the ER
membrane. Under non-stressed condition, these transmembrane
proteins are bound to a chaperone protein, BiP/GRP78, which is
also known as the master regulator of the UPR. The binding of
BiP/GRP78 to these UPR transducers prevents them from activa-
tion. When the ER is stressed by accumulation of misfolded or
unfolded proteins, depletion of ER calcium content, or increase
of free cholesterol in the ER lumen, BiP/GRP78 is released from
the UPR transducers. The disassociation of BiP/GRP78 from the
UPR transducers results in the activation of IRE1-, PERK-, and
ATF6-mediated signaling pathways. PERK activation results in
a rapid down-regulation of protein synthesis via phosphoryla-
tion of elF-2a and inhibition of the formation of the translation
initiation complex (DuRose etal., 2009). The phosphorylated
elF-2a further promotes the translation of ATF4, a member of
the basic leucine zipper (bZIP)-containing protein subfamily.
IREla has both protein kinase and endoribonuclease activities.
Under ER stress conditions, IRE1a is oligomerized and autophos-
phorylated. The activated IREla removes a 26-bp intron from
the XBP1 mRNA, resulting in the production of spliced XBP1
protein (XBP1s). XBP1s, which is also a bZIP transcription factor,
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FIGURE 1 | Schematic diagram of the ER stress-activated signaling
pathways.

regulates the expression of several genes involved in UPR and
ER-assisted degradation (ERAD) to help restore ER homeostasis
(Acosta-Alvear etal., 2007). In addition, IREla also induces the
activation of stress kinases, JNK and p38 MAPK, that promote
apoptosis (Ron and Hubbard, 2008). ATF6 is the third branch
of the UPR. Dissociation of BiP/GRP78 from ATF6 leads to its
translocation to the Golgi, where it is processed into its active
form by cleavage of its N-terminal domain by S1P and S2P (Chen
etal., 2002). The activated ATF6 (ATF-6 N terminal domain) is
translocated to the nucleus and functions as a transcription factor,
promoting the expression of downstream target genes involved
in ER stress including XBP1, GADD153 (also known as CHOP),
and ER chaperones (Oyadomari and Mori, 2004). CHOP is a
proapoptotic transcription factor that plays a critical role in ER
stress-mediated apoptosis (Marciniak etal., 2004).

HEPATIC LIPID METABOLISM

Liver is the central metabolic organ and plays a critical role in
fatty acid and cholesterol metabolism (Hylemon etal.,, 2001).
Several inter-dependent pathways are involved in hepatic lipid
metabolism. The hepatic fatty acids can be derived from de
novo lipogenesis, hydrolysis of triglyceride from cytoplasmic lipid
droplets or direct uptake of non-esterified fatty acids from circula-
tion (Bechmann etal., 2012). The liver is also a major organ in the

processing of lipids into the various lipoproteins, in particular
VLDL and LDL. Fatty acids synthesized by the liver are con-
verted into triglyceride and exported as constituents of VLDL
into the blood circulation. The VLDLs absorbed into periph-
eral tissues are partially digested by lipoprotein lipase into LDL
and free fatty acids. LDL is transported into the cell via LDL
receptors for its conversion into free fatty acids, cholesterol, and
other components of LDL. Similarly, cholesterol also can be
derived from de novo synthesis or absorbed from the diet, and
are transported into circulation as lipoprotein particles (Hor-
ton etal., 2002a; Babin and Gibbons, 2009; van Heyningen,
2009; Musso etal., 2013; Faust and Kovacs, 2014). The choles-
terol can be stored in cells as cholesterol esters or metabolized
into bile acids. The hepatic triglycerides and cholesterol contents
are tightly regulated by multiple interrelated signaling pathways.
Under normal physiological conditions, lipid input is equal to
lipid output from the body. Disruption of either the input or
output pathways will result in dysregulation of lipid metabolism
(Hylemon et al.,2001). Tremendous studies have been done to elu-
cidate the extremely complex regulation network of hepatic lipid
homeostasis (Bradbury and Berk, 2004; Bradbury, 2006; Weick-
ert and Pfeiffer, 2006; Nguyen etal., 2008; Musso etal., 2009;
Sparks and Dong, 2009; van Heyningen, 2009; Trauner etal., 2010;
Jump, 2011; Fu etal., 2012). Here, we will focus on the current
understanding regarding the role of ER stress in hepatic lipid
metabolism.

