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In statistical data analysis, penalized regression is considered an attractive approach for its
ability of simultaneous variable selection and parameter estimation. Although penalized
regression methods have shown many advantages in variable selection and outcome
prediction over other approaches for high-dimensional data, there is a relative paucity
of the literature on their applications to hypothesis testing, e.g., in genetic association
analysis. In this study, we apply several new penalized regression methods with a novel
penalty, called Truncated Li-penalty (TLP) (Shen et al., 2012), for either variable selection,
or both variable selection and parameter grouping, in a data-adaptive way to test for
association between a quantitative trait and a group of rare variants. The performance
of the new methods are compared with some existing tests, including some recently
proposed global tests and penalized regression-based methods, via simulations and an
application to the real sequence data of the Genetic Analysis Workshop 17 (GAW17).
Although our proposed penalized methods can improve over some existing penalized
methods, often they do not outperform some existing global association tests. Some
possible problems with utilizing penalized regression methods in genetic hypothesis
testing are discussed. Given the capability of penalized regression in selecting causal

variants and its sometimes promising performance, further studies are warranted.
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1. INTRODUCTION

Genome-wide association studies (GWAS) have uncovered many
common variants (CVs) associated with complex diseases, but
the proportion of variance explained by the identified CVs is
often low (Maher, 2008). With the recent advance of sequencing
technologies, analysis of rare variants (RVs) has become a feasi-
ble alternative. Recent studies have demonstrated that some RVs
are associated with complex disease. For example, Kotowski et al.
(2006) found that multiple RVs in gene PCSK9 are associated with
plasma levels of low-density lipoprotein cholesterol.

In this study, we propose applying some new penalized regres-
sion methods to test for association between a quantitative trait
and multiple RVs. Differing from the usual application of penal-
ized regression methods to variable selection or risk prediction
for high-dimensional data (Kooperberg et al., 2010; Austin et al.,
2013), here we focus on their application to hypothesis testing
on a quantitative trait in a relatively low-dimensional setting.
In such a setting, one commonly used statistical test is the
F-test in linear regression. For example, in simple regression,
a trait Y is regressed on each of multiple variants sequentially.
However, because of the extremely low minor allele frequency
(MAF) of a RV, a test to detect the association between a trait
and a single RV might be low powered. Also, this approach
may be too conservative due to a stringent control for mul-
tiple testing, e.g., by the Bonferroni correction to control the
family-wise error rate. In addition, ultimately, complex diseases

are expected to be affected by a combination of multiple genetic
variants. Thus an analysis in which a group of variants are
tested simultaneously for their joint effects on the trait may
be more powerful. In multiple regression, to assess any asso-
ciation between a trait and k RVs, all k RVs are added to a
regression model. However, as k increases, the statistical power
might decrease due to the cost of large degrees of freedom (DF),
k. To avoid the large DF and to aggregate information across
multiple RVs, one common strategy is to pool or collapse mul-
tiple RVs in a region or gene (Li and Leal, 2008; Madsen and
Browning, 2009). One such attempt is the Sum test (Pan, 2009),
which was developed to utilize joint effects of multiple variants
while reducing the DE. With only 1 DE, the Sum test enhances
power under some scenarios (Chapman and Whittaker, 2008;
Pan, 2009). However, it is noted that the performance of the
Sum test depends on the directions of the variants’ associations
with a trait. Thus, in an extreme case where a half of the vari-
ants are positively associated with the trait and the other half
are negatively associated with similar effect sizes, the positive
and negative effects may cancel out, leading to the poor perfor-
mance of the Sum test and other burden tests (Han and Pan,
2010; Li et al.,, 2010). In addition, in the Sum test or other
pooling-based burden tests, combining or collapsing all variants
into just one group ignores the variants’ possibly varying effect
sizes, and thus may not work well in those situations. In par-
ticular, the Sum test and many burden tests perform poorly if
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many null (i.e., non-associated) RVs are present (Basu and Pan,
2011). Consequently, the Sum test and other pooled association
tests might be low powered.

On the other hand, to deal with high-dimensional genetic and
genomic data, penalized regression methods have received much
attention, especially those based on the Lasso penalty (Tibshirani,
1996; Kooperberg et al., 2010). Penalized regression has been
considered attractive for its potential of simultaneous variable
selection and parameter estimation. In particular, several authors
have studied the performance of penalized regression in genetic
association analysis (Guo and Lin, 2009; Tzeng and Bondell, 2010;
Zhou et al., 2011). However, the penalties used therein are typi-
cally based on the Lasso, which is known to give biased parameter
estimates and possibly inconsistent variable selection. In contrast,
one of the very recently developed state-of-the-art penalties, the
truncated L;-penalty (TLP) (Shen et al., 2012), overcomes the
above shortcomings of Lasso. The TLP approximates the Ly-loss
and reduces the bias of a parameter estimate from the popular
Lasso or L;-penalty. To investigate whether an application of TLP
would boost statistical power in genetic association testing, in
this study we apply the TLP for variable selection, denoted TLP-
S, and for both variable selection and parameter grouping (Zhu
et al., 2013), denoted TLP-SG, in a data-adaptive way, to select
and group variants to reduce the DF as in the Sum test, while
reducing the downward bias of the parameter estimates based
on an Li-type penalty. We compare the TLP-S and TLP-SG to
the Lasso and graph-fused Lasso (gflasso) (Kim and Xing, 2009).
The gflasso also pursues parameter grouping with an L;-penalty.
Specifically, the gflasso shrinks two variants’ effect sizes toward
each other by penalizing their difference |8; — (j, /') By|, where
either r(j, ) = 1 (called gflasso,—1) or r(j, ) is the sign of the
correlation between the two variants j and ' (called flasso, = cor)-
There are two main differences between our proposed TLP-SG
and gflasso. First, TLP-SG shrinks the absolute values of the two
parameters toward each other by penalizing ||ﬂj| — |By]- In this
way, it desirably allows two variants to have similar effect sizes
but opposite association directions. However, such a penalty is
non-convex and thus computationally more challenging. Second,
by the use of TLP-based grouping (see details later), TLP-SG
shrinks |B;| and |By| toward each other only if their difference
is relatively small (as compared to a tuning parameter to be
decided), thus, for example, avoiding severely biasing the estimate
of the effect size of an associated variant toward 0 by shrink-
ing it toward the null effect of a null variant. We note that,
although penalized regression methods have been widely used
and studied, their applications to the current context with RVs
are much more limited; in particular, we are not aware of any
applications of TLP-S, TLP-SG and gflasso to association testing
of RVs.

This paper is organized in four sections. Section 2 provides a
brief review of some existing association tests to be compared,
and then introduces our proposed TLP-based tests. In section
3, we compare the performance of the methods with simulated
data and with an application to the Genetic Analysis Workshop
17 (GAW17) sequence data (Almasy et al., 2011). Finally, the
Discussion section summarizes the results, and suggests some
potential problems for future study.