UPR AND HEPATIC LIPID HOMEOQSTASIS

The ER is the primary site of lipid metabolism. Many enzymes
and regulatory proteins of lipid metabolism reside in the ER.
Perturbation of ER homeostasis contributes to hepatic steato-
sis, inflammation and insulin resistance in the liver (Kaplowitz
etal., 2007; Hotamisligil, 2010; Rohrl etal., 2014). Although the
UPR was originally identified as a conserved signaling pathway,
functioning to maintain essential ER homeostasis, numerous stud-
ies indicate that the UPR has broader functions and plays an
essential role in maintaining hepatic lipid homeostasis. Recent
studies have shown that the pharmacologic ER stress inducers
increase de novo lipogenesis and lipid droplet formation in hepa-
tocytes by up-regulating a subset of genes encoding key lipogenic
trans-activators and enzymes (Lee etal., 2012).

Hepatic lipid homeostasis is controlled by numerous tran-
scription factors and nuclear receptors. The SREBPs are master
regulators of lipid homeostasis (Eberle etal., 2004) and play a
critical role in de novo lipid biosynthesis (Amemiya-Kudo etal.,
2002). SREBP-1 controls fatty acid and triglyceride biosynthesis,
while SREBP-2 controls cholesterol metabolism and LDL recep-
tor expression. SREBPs, are basic-helix-loop-helix-leucine zipper
(bHLHLZ) transcription factors bound to the ER membranes
as an inactive precursor (Brown and Goldstein, 1997). The reg-
ulation of SREBP activity is controlled within the ER by the
interaction of SCAP with insulin regulated proteins (Insigs; Yang
etal.,, 2002). The Insigs can cause ER retention of the SREBP-
SCAP complex and prevent the activation of SREBPs. When
the sterol level is low, Insigs are disassociated with SCAP, which
allows the SREBP-SCAP complex to migrate to the Golgi, where
SREBPs are processed into active forms by S1P and S2P (Rawson,
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2003; Lee and Ye, 2004). The activated SREBPs are subsequently
translocated into nucleus, where SREBPs regulate the expres-
sion of various genes involved in lipid metabolism by binding
to the sterol regulatory element of their target genes (Horton
etal., 2002a,b; Radhakrishnan etal., 2007). It has been shown
that ER stress induces proteolytic activation of SREBPs by increas-
ing the turnover of Insig-1 (Lee and Ye, 2004). The expression of
Insigs is regulated by insulin and FXRa (Yabe etal., 2003; Hubbert
etal., 2007). Overexpression of hepatic Insigs has been shown to
reduce hepatic lipogenesis (Engelking etal., 2004; Takaishi etal.,
2004).

ER stress and lipid metabolism are tightly intertwined. The
chronic ER stress is the most important contributor to metabolic
diseases. Unresolved ER stress induces dysregulation of hepatic
lipid metabolism (Fu etal., 2012). It is also well-documented that
excess saturated fatty acids and cholesterol can induce ER stress
and disrupt lipid metabolism in hepatocytes, macrophages and
adipocytes (Fribley et al., 2009; Colgan et al., 2011; Anderson et al.,
2012; Fu etal., 2012; Wang etal., 2013; Zha etal., 2013). The vari-
ous components of the UPR signaling pathways play a role in the
regulation of lipid metabolism.