2. METHODS

2.1. SOME EXISTING ASSOCIATION TESTS

We briefly review some existing global tests based on the ordinary
least squares (OLS) estimates. Given n independent observations
(Y;, X;), i=1,...,n, with Y; as a quantitative trait and a vec-
tor X; = (X1, . .., Xix) as genotypes of k variants for subject 7, we
would like to test for any possible association between the trait
and genotypes. We use the dosage coding for Xj;: Xj; = 0, 1, or 2,
representing the count number of one of the two alleles present
in variant j of subject i. A multi-locus association analysis is based
on fitting a linear model,

k
Yi=po+ ) XiBj+ei (1)

j=1

where the errors €; are assumed to be independently drawn
from N(0, 0%), a Normal distribution with mean 0 and vari-
ance o2, A global test of any possible association between the
trait and k variants can be formulated as testing on the mul-
tiple parameters Bjs for j =1, ..., k with null hypothesis Hy :
B =(B1,...,Br) =0 by an F-test, which is based on the OLS
estimates that minimize the residual sum of squares. A potential
problem with the test is the power loss due to the large variance
of ,3]- since the MAFs of RVs are small.

We also apply other four association tests: the Score, the sum
of squared score (SSU), its weighted version SSUw (Pan, 2009),
and the univariate minP (UminP) tests. The Score test is popular
in general statistics while the UminP test is most widely used for
CVs in GWAS; on the other hand, Basu and Pan (2011) showed
that the SSU and SSUw tests were powerful in RV association test-
ing for case-control studies. Here, as a secondary contribution,
we extend the SSU and SSUw tests to the case with a quantita-
tive trait. All the four tests are based on the score vector U and its
covariance matrix V under Hy:

U=) (Yi- VX,

i=1

V=Cow(U)=6; Y (Xi—X)(X; — X)T,

i=1

where Y =37 Vi/n, X =1 Xi/n,and 67 = Y7 (V; —
Y)?/(n — 1) is the estimate of o2 under Hy. The corresponding
four test statistics are
TScore = UTV_IU»
Tssy = U'U,
Tssuw = U'V;'U with Vg = Diag(V),

k o
TUminp = Erfi( Ui /v,

where Uj is the jth element of U and v; is the (j, j)th diagonal ele-
ment of V. Under Hy, asymptotically Tsc has a X]f distribution,
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each of Tssy and Tssyyw has a mixture of chi-squared distribu-
tions (Pan, 2009), and the p-value of Tyy;,p can be numerically
obtained (Conneely and Boehnke, 2007).

Next, we extend the Sum test (Pan, 2009) and its modi-
fied version, a data-adaptive Sum (aSum) test (Han and Pan,
2010), to the case with a quantitative trait. The Sum test
was originated to model multiple variants jointly while induc-
ing a minimum number of DF: while including all the vari-
ants in the linear model, it assumes that the variants all have
the same effect size (and direction), B, as in the following
model:

k
Yi=pBeo+ ) XiPe+ei (2)

j=1

Fitting (Equation 2) is equivalent to conducting a simple regres-
sion of Y on a new covariate, the sum of the genotypes over the
multiple variants. To address the question of whether any associa-
tion between the disease and the variants exists, one simply needs
to test Hp : B, = 0, without the need for multiple testing adjust-
ment. The main advantage of the Sum test is that, because it tests
on only one parameter f, there will be no power loss due to the
large DF. The common association parameter S, is a weighted
average of the individual a1, ..., Bm k in the marginal mod-
els Y; = Bum,o + XijBm,j +€;j for j=1,...,k (Pan, 2009). On
the other hand, the main problem of the Sum test is its depen-
dence on the signs of By, js or on the coding of each variant (i.e.,
which allele is chosen as the reference category). If the signs are
not the same, the test may have a quite small A, and thus low
power. To overcome the limitation of the Sum test, Han and Pan
(2010) proposed the aSum test for a case-control study design,
which can be equally applied to quantitative traits as the fol-
lowing. (1) For each variant j, flip its coding to X"‘]‘. =2-X;if
ﬁM,j < 0 and its p-value pyrj < @ in the marginal model; other-
wise use the same coding X_"J‘. = X . (2) Fit the model (Equation 2)
with the new coding X*. To test Hy in the aSum test, we use
a permutation-based log-likelihood ratio test (LRT), which is
asymptotically equivalent to the score test. For the choice of «y,
we use the same value as recommended by Han and Pan (2010),
0.1, to prevent reduced power when a too small or too large o is
used.

While the F-test is based on OLS estimates, in next section we
apply some penalized regression methods, the Lasso, gflasso and a
recently developed TLP for either only variable selection (TLP-S)
or both variable selection and parameter grouping (TLP-SG). In
short, both the Lasso and TLP-S consider only variable selection,
while the gflasso and TLP-SG pursue parameter grouping along
with variable selection to improve power by striking a better bal-
ance between goodness-of-fit and reduced DF in the joint model
(Equation 1).

2.2. PENALIZED REGRESSION BASED TESTS

2.2.1. Parameter estimation from penalized regression

Given a vector of traits Y = (Y1, ..., Y;)" and a design matrix for
k variants X = (X1, ..., X), the Lasso estimate of 8 is obtained
from the penalized least squares function:

k

N 1
B = argmin=||Y — XBI> + 1Y _ IBil, (3)
g2 et

where a large A automatically yields some components of f as
0, realizing variable selection. While Lasso does effective vari-
able selection, its estimates are always biased. To overcome the
issue, Shen et al. (2012) proposed a truncated Lasso(L;)-penalty
(TLP) J:(|x]) = min(%, 1), which, as T — 0T, tends to the Lo-
loss, I(|x| # 0). The degree of approximation by TLP is controlled
by a tuning parameter, t. See Figurel for a display over the
different values of 7. Then the TLP-estimate f is obtained from

k
f= arg;ninénY —XBIP 40 Y T (B, (4)

j=1

and we denote (Equation 4) as TLP-S. The most interesting fea-
ture of the TLP is that only smaller | 8j|’s less than a threshold  are
penalized, hence realizing variable selection (if some are shrunken
to 0) while avoiding penalizing larger |B;|’s and thus leading to
their almost unbiased estimates.

While both the Lasso and TLP-S consider only variable selec-
tion, an alternative way to reduce model complexity is grouping
pursuit (Shen and Huang, 2010). To investigate the grouping
effects on a test’s power, we apply two recent penalized group-
ing methods, gflasso and TLP-SG. The 8 estimate from gflasso is
based on the following objective function:

k
N 1
B = argmin—||Y — XB|* + A E |Bjl
g2 j=1

+h2 ) 18— (. )8y, (5)

i<f

J(BP

T T T T T T T T
-1.0 -05 -0200 02 05 1.0 15

B

FIGURE 1 | Truncated Lq-penalty (TLP) function J,(|8;|) with 7 = 0.2,
0.5, and 1 (as solid, dashed and dotted lines, respectively).
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where the first penalty is used for variable selection and the sec-
ond is to encourage parameter grouping. r(j,j) is the sign of
the correlation between two variants X.; and X.;, which is used
to approximate the target |B;| ~ |B;]; this method is denoted
gflasso, — cor. On the other hand, if 7(j, /') = 1 is used, the penalty
targets 8; ~ Bj.