IRE1c-XBP1 PATHWAY

IREla-XBP1 pathway is one of three main branches of UPR,
which has been identified as a critical regulator of hepatic lipid
metabolism. Hepatic-specific deletion of IREla increased hep-
atic lipid levels and reduced plasma lipid by altering several genes
involved in hepatic lipid metabolism under ER stress conditions
such as C/EBPB, C/EBPS, peroxisome proliferator-activated recep-
tor y (PPARY), and enzymes involved in triglyceride biosynthesis
(Zhang etal.,, 2011). Although, these results suggest a plausible
protective role of IREla from hepatic steatosis, the deletion of
IREla blocks the basal level of the UPR in liver which may lead
to an unresolved ER stress. Thus, it is still unclear whether the
induction of lipogenesis genes in IREla~/~ mice is due to the
loss of IREla function or elevated ER stress. Studies done by
Lee etal. (2008) reported that disruption of hepatic XBP-1 sig-
nificantly reduced serum triglyceride, cholesterol and fatty acids
levels by decreasing de novo hepatic lipogenesis in mice. In addi-
tion, the IRE1a-XBP1 pathway is also involved in regulation of
hepatic VLDL assembly and secretion (Wang etal., 2012). IREla
is required for efficient secretion of VLDL and LDL from hep-
atocytes under the condition of ER stress (Zhang etal., 2011). A
most recent study done by Rohrl et al. (2014) identified novel links
between ER stress and hepatic cholesterol metabolism. Activation
of acute ER stress reduced ABCA1 expression and induced ABCA1
redistribution to tubular perinuclear compartments in hepato-
cytes, which significantly diminished cholesterol efflux to apoA-I
and HDL formation (Rohrl etal., 2014).

PERK-ATF-4 PATHWAY

Protein kinase RNA-like ER kinase activation induces e[F2a phos-
phorylation, which causes translation attenuation that is required
to protect against apoptosis in response to ER stress. Although
the exact role of PERK in hepatic steatosis is still not completely
understood, a recent report also suggests that antipsychotic drugs
(APDs)-induced activation of PERK-p-elF2a signaling pathway

increases intracellular lipid accumulation through activation of
SREBP-1c and SREBP-2 in hepatocytes (Lauressergues etal.,
2012). Attenuation of elF2a in GADD34 transgenic mice sig-
nificantly altered the metabolism profile and reduced high fat
diet-induced hepatic steatosis (Oyadomariet al.,2008). Asa down-
stream transcriptional factor of the UPR, ATF4 avoids global
suppression of protein expression induced by p-elF2a due to a
different upstream signaling pathway. It has been shown that ATF4
deficiency preferentially attenuated hepatic lipogenesis via down-
regulation of PPARy, SREBP-1¢c, ACC and SCD expression without
affecting hepatic triglyceride production and fatty acid oxidation
(Li etal, 2011; Xiao etal.,, 2013). A recent study further identi-
fied that activation of PERK-elF2a-ATF4 pathway under ER stress
condition is required for hepatic VLDL receptor up-regulation in
hepatocytes, which is responsible for intracellular accumulation of
triglycerides and hepatic steatosis (Jo etal., 2013). Furthermore,
attenuation of global translation by activation of PERK-elF2a
pathway also decreases ApoB expression, which further promotes
hepatic steatosis.

ATF6 PATHWAY

Both ATF6 and SREBPs are activated by the same proteases (S1P
and S2P) in the Golgi (Sakai etal., 1998; Ye etal., 2000; Horton
etal., 2002b). Several independent studies have shown that ATF6
and XBP-1 share similar DNA binding specificities (Yoshida etal.,
2000, 2001; Acosta-Alvear etal., 2007; Misiewicz etal., 2013). In
addition, ATF6 and XBP-1 are able to form a heterodimer and
regulate down-stream target genes (Yamamoto etal., 2007). Sev-
eral recent studies in ATF6a knockout mice indicate that ATF6
also plays an important role in regulating hepatic lipid home-
ostasis (Rutkowski et al., 2008; Yamamoto etal., 2010). Similar to
IREla, deletion of ATF6a does not result in an apparent phe-
notype under physiological conditions. However, under ER stress
conditions, ATF6a knockout mice exhibited severe liver injury and
hepatic steatosis caused by inhibition of fatty acid p-oxidation and
VLDL formation (Yamamoto etal., 2010). In addition, the CHOP
expression is significantly up-regulated while PPARa expression
and ApoB-100 protein levels are decreased in the livers of ATF6a
knockout mice (Rutkowski etal., 2008; Yamamoto etal., 2010).
A recent study in zebrafish with fatty liver disease demonstrated
that ER stress induces fatty liver disease. During chronic ER stress,
ATF6 promotes steatosis. However, ATF6 prevents acute ER stress-
induced steatosis. This study suggest that ATF6 can play both
protective and pathological roles in fatty liver disease (Cinaroglu
etal., 2011).