The TLP-SG estimate of 8 comes from

k
~ o1
B = argmlnEHY—XﬂH2 + A1 Z]r(|,3j|)
B =
j=1

+x2 Y T (18] — 1By

J<i

) (6)

where the first penalty is for variable selection while the sec-
ond shrinks the difference of |g;|’s if a difference is within the
upper bound 7. The number of the groups of equal parame-
ter estimates is a decreasing function of ;. Thus, the tuning
parameters (A1, A2, T) are selected to balance between the model
complexity and model goodness-of-fit, which presumably may
contribute to enhanced power. As a comparison, in the Sum test
all parameters (or variants) are forced to belong to the same sin-
gle group even if the variants’ associations with the trait are quite
different both in effect sizes and directions; the TLP-SG method
attempts to conduct a more precise grouping over all variants in
a data-adaptive way.

To compute B in Lasso, gflasso, TLP-S and TLP-SG, we used
the Feature Grouping and Selection Over an Undirected Graph
(FGSG) package of Yang et al. (2012), which is a C library with
interface to MATLAB and is quite fast to run. Its computing effi-
ciency allowed us to estimate separate tuning parameters for each
permuted dataset to control the type I error as explained in the
next section.

2.2.2. Hypothesis testing

To test the null hypothesis Hp : = 0 in Equation (1), we con-
duct a permutation-based test, in which the p-value is calculated
by comparing a test statistic T applied to the original dataset to the
ones Téb) applied to the B permuted datasets forb = 1, ..., B. We
use permutation to control the Type I error since the null distri-
bution of a test statistic based on a penalized regression estimate
is in general difficult to obtain. The permutation-based testing
procedure follows:

Step 1. With the original data {(Yi,)A(,-)}, we solve a penalized
regression problem to obtain 8 in Equation (1).

~

Calculate a test statistic T = T(S).

By repeatedly permuting the observed Y of the original
data, we obtain B sets of permuted data {(Yi(h), X;)} for
b=1,...,B.Foreach permuted data set, {(Yi(h), X))}, we
repeat the Steps 1 and 2, obtaining the null statistics Téb).

Step 4. The final p-value is ZE: 1 (T < T(()b)) /B.

Step 2.
Step 3.

We apply each of several test statistics in Step 2. First, across all
penalized methods, we use a 1-df F-statistic (1-df) to test the asso-
ciation between Y and X8, where f is the penalized estimate of 3

in Step 1. Specifically, we fit a linear model
Yi=0ap+ (X,'B) o+ €,

and test Hj, : o = 0. This 1-df test uses variable selection and pos-
sibly parameter grouping result from the corresponding penalized
method, while allowing testing with only 1 DE Second, for
TLP-SG, we also apply the corresponding SSU and SSUw tests,
where the test statistics Tssy and Tssyy,, are both based on the
selected variables from the corresponding penalized estimates.
Specifically,

Tssy = UY U,
Tssuw = U* (VH)T'U*  with V7 = Diag(V*),

where U* is a sub-component vector of the score vector U corre-
sponding to | 3j| # 0, and | ,E?jl > 0.001 is considered as non-zero.
Similarly, V* is the corresponding sub-matrix of the covariance
matrix V. Note that the grouping information is not used.

2.2.3. Selection of tuning parameters
To select the suitable tuning parameters, we apply a grid-search
with Akaike’s information criterion (AIC) (Akaike, 1974):

AIC = —2logL + 2p,

where log L = (—nlog(6%) — n— p — 1) /2 is the log-likelihood
with the penalized estimate plugged-into model (Equation
1), and 6% = Z?Zl (Yi— Bo— Xi/é)z/(n — p — 1). The effective
number of the parameters, p, in AIC is computed as the number
of non-zero | Bj I’s for Lasso and TLP-S, as the number of non-zero

unique ;s for gflasso, — 1, and as the number of non-zero unique

|Bj|’s for gflasso, —r and TLP-SG, respectively. For A in Lasso,
the one resulting in the smallest AIC out of 50 equally spaced
points in [0.001,10] is selected. Similarly, the values of each of 1,
A2 and T in other methods are searched over five equally spaced
grid points of [0.001, 1], [0.001, 0.5], and [0.001, 0.5], respec-
tively. For each permuted dataset (Yi(b), X;))forb=1,...,B, we

also estimate its own (k(lh), Agb)

I error.

3. RESULTS

3.1. SIMULATIONS

We consider two simulation schemes. In the first scheme, we gen-
erate only RVs with a total of 200 replicates and n = 400 in each
replicate. The permutation size is set as B = 100. For each repli-
cate, to generate k variants including six causal ones in linkage
disequilibrium (LD), as in Wang et al. (2007), two latent vectors
from multivariate normal distribution MVN(O,R) are simulated,
where R has a first order auto regressive (AR1) structure; the asso-
ciation between any two elements of the latent vector decreases by
p = 0.8 times as 1 lag increases. Then, the vector is dichotomized
to yield a haplotype with the minor allele frequency (MAF)
of each variant randomly chosen between 0.005 and 0.01. The
genotype data X; = (Xj1, ..., Xj)' for sample i is obtained by
adding two haplotypes together. Finally, Y; is generated from

, 7)) to properly control the type
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the randomly located six causal variants with o2 = 2 in model
(Equation 1), where the intercept Sy is set as 0.3 throughout the
simulations. The considered three cases are:

Case 1: B = (0.9, 0.9,0.9,0.9,0.9,0.9,0,...,0)
k—6
6 —

Case2: B =(1.2,12,1.2,-1.2,-1.2,-1.2,0,...,0)
N— —
6 k—6
Case3: 8 =(14,13,-12,1.2,-1.3,1.4,0,...,0).
N e’
6 k—6

In each case, we vary the number of non-causal RVs k-6 from 0
to 24 so that the total number of RVs, k, ranges from 6 to 30. The
Type L error is computed from the Y under Hy : 8 = (0, ..., 0)".

In the second scheme, multiple RVs and two CVs are gener-
ated to mimic the GAW17 data we use later. The frequency of one
allele for each CV is randomly distributed between 0.2 and 0.7,
and CVs may or may not be chosen as a causal variant in each
replicate. When a CV is randomly selected as a causal variant,
its effect size B; is scaled down to $;/10 in the following cases
to prevent its dominating association with the outcome. The
considered three cases for mixed RVs and CVs are:

Casel: §=(1,1,1,1,1,1,0,...,0)
N e N e’
6 k—6
Case2: 8 =(1.5,1.5,1.5,—-1.5,—-1.5,—-1.5,0,...,0)
N’
6 k—6
Case3: 8 =(1.1,1.3,-1.2,1.2,-1.3,1.1,0,...,0),
k—6
6 —

Figure 2 displays the TLP-S and TLP-SG solution paths of |4;]
over a tuning parameter given other(s), where two horizontal
lines at 1.2 and 0 give the true parameter values for Case 2 set-up
with only RVs. In contrast to piece-wise linear solution paths of
the Lasso estimates, the TLP solution paths are like step functions
as expected from an Ly-penalty (i.e., best subset selection).
Table 1 presents the simulation results for the RVs only set-
ups. The Type I error rates seem to be properly controlled under
the null for all cases, though there are some slightly inflated num-
bers, possibly due to the relatively small number of replicates
and/or permutation numbers. Under the alternative hypothe-
sis, in Case 1 where the causal associations are all in the same
direction, the Sum or aSum test beats other methods. Within
the class of penalized regression methods, TLP-SG with the SSU
or SSUw test statistics is most powerful; in particular, TLP-SG
with the SSUw statistic performs better than the F-test regard-
less of the number of non-causal RVs included. There seems to
be no gain with grouping in TLP-SG as compared to no group-
ing in TLP-S, and the 1df-test of TLP-SG works better than
gflasso, — cor unless the number of non-causal RVs is large at 24.
Overall, penalized regression methods do not significantly out-
perform the power over the Sum and aSum tests. In Cases 2
and 3, where the causal effect directions are mixed, the Sum

test works poorly as expected, while the aSum test has higher
power. Overall, either the SSU or SSUw test is the winner. In par-
ticular, the TLP-S- and TLP-SG-based tests do not significantly
improve over the SSU and SSUw tests, though they may per-
form better than those based on the Lasso and gflasso. Again,
a comparison between TLP-S and TLP-SG reveals that param-
eter grouping does not seem to contribute much to increased
power.

The results of the mixed RVs and CVs set-ups are listed in
Table 2. Note that, as discussed in Basu and Pan (2011), with
mixed RVs and CVs, the SSU test might not perform well. Overall,
the SSUw test is the winner. The penalized methods can perform
well in some situations, but they do not always outperform the
SSUw test. Among the penalized methods, the proposed TLP-S
and TLP-SG are competitive against the Lasso and gflasso.

An advantage of penalized methods over global tests is the
formers’ ability for variable selection, narrowing down possible
causal variants. We note that causal variant selection is an under-
studied problem in genetics, which will become more important
when we transition from association studies to causal inference.
On the other hand, variable selection via penalized methods or
any other methods has yet been fully investigated in the current
context with large n, small k, and more importantly with RVs.
In Table 3, we investigate their variable selection performance for
one simulation set-up; the results for other set-ups are similar
and thus omitted. We show the mean numbers of true positives
(TP) and false positives (FP), where a |/§j| > 0.001 is counted as
a positive (i.e., non-zero). As expected, the OLS estimates (and
the global tests) cannot conduct variable selection with the mean
TP and mean FP close to their maximum possible values. Among
the penalized methods, a method tends to be either more conser-
vative (fewer FP and fewer TP at the same time) or more liberal
(higher FP and higher TP). If we look at the ratio of FP over TP, it
seems that the Lasso and TLP-SG are best with the highest ratio,
especially for a larger number of non-causal RVs.

We compare the performance of the parameter estimates in
Table 4 for one simulation set-up; the results for other set-ups
are similar and thus omitted. As expected, the OLS estimates are
almost unbiased, but with the largest mean squared errors (MSEs)
due to their large variability. The penalized estimates all have
smaller MSEs and larger biases than the OLS estimates. Among
the penalized methods, the TLP-S and TLP-SG estimates have
much smaller biases, but larger variances and thus larger MSEs
than those of Lasso and gflasso. In particular, for a causal effect
(Bc), Lasso and gflasso shrink it more toward 0, while TLP-S and
TLP-SG give much less biased estimates.

3.2. MINI-EXOME SEQUENCE DATA

We apply the methods to the mini-exome sequence data from
the GAW17 (Almasy et al., 2011). The data set consists of 3205
autosomal genes with 24,487 variants on 697 subjects. The geno-
types are obtained from the sequence alignment files provided
by the 1000 Genomes Project for the pilot 3 study. The GAW17
data include 200 replicates of three simulated quantitative traits
named Q1, Q2, and Q4, where only Q1 and Q2 were influenced by
genetic factors. Here we use Q2, which is determined by 72 vari-
ants in 13 genes. The true effect sizes of all variants range from 0.2
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FIGURE 2 | Solution paths of |/§i|’s in a simulated dataset of Case 2 with
k = 22 RVs for TLP-S and TLP-SG over the values of a tuning parameter
given other(s). The true values of |8;|'s at 1.2 and 0 are given by two

horizontal lines. (A) TLP-S: T = 0.15. (B) TLP-S: A1 = 0.1. (C) TLP-SG:
(A2, ) = (0.01, 0.15). (D) TLP-SG: (A1, 7) = (0.02, 0.15). (E) TLP-SG: (A1, A2) =
(0.1,0.01).

to 1.2; all variants are positively associated with the trait Q2 but

in differential magnitudes.

In this study, we test on each of all causal genes (PLAT, SREBF1,
SIRT1, VLDLR, VNN3, PDGFD, BCHE, INSIG1, LPL, RARB,
VNNI, and VWEF) except GCKR, which contains just one SNP.
The number of causal variants (#C) in each gene affecting Q2,

and some summary statistics of their MAFs and pairwise correla-
tions (COR) are listed in Table 5. Within each gene, most variants
are RVs, but a few are CVs with their MAFs larger than 5%. First,
we test for any association between Q2 and all variants gene by
gene as shown in Table 6, and then test on each gene without its
CVs as shown in Table 7.
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Table 1| Empirical Type | error and Power at the nominal level « = 0.05 based on 200 replicates for the RVs only set-ups with six causal RVs

and a varying number of non-causal RVs.