ER STRESS MASTER REGULATOR-GRP78/BiP

GRP78/BiP is a glucose-regulated protein that functions as a
molecular chaperone in the ER (Mote etal., 1998). As described
in previous section, GRP78 acts as a master regulator of the
activation of UPR signaling pathways. Numerous studies have
indicated that ER stress is an important component of the
hepatic steatosis and insulin resistance in obese rodent mod-
els (Kammoun etal., 2009; Chen etal., 2013; Teodoro-Morrison
etal., 2013). GRP78 plays a critical role in maintaining hep-
atic lipid homeostasis. Overexpression of GRP78 prevents ER
stress-induced SREBP-1c¢ proteolytic cleavage and reduced hepatic
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steatosis (Kammoun etal.,, 2009). It also has been reported
that overproduction of GRP78 prevents palmitate-induced ER
stress and cytotoxicity in human HepG2 cells (Gu etal., 2010)
and high fat diet-induced type 2 diabetes in mouse mod-
els (Teodoro-Morrison etal., 2013). A most recent study fur-
ther indicated that GRP78 is able to prevent oxidative stress-
induced injury by inhibiting lipid peroxidation (Suyama etal.,
2014).

C/EBP HOMOLOGOUS PROTEIN

C/EBP homologous protein is a proapoptotic transcriptional fac-
tor downstream of all three UPR signaling pathways. Numerous
evidences suggest that CHOP activation promotes cell apopto-
sis and induces tissue injury. In absence of CHOP, both cells
and animals are protected against various pharmacological and
physiological insults (Tabas and Ron, 2011). It has been shown
that CHOP deficiency attenuates cholestasis-induced liver fibrosis
and methionine-choline-deficient (MCD) diet-induced steato-
hepatitis, fibrosis, and carcinogenesis in mice (Tamaki et al., 2008;
Toriguchi etal., 2013). In a murine model of intragastric ethanol
feeding, CHOP null mice have remarkable absence of hepatocellu-
lar apoptosis, but no protection against alcohol-induced steatosis
(Ji etal., 2005). In human liver cell lines, saturated fatty acids
induce ER stress and apoptosis via the PERK/ATF4/CHOP (Cao
etal,, 2012). Our recent studies suggest that CHOP is a major
player in human immunodeficiency virus protease inhibitor-
induced hepatic lipotoxicity in mice (Wang etal., 2013). Studies
done by Chikka etal. (2013) further suggest CHOP has a non-
apoptotic role in regulating hepatic metabolic genes during ER
stress. In addition, a recent study reported that CHOP expres-
sion is up-regulated in human hepatocellular carcinoma (HCC)
and two mouse HCC models. CHOP expression contributes
to hepatic carcinogenesis by promoting inflammation and cell
apoptosis (DeZwaan-McCabe etal., 2013). These studies indicate
CHOP is a common contributing factor in ER stress-induced liver
injury.