Model fitting Test # of non-causal RVs # of non-causal RVs
statistics
0 8 16 24 0 8 16 24
Null Case 1
OLS F-test 0.030 0.080 0.040 0.060 0.715 0.480 0.340 0.260
OLS Score 0.030 0.080 0.035 0.055 0.710 0.470 0.320 0.245
OLS SSuU 0.030 0.060 0.045 0.045 0.830 0.660 0.510 0.405
OLS SSUw 0.035 0.080 0.055 0.060 0.810 0.625 0.500 0.380
OLS UminP 0.045 0.070 0.050 0.035 0.675 0.445 0.360 0.310
OLS Sum 0.055 0.075 0.040 0.075 0.915 0.685 0.525 0.460
OLS aSum 0.035 0.065 0.035 0.060 0.910 0.715 0.575 0.520
Lasso 1df 0.055 0.075 0.050 0.080 0.710 0.415 0.325 0.270
gflasso; = cor 1df 0.035 0.080 0.050 0.090 0.690 0.415 0.240 0.295
gflasso, =1 1df 0.035 0.070 0.050 0.075 0.685 0.375 0.225 0.275
TLP-S 1df 0.050 0.085 0.050 0.075 0.720 0.450 0.305 0.255
TLP-SG 1df 0.055 0.085 0.055 0.070 0.700 0.450 0.290 0.250
TLP-SG SSuU 0.055 0.080 0.040 0.060 0.700 0.520 0.440 0.390
TLP-SG SSUw 0.040 0.075 0.045 0.070 0.790 0.500 0.365 0.320
Case 3

oLs F-test 0.635 0.515 0.440 0.455 0.745 0.640 0.550 0.490
OLS Score 0.625 0.500 0.425 0.395 0.745 0.635 0.525 0.470
OLS SSuU 0.590 0.530 0.505 0.445 0.710 0.645 0.595 0.555
OLS SSUw 0.570 0.505 0.475 0.445 0.715 0.660 0.570 0.525
OLS UminP 0.450 0.410 0.400 0.310 0.665 0.595 0.425 0.425
OLS Sum 0.145 0.125 0.145 0.100 0.485 0.310 0.260 0.215
OLS aSum 0.450 0.430 0.355 0.340 0.665 0.590 0.535 0.500
Lasso 1df 0.615 0.465 0.405 0.390 0.765 0.585 0.465 0.435
gflasso; = cor 1df 0.620 0.530 0.435 0.480 0.765 0.600 0.480 0.520
gflasso, =1 1df 0.615 0.535 0.435 0.425 0.750 0.585 0.475 0.495
TLP-S 1df 0.615 0.505 0.455 0.425 0.760 0.630 0.530 0.475
TLP-SG 1df 0.615 0.485 0.445 0.415 0.755 0.605 0.450 0.450
TLP-SG SSuU 0.565 0.470 0.460 0.445 0.705 0.605 0.510 0.525
TLP-SG SSUw 0.585 0.505 0.460 0.415 0.745 0.585 0.485 0.475

Maximum power in bold.

In Table 6, when both RVs and CVs within a gene are included,
the identity of the most powerful test differs across the genes: the
F-test is the winner for the genes VLDLR, VNN3, PDGFD, and
LPL; however, for the genes VLDLR, BCHE, VNNI1, and VWE,
the SSU or SSUw test is the best. The two gflasso-based tests work
quite similarly over all genes. The TLP based tests perform best
for the genes SREBF1, RARAB, VNNI1, and INSIG1. After remov-
ing a few CVs in each gene (Table 7), the SSU test recovers good
power for the genes PDGFD, BCHE and LPL. The Sum test is the
winner for gene BCHE, while the F-test based on the OLS esti-
mates perform best for genes VNN3, SREBF1, and PDGEFD. For
gene VNNI, the TLP-SG with the SSU statistic has the highest
power.

A potential advantage of penalized regression is variable
selection, which is missing from existing global tests. Table 8
shows the results of causal variant selection by the penalized
methods. Overall, each penalized method could eliminate some

non-associated variants at the cost of omitting some causal ones.
In general, in agreement with simulated data, the Lasso and TLP-
SG seem to select fewest variants, including both TPs and FP,
while TLP-S and gflasso give higher numbers of both TPs and FPs.

4. DISCUSSION

In this study we have conducted hypothesis testing to detect the
association between a quantitative trait and multiple RVs based
on some new penalized regression methods. In addition to the
traditional use of penalized regression for variant selection, we
have also considered several state-of-the-art grouping pursuit
methods that smooth the effect sizes of the variants, either 8; or
|Bil, in a data-adaptive way, which can be considered as a general-
ization of the Sum and other genotype pooling/collapsing-based
burden tests. In particular, our proposed TLP-SG overcomes sev-
eral limitations of the Sum and other burden tests. First, by vari-
able selection, the result of TLP-SG is presumably less influenced
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Table 2 | Empirical Type | error and Power at the nominal level « = 0.05 based on 200 replicates for the RVs + CVs set-ups with six causal
variants and a varying number of non-causal ones.

Model fitting Test # of non-causal variants # of non-causal variants
statistics
0 8 16 24 0 8 16 24
Null Case 1
OLS F-test 0.025 0.045 0.065 0.050 0.760 0.5620 0.355 0.385
OLS Score 0.020 0.045 0.065 0.035 0.760 0.515 0.345 0.350
OLS SSuU 0.060 0.050 0.090 0.030 0.490 0.210 0.125 0.110
OLS SSUw 0.040 0.035 0.060 0.035 0.845 0.695 0.510 0.510
OLS UminP 0.030 0.055 0.060 0.025 0.715 0.540 0.380 0.410
OLS Sum 0.055 0.060 0.075 0.045 0.695 0.450 0.315 0.315
OLS aSum 0.050 0.060 0.065 0.045 0.665 0.435 0.325 0.340
Lasso 1df 0.030 0.045 0.060 0.045 0.750 0.5615 0.360 0.375
gflasso; = cor 1df 0.030 0.030 0.070 0.015 0.760 0.450 0.275 0.415
gflassor—1 1df 0.030 0.030 0.070 0.015 0.765 0.455 0.290 0.385
TLP-S 1df 0.035 0.050 0.050 0.030 0.750 0.540 0.360 0.370
TLP-SG 1df 0.035 0.035 0.065 0.045 0.750 0.5615 0.335 0.315
TLP-SG SSuU 0.075 0.060 0.055 0.065 0.495 0.230 0.140 0.105
TLP-SG SSUw 0.030 0.055 0.055 0.045 0.845 0.675 0.435 0.375
Case 2 Case 3

oLS F-test 0.800 0.765 0.720 0.650 0.655 0.585 0.415 0.375
oLS Score 0.800 0.755 0.710 0.630 0.645 0.580 0.400 0.360
OLS SSuU 0.275 0.175 0.155 0.160 0.200 0.140 0.110 0.105
OLS SSUw 0.715 0.705 0.715 0.665 0.640 0.615 0.485 0.415
OLS UminP 0.640 0.615 0.550 0.505 0.530 0.510 0.370 0.345
OLS Sum 0.190 0.120 0.125 0.100 0.195 0.150 0.090 0.110
OLS aSum 0.345 0.275 0.270 0.315 0.290 0.225 0.195 0.210
Lasso 1df 0.805 0.695 0.640 0.585 0.580 0.555 0.415 0.360
gflasso, = cor 1df 0.810 0.725 0.625 0.655 0.595 0.570 0.420 0.415
gflasso, -1 1df 0.805 0.725 0.620 0.655 0.590 0.5670 0.435 0.395
TLP-S 1df 0.790 0.730 0.680 0.615 0.600 0.570 0.395 0.390
TLP-SG 1df 0.795 0.730 0.620 0.600 0.600 0.555 0.400 0.310
TLP-SG SSuU 0.310 0.185 0.165 0.210 0.205 0.120 0.125 0.120
TLP-SG SSUw 0.750 0.720 0.650 0.550 0.675 0.560 0.460 0.390

Maximum power in bold.

Table 3 | Mean numbers of TP(sd)/FP(sd) of the methods in Case 2 with both RVs and CVs.

Method # of non-causal variants
0 8 16 24

oLS 5.9(0.2)/. 5.9(0.3)/7.9(0.4) 5.9(0.3)/15.7(0.5) 6.0(0.2)/23.5(0.7)
Lasso 4.4(1.7)/. 3.7(1.6)/2.9(2.1) 3.5(1.7)/4.7(3.3) 3.2(1.7)/5.9(4.2)
oflasso; = cor 5.4(1.0)/. 4.8(1.5)/5.1(2.4) 4.1(2.0)/8.0(5.0) 3.5(2.2)/9.3(75)
gflasso, -1 5.2(1.1)/. 4.5(1.6)/4.8(2.4) 4.3(1.9)/8.9(5.4) 4.1(2.1)/12.3(8.7)
TLP-S 5.4(0.9)/. 4.7(1.1)/4.3(1.5) 4.4(1.1)/75(2.1) 4.3(1.1)/11.0(2.9)
TLP-SG 4.7(2.0)/. 4.3(1.8)/4.2(3.2) 3.6(1.6)/5.3(4.5) 3.5(1.5)/6.3(5.0)

When k = 6, FP is 0 and denoted as “." after “/"

by the presence of many non-associated variants to be tested.
Second, rather than pooling all the variants into a single group
or two groups, TLP-SG automatically determines the number
of groups to be formed based on the given data. Furthermore,

since TLP-SG shrinks the effects sizes |B;|, not ;, toward each
other, it is robust to varying association directions of the causal
variants. However, based on our studies on both simulated and
real sequence data, we found that TLP-SG and other penalized
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Table 4 | Means, sd’s and MSEs of some causal (8¢s) and non-causal (Bn¢s) variants’ regression coefficient estimates when k = 30 in Case 2

with both RVs and CVs.

Methods Bes =15 Bes=15 Bnes =0

Mean sd MSE Mean sd MSE Mean sd MSE
OLS 1.59 1.26 3.16 1.54 1.53 4.69 —0.04 1.37 3.77
Lasso 0.93 0.87 1.82 0.84 0.81 1.74 0.01 0.47 0.45
gflasso, = cor 0.88 0.93 2.1 0.80 0.86 1.96 0.01 0.57 0.64
gflasso, -1 0.83 0.92 2.15 0.74 0.86 2.05 0.02 0.55 0.61
TLP-S 1.35 114 2.60 1.25 1.15 2.70 —0.03 0.85 1.45
TLP-SG 1.28 1.16 2.72 1.29 1.15 2.70 0.01 0.85 144

Table 5 | MAFs (%) and pair-wise correlations (COR) in the values of (min, mean, max) for the 12 genes influencing the quantitative trait Q2 in

the GAW17 data.

Gene All Causal Non-causal
PLAT (0.072,2.098,45.12) (0.072,0.206,0.574) (0.072,2.855,45.12)
SREBF1 (0.072,0.699,7.747) (0.072,0.222,0.43) (0.072,1.04,7.747)
SIRT1 (0.072,0.858,16.71) (0.072,0.12,0.215) (0.072,1.332,16.71)
VLDLR (0.072,1.0479.469) (0.072,0.126,0.287) (0.072,1.435,9.469)
VNN3 (0.072,4.429,40.53) (0.072,2.06,9.828) (0.072,6.501,40.53)
PDGFD MAE (0.072,4.115,31.56) (0.072,0.2870.861) (0.072,6.303,31.56)
BCHE (0.072,0.625,14.56) (0.072,0.105,0.287) (0.072,1.076,14.56)
INSIG1 (0.072,0.775,3.587) (0.072,0.072,0.072) (0.072,1.829,3.587)
LPL (0.072,1.854,14.490) (0.072,0.598,1.578) (0.072,2.076,14.490)
RARB (0.072,0.352,1.363) (0.072,0.287.0.502) (0.072,0.367,1.363)
VNN1 (0.072,2.675,17.070) (0.574,8.824,17.070) (0.072,0.215,0.359)
VWEF (0.072,0.944,2.080) (0.072,0.323,0.574) (0.359,1.255,2.080)
PLAT (—0.143,0.002,0.753) (—0.008,—0.003,-0.001) (—0.143,0.007,0.753)
SREBF1 (—0.038,0.007,0.635) (—0.009,—-0.004,-0.001) (—0.038,0.024,0.635)
SIRT1 (—0.044,0.004,0.707) (—0.004,0.007,0.33) (—0.044,0.002,0.499)
VLDLR (—0.135,—0.001,0.331) (—=0.003,—0.002,—0.001) (—0.135,0.001,0.331)
VNN3 (—=0.422,—-0.002,0.59) (—0.104,-0.01,0.072) (—0.422,—-0.001,0.341)
PDGFD COR (—0.156,—0.007,0.276) (—0.007—0.004,—-0.001) (—0.156,—0.007,0.276)
BCHE (—0.044,0.001,0.499) (—0.005,0.004,0.499) (—0.044,-0.002,0.075)
INSIG1 (—0.010,0.009,0.128) (—0.001,—0.001,-0.001) (0.128,0.128,0.128)
LPL (—0.138,—0.002,0.215) (—0.010,—0.006,—0.002) (—0.138,—0.002,0.215)
RARB (—0.025,-0.003,0.073) (—0.004,—0.004,—0.004) (—0.025,—0.005,—-0.001)
VNN1 (—0.046,0.038,0.945) (0.055,0.055,0.055) (—0.005,0.091,0.945)
VWF (0.113,0.316,0.564) (0.265,0.265,0.265) (0.127,0.246,0.466)

methods sometimes might be more powerful than some existing
global tests, though they do not always outperform the SSU or
SSUw test. The discovery of no uniform gain of penalized meth-
ods over existing global tests is interesting and even surprising,
and can be due to non-optimal implementation of the penal-
ized methods in several aspects. First, the selection of the tuning
parameters based on the model selection criterion AIC may not
be optimal. As an example, in a simulated dataset, when we set
the tuning parameters to properly group the variants, the esti-
mates were quite close to the true values, but the corresponding
AIC was less desirable, leading to choosing other low perform-
ing tuning parameters. Importantly, there is no theory yet to
justify the applicability of AIC for the gflasso- and TLP-based

methods; in particular, it is unclear how to count the effective
number of parameters in the AIC. Alternatively, one may want
to try a more popular model selection method, multi-fold cross-
validation. However, for RVs as considered here, if we divide
the data into multiple folds, the training data may contain sev-
eral monomorphic variants, causing non-identifiability of their
corresponding effect sizes. Second, due to the repeated model-
fitting with many permuted datasets, to save computing time, we
only searched relatively few grid points for the tuning parameters,
which might not have covered some suitable tuning parameter
values. These are all issues to be addressed in the future.