THERAPEUTIC POTENTIAL TARGETING ER STRESS IN
METABOLIC DISEASES

Chronic ER stress has been implicated in the pathogenesis of
metabolic diseases such as a diabetes, obesity, cardiovascular dis-
eases as well as fatty liver disease (Colgan etal., 2011; Malhi and
Kaufman, 2011; Mollica etal., 2011; Bechmann et al., 2012; Cnop
etal., 2012). Targeting the specific UPR signaling pathways to
attenuate ER stress and UPR activation would provide opportu-
nities in developing new therapeutic strategies in a wide array
of diseases. Several studies have shown the promising effects of
small chemical chaperones on alleviating the UPR activation in
animal models, such as 4-phenylbutyric acid (4-PBA) and tau-
roursodeoxycholic acid (TUDCA; Heubi et al., 2002; Ozcan etal.,
2006; Basseri etal., 2009; Engin and Hotamisligil, 2010; Lee etal.,
2010). Both 4-PBA and TUDCA have been approved by US Food
and Drug Administration (FDA) for treating children with urea-
cycle disorders and cholestatic liver disease, respectively. However,
more clinical studies are needed to validate the potential applica-
tion of these chemical chaperones in treating ER stress-associated
metabolic diseases.

CONCLUSION

Hepatic lipid homeostasis requires integration of multiple sig-
nals. A significant amount of evidence indicates that activation
of ER stress signaling pathways play a critical role in various
diseases associated with dysregulation of hepatic lipid metabolism.
Although acute ER stress response helps restore ER homeosta-
sis, prolonged or chronic ER stress activation contributes to
development of various metabolic diseases including NAFLD,
type 2 diabetes, and atherosclerosis by inducing widespread
pathologic apoptosis (Tabas and Ron, 2011). The balance of
the UPR signaling pathways, such as ATF6, IRE1/XBP1, and
PERK/ATF4, is critical for maintaining cellular homeostasis.
However, the exact mechanisms underlying ER stress-induced
disruption of hepatic lipid homeostasis remains to be fully iden-
tified. Recent studies have shown that ER stress is also closely
linked to inflammation and autophagy, which are two impor-
tant players in regulating hepatic lipid metabolism (Ogata etal.,
2006; Yorimitsu etal., 2006; Hoyer-Hansen and Jaattela, 2007;
Yorimitsu and Klionsky, 2007; Hotamisligil, 2010; Hummasti
and Hotamisligil, 2010; Mollica etal., 2011; Qiu etal., 2011;
Adolph etal., 2012; Hasnain etal., 2012; Kolattukudy and Niu,
2012). The contribution of autophagy to lipid metabolism has
been reviewed in several excellent reviews (Singh, 2010; Amir
and Czaja, 2011; Czaja, 2011; Ding etal., 2011; Lavallard etal.,
2012). Elucidating the signaling pathways of ER stress and its
intertwining with other intracellular signaling components not
only furthers our current understanding of lipid metabolism
in a central metabolic organ, but also helps develop an effec-
tive approach that can be used to treat patients with metabolic
diseases.

A growing body of evidence links ER stress and UPR activation
to diseases associated with lipid metabolism. The UPR signaling
pathways and activation of transcription factors such as XBP1
and ATF6 have novel roles in controlling the transcriptional reg-
ulation of lipogenesis. While IREla itself is protective against
ER-stress-induced lipogenesis and hepatic steatosis, its down-
stream mediator XBP1 promotes transcription of genes involved
in fatty acid and cholesterol biosynthesis. Phosphorylation of
elF2a downstream of PERK affects the transcriptional activity of
C/EBPs, PPARY, and SREBP-1c thereby leading to lipid accumula-
tion and hepatic steatosis under high-fat-diet conditions. Similar
to IREla, ATF6a also protects against ER stress-induced steatosis
and lipid droplet formation in mice. Furthermore, nuclear ATF6
attenuates SREBP2-mediated lipogenesis. The exact mechanisms
by which ER stress signaling pathways affect lipid homeostasis are
incompletely understood. Given the temporal differences in the
activation of the three arms of the UPR, a closer examination of
each branch of the UPR will allow for a better understanding of
how various components of this signaling network impact lipo-
genesis and disease progression. Such studies will further enhance
our understanding of the biological and pharmacological tools
needed to effectively treat ER-associated diseases.
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