Another non-convex penalty is SCAD (Fan and Li, 2001),
which as TLP aims to reduce the biases of large coefficient
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Table 6 | Empirical power based on the GAW17 data from 200
replicates of Q2, k, and nC denote the numbers of the total and
causal variants in a gene.

Table 7 | Empirical power based on the GAW17 data without CVs
from 200 replicates of Q2, k, and nC denote the numbers of the total
and causal RVs in a gene.

Model fitting Test Gene(k, nC) Model fitting Test Gene(k, nC)
stats stats

PLAT SREBF1 SIRT1 VLDLR VNN3 PDGFD PLAT SREBF1 SIRT1 VLDLR VNN3

(28,8) (24,10) (23,9) (278) (15,7) (11,4) (26,8) (23,10) (22,9) (24,8) (12,6)
OoLS F-test 0.070 0.275 0.360 0.155 0.640 0.340 OoLS F-test 0.070 0.295 0.305 0.135 0.435
OoLS Score 0.060 0.260 0.355 0.155 0.640 0.335 OoLS Score 0.065 0.295 0.305 0.135 0.430
OoLS SSuU 0.040 0.025 0.355 0.055 0.185 0.060 OoLS SSuU 0.040 0.095 0430 0.075 0.225
OLS SSUw 0.035 0.245 0.445 0.155 0.555 0.320 OLS SSUw 0.055 0.270 0.375 0.130 0.390
OLS UminP 0.065 0.185 0.420 0.120 0.555 0.310 OLS UminP 0.060 0.190 0.390 0.125 0.410
OoLS Sum 0.040 0.075 0.560 0.065 0.410 0.055 OoLS Sum 0.055 0.260 0.350 0.105  0.265
OoLS aSum 0.070 0.130 0.565 0.095 0.415 0.075 OoLS aSum 0.085 0.295 0.380 0.155 0.270
Lasso 1df 0.100 0.270 0.285 0.110 0.595 0.300 Lasso 1df 0.105 0.255 0.265 0.140 0.275
gflasso;—¢or 1df 0.085 0.195 0.225 0.135 0.555 0.290 gflasso, = cor 1df 0.105 0.195 0.220 0.110 0.255
gflasso,—1 1df 0.085 0.215 0.225 0.135 0.570 0.300 gflassor—1 1df 0.100 0.225 0.210 0.110  0.280
TLP-S 1df 0.065 0.290 0.330 0.130 0.630 0.325 TLP-S 1df 0.065 0.280 0.295 0.175 0.355
TLP-SG 1df 0.025 0.090 0.165 0.075 0.410 0.195 TLP-SG 1df 0.020 0.150 0.215  0.045 0.250
TLP-SG SSU 0.040 0.015 0.355 0.080 0.220 0.070 TLP-SG SSuU 0.035 0.090 0.350 0.070 0.265
TLP-SG SSUw 0.015 0.085 0.225 0.055 0.330 0.205 TLP-SG SSUw 0.000 0.125 0.235 0.035 0.215

BCHE INSIG1 LPL RARB VNN1 VWF PDGFD BCHE INSIG1 LPL  VNN1

(28,13) (5,3) (20,3) (11,2) (72) (6,2) (9,4) (27,13) (4,3) (173) (6,1)
OoLS F-test 0.375 0.065 0.305 0.135 0.750 0.110 OLS F-test 0.395 0.380 0.035 0.340 0.145
OLS Score 0.365 0.065 0.295 0.135 0.740 0.110 OLS Score 0.395 0.380 0.035 0.335 0.145
OoLS SSuU 0.040 0.090 0.050 0.100 0.945 0.170 OoLS SSuU 0.200 0.430 0.035 0450 0.195
OoLS SSUw 0405 0.055 0.300 0.130 0.715 0.210 OoLS SSUw 0.385 0.405 0.035 0.340 0.155
OLS UminP  0.300 0.060 0.285 0.110 0.820 0.170 OoLS UminP 0.330 0.305 0.050 0.305 0.115
OLS Sum 0.180 0.080 0.030 0.145 0.925 0.210 OLS Sum 0.155 0.505 0.035 0.145 0.035
OLS aSum 0.120 0.100 0.090 0.145 0.935 0.210 OLS aSum 0.195 0.465 0.075 0.245 0.135
Lasso 1df 0.315  0.0560 0.205 0.135 0.655 0.090 Lasso 1df 0.315 0.320 0.030 0.230 0.115
oflasso;—cor  1df 0.300 0.0565 0.220 0.120 0.720 0.110 gflassor—cor  1df 0.310 0.305 0.040 0.255 0.130
gflasso,— 1df 0.300 0.055 0.215 0.125 0.695 0.110 gflassor -1 1df 0.335 0.305 0.035 0.260 0.135
TLP-S 1df 0.355 0.060 0.270 0.160 0.720 0.110 TLP-S 1df 0.360 0.345 0.040 0.320 0.115
TLP-SG 1df 0.135 0.080 0.115 0.095 0.665 0.080 TLP-SG 1df 0.250 0.430 0.060 0.140 0.110
TLP-SG SSuU 0.045 0.110 0.040 0.070 0.945 0.140 TLP-SG SSuU 0.175 0.450 0.055 0.440 0.220
TLP-SG SSUw 0.155 0.075 0.135 0.085 0.675 0.145 TLP-SG SSUw 0.250 0.455 0.055 0.155  0.150

Maximum power in bold.

estimates resulting from the Lasso or L; penalty. Although SCAD
can be equally applied and compared here, we chose the TLP
as a representative of non-convex penalties for its good proper-
ties: as shown by Shen et al. (2012), Ly regularization is opti-
mal in variable selection, and its computational surrogate, TLP,
shares the same property for sufficiently small tau; furthermore,
the variable selection consistency of TLP regularization also led
to enhanced parameter estimation and prediction in numeri-
cal studies with finite sample sizes. Nevertheless, we note that,
penalized regression methods have been intensively studied for
high-dimensional data, but not for the type of data consid-
ered here, which are low dimensional but with RVs as sparse
predictors.

In summary, the established benefit of penalized regression for
variable selection and risk prediction for high-dimensional data

Maximum power in bold.

(Kooperberg et al., 2010) did not seem to directly translate into
substantial power gains in genetic association testing. In addition
to the current work, there exist three recent reports (Croiseau and
Cordell, 2009; Martinez et al., 2010; Basu et al., 2011) questioning
the effectiveness of the Lasso penalized regression in hypothe-
sis testing, while Basu et al. (2011) showed that several variable
selection approaches did not outperform some global tests (e.g.,
the SSU or SSUw test) for association analysis of CVs. Due to
the limitations mentioned above, we cannot conclude here that
any penalized regression method would not outperform exiting
global association tests; rather, further investigation on enhanced
tuning parameter selection and better choice of the test statistic is
warranted. Finally, we note that the capability of variable selection
by penalized regression can be useful, e.g., in narrowing down
causal variants.

Frontiers in Genetics | Statistical Genetics and Methodology

May 2014 | Volume 5 | Article 121 | 10


http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

Kim et al.

Penalized regression for rare variant

Table 8 | Mean numbers of TP(sd)/FP(sd) in the GAW17 data, where g1 and g0 denote the numbers of the causal and non-causal variants in

each gene.
Gene(q1/q0) OoLS Lasso dflasso, — cor dflasso, — 1 TLP-S TLP-SG
RVs + CVs
PLAT(8/20) 8.0(0.0)/20.0(0.2) 0.8(1.4)/2.1(2.7) 0.6(1.5)/1.9(2.6) 1.5(2.8)/3.8(6.4) 5.0(1.6)/11.4(2.9) 1.7(2.1)/3.9(4.5)
SREBF1(10/14) 10.0(0.0)/14.0(0.1) 2.1(2.6)/2.6(3.0) 2.4(3.1)/3.5(3.9) 6.5(4.4)/8.8(6.1) 6.6(1.6)/8.5(2.4) 2.6(2.1)/3.1(2.2)
SIRT1(9/14) 9.0(0.0)/14.0(0.1) 2.0(1.9)/2.5(2.2) 1.9(2.3)/2.3(3.2) 9(3.7)/6.9(5.8) 5.0(1.6)/7.2(2.5) 2.0(1.2)/2.3(1.3)
VLDLR(8/19) 8.0(0.0)/19.0(0.2) 0.8(1.56)/2.7(3.0) 0.8(1.7)/2.6(3.7) 2.1(3.2)/5.4(7.1) 5.0(1.5)/11.7(2.6) 1.5(1.7)/3.8(3.7)
VNN3(7/8) 7.0(0.1)/8.0(0.2) 2.7(1.3)/2.5(1.7) 3.5(1.6)/3.9(2.1) 4(2.1)/4.6(2.6) 5.0(1.2)/5.6(1.4) 2.8(1.4)/2.3(1.9)
PDGFD(4/7) 4.0(0.0)/7.0(0.2) 1.2(1.1)/2.3(1.9) 2.1(1.3)/4.2(2.0) .5(1.4)/4.4(2.2) 2.9(1.0)/5.3(1.3) 1.2(1.1)/2.0(2.0)
BCHE(13/15) 13.0(0.1)/15.0(0.1) 3.4(3.0)/2.8(2.8) 3.0(3.5)/3.1(3.5) 7.1(5.2)/7.7(6.0) 7.5(2.1)/75(2.3) 4.1(3.1)/3.4(3.4)
INSIG1(3/2) 3.0(0.0)/2.0(0.0) 0.2(0.6)/0.4(0.6) 1.0(1.1)/1.1(0.7) .8(1.2)/1.1(0.7) 1.6(0.8)/1.4(0.5) 0.7(1.1)/0.7(0.8)
LPL(3/17) 3.0(0.0)/16.9(0.2) 1.0(0.8)/2.9(3.0) 1.1(0.9)/4.0(4.1) .4(1.0)/5.4(5.7) 2.5(0.7)/10.8(2.4) 1.2(0.8)/3.2(3.4)
RARB(2/9) 2.0(0.1)/9.0(0.1) 0.7(0.7)/1.2(1.8) 0.8(0.7)/2.1(2.7) 1.0(0.8)/3.2(3.6) 1.6(0.5)/5.1(1.7) 0.8(0.7)/1.4(1.8)
VNN1(2/5) 2.0(0.0)/5.0(0.0) 1.5(0.5)/0.6(1.0) 1.8(0.4)/2.4(1.7) (0.5)/1.7(1.8) 1.9(0.3)/2.8(1.3) 1.5(0.5)/1.1(1.7)
VWEF(2/4) 2.0(0.1)/4.0(0.1) 0.2(0.5)/1.0(1.1) 1.0(0.8)/2.7(1.2) (0.8)/2.7(1.2) 1.5(0.6)/3.5(0.7) 0.4(0.6)/1.2(1.2)
RVs only

PLAT(8/18) 8.0(0.1)/18.0(0.1) 1.0(1.6)/1.4(2.5) 0.9(1.8)/1.3(2.7) 1. 8(2 9)/3.5(6.2) 0(1.6)/9.3(2.7) 1.6(1.6)/2.3(2.4)
SREBF1(10/13) 10.0(0.1)/13.0(0.2) 2.1(2.4)/2.2(2.6) 2.3(2.9)/2.9(3.4) .7(4.3)/8.5(5.6) 5(1.5)/7.4(2.3) 2.7(2.0)/2.7(1.9)
SIRT1(9/13) 9.0(0.0)/13.0(0.1) 2.0(1.9)/2.0(2.4) 1.9(2.3)/2.1(3.0) .9(3.7)/6.5(5.6) 5.0(1.6)/6.7(2.1) 2.0(1.5)/2.1(1.8)
VLDLR(8/16) 8.0(0.1)/16.0(0.1) 1.3(1.7)/1.8(2.6) 0.9(1.7)/1.5(3.0) 4(3.3)/4.5(6.4) 8(1.5)/8.8(2.5) 1.6(1.4)/2.3(2.2)
VNN3(6/6) 6.0(0.0)/6.0(0.1) 1.8(1.3)/1.2(1.3) 2.4(1.5)/2.0(1.8) .9(1.9)/2.4(2.1) 8(1.2)/3.7(1.3) 1.8(1.2)/1.2(1.3)
PDGFD(4/5) 4.0(0.1)/5.0(0.1) 1.4(1.1)/1.4(1.5) 2.0(1.3)/2.5(1.5) 2,5(1.4)/2‘7(1.9) 2.9(0.9)/3.5(1.2) 1.6(1.2)/1.4(1.6)
BCHE(13/14) 13.0(0.1)/14.0(0.1) 3.6(3.1)/2.2(2.7) 3.1(3.6)/2.5(3.4) 8.1(5.0)/8.1(5.6) 74(2.0)/6.4(2.2) 3.8(2.3)/2.2(2.1)
INSIG1(3/1) 3.0(0.1)/1.0(0.0) 0.3(0.7)/0.2(0.4) 0.7(1.1)/0.2(0.4) 6(1.0)/0.2(0.4) 1.6(0.8)/0.5(0.5) 1.0(1.2)/0.4(0.5)
LPL(3/14) 3.0(0.0)/14.0(0.2) 1.2(0.8)/2.1(2.8) 1.4(1.0)/3.4(4.3) 1.6(1.0)/4.5(5.5) 2.4(0.7)/79(2.4) 1.4(0.8)/2.3(2.3)
VNN1(1/5) 1.0(0.0)/5.0(0.1) 0.5(0.5)/0.6(1.0) 0.8(0.4)/2.1(1.8) 7(0.4)/1.7(1.9) 0.9(0.2)/2.7(1.3) 0.6(0.5)/1.2(1.8)
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