
HYPOTHESIS AND THEORY ARTICLE
published: 30 May 2014

doi: 10.3389/fgene.2014.00156

Transposable elements in cancer as a by-product of
stress-induced evolvability
Tobias Mourier 1*, Lars P. Nielsen 2 , Anders J. Hansen 1 and Eske Willerslev 1

1 Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
2 Department of Virology and the Danish National Biobank, Statens Serum Institut, Copenhagen, Denmark

Edited by:

Cedric Feschotte, University of Utah
School of Medicine, USA

Reviewed by:

Bernardo Lemos, Harvard University,
USA
Edward Chuong, University of Utah
School of Medicine, USA

*Correspondence:

Tobias Mourier, Natural History
Museum of Denmark, Centre for
GeoGenetics, University of
Copenhagen, Oester Voldgade 5-7,
DK-1350, Copenhagen, Denmark
e-mail: tmourier@snm.ku.dk

Transposable elements (TEs) are ubiquitous in eukaryotic genomes. Barbara McClintock’s
famous notion of TEs acting as controlling elements modifying the genetic response of an
organism upon exposure to stressful environments has since been solidly supported in a
series of model organisms.This requires theTE activity response to possess an element of
specificity and be targeted toward certain parts of the genome. We propose that a similar
TE response is present in human cells, and that this stress response may drive the onset of
human cancers. As such, TE-driven cancers may be viewed as an evolutionary by-product
of organisms’ abilities to genetically adapt to environmental stress.
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TRANSPOSABLE ELEMENTS AND GENOME EVOLUTION
Transposable elements (TEs) and their remnants constitute
between half and two thirds of the human genome (Lander
et al., 2001; de Koning et al., 2011), and are with few exceptions
(Arkhipova and Meselson, 2000; Gardner et al., 2002) found in all
sequenced eukaryotic genomes. TEs are divided according to the
presence or absence of an RNA intermediate in their replication
cycle (elements referred to as retroelements or DNA transposons,
respectively). Retroelements are further divided into elements
with or without long terminal repeat (LTR) sequences (Kazazian,
2004). The activity of DNA transposons in the human lineage
ceased around 40 million years ago and now constitute 3% of the
extant human genome (Lander et al., 2001; Pace and Feschotte,
2007). No LTR retroelements are considered to be actively spread-
ing in the human genome, although the endogenous retrovirus,
HERV-K is polymorphic among human populations (Belshaw
et al., 2005) and capable of forming viral particles (Boller et al.,
2008). In total, endogenous retroviruses constitute around 8%
of the human genome. Three non-LTR retroelements are actively
spreading in the human genome; the autonomous L1 LINEs and
the two non-autonomous SINEs, Alu and SVA. Full-length L1
LINE elements are around 6 kilo base pairs (kbp) in size and con-
tain two open reading frames encoding the enzymes required for
transposition (Ostertag and Kazazian, 2001). More than half a
million L1 sequences constitute approximately 17% of the human
genome, although only around 150 elements are full-length (Pen-
zkofer et al., 2005) and presumably even fewer – perhaps only a
handful – actively transpose (Brouha et al., 2003). Alu and SVA
elements are short (∼300 bp and typically < 1 kbp, respectively)
and do not encode any proteins (Batzer and Deininger, 2002;
Wang et al., 2005). Rather, these elements rely on the enzymatic
activity provided by L1 elements [established for Alu and pre-
sumed for SVA (Dewannieux et al., 2003; Ostertag et al., 2003)].

The human genome harbors more than 1.5 million Alu copies
and around 500 SVA copies, covering 11% of the total genomic
sequence.

CELLULAR TE REPRESSION
The activity of TE can be repressed in several ways and at differ-
ent stages of activity. Most notably, DNA or histone methylation
abolishes transcription of TE sequences (Slotkin and Martienssen,
2007). The production of double-stranded RNAs (dsRNAs) from
TE sequences may result in the production of small-interference
RNAs (siRNAs) targeting transcribed TE sequences for degrada-
tion (Ahlquist, 2002; Yang and Kazazian, 2006), or Piwi interacting
RNAs that guides de novo methylation during early development
(Aravin et al., 2007; Carmell et al., 2007; Kuramochi-Miyagawa
et al., 2008). Generation of TE dsRNA sequences may stem from
transcription of both strands within specific TE sequences (Yang
and Kazazian, 2006; Li et al., 2014). Alternatively, different loci
could produce complementary TE RNA strands, as for example
from the “passive” transcription of TEs residing in mRNA introns
(Mourier, 2011).

L1, Alu, and SVA transcripts may undergo RNA editing through
C-to-U deamination by members of the APOBEC3 protein fam-
ily, inhibiting transposition (Schumann, 2007), and the Trex1
endonuclease metabolizes reverse-transcribed DNA from human
L1 sequences and mice LTR elements in human cell cultures
(Stetson et al., 2008).

The ORF1 protein from L1 is sequestered in stress granules
where it co-localizes with the siRNA-processing RISC complex
and closely associates with the putative RNA helicase MOV10
(Goodier et al., 2007, 2012). It is proposed that MOV10 recruits
L1 ribonucleoproteins to stress granules, leading to silenc-
ing and degradation (Goodier et al., 2012). Interestingly, the
MOV10 paralog MOV10L1 binds MILI and MIWI proteins that
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associate with piRNAs, and the knockout of MOV10L1 leads
to increased L1 and LTR transcription in mice (Frost et al.,
2010).

As previously pointed out, the redundancy between dif-
ferent TE repression mechanisms provides functional strength
but also a vulnerability due to interdependence (Carreira et al.,
2014). Despite the plethora of suppression mechanisms, TEs are
continuing their activity in our genomes as witnessed by the
level of TE polymorphisms between humans and chimpanzee
(Hedges et al., 2004; Lee et al., 2007), between human indi-
viduals (Bennett et al., 2004; Wang et al., 2006; Stewart et al.,
2011) and between homologous chromosomes within individ-
uals (Levy et al., 2007; Wang et al., 2008). Importantly, human
TE transcription and transposition has been recorded within
somatic tissues of individuals (Belancio et al., 2010; Baillie et al.,
2011).

TEs AND GENOME EVOLUTION
If inserted into existing structures, TEs may disrupt genomic
functions. However, this so-called insertional mutagenesis is by
no means the only way genetic functions can be altered by TE
activity. Inserted TE sequences may act as promoters driving
transcription of neighboring genes, which is most prominent
for LTR elements (Dunn et al., 2003, 2006) but is also observed
for hypomethylated LINEs in cancer tissues (Roman-Gomez
et al., 2005; Wolff et al., 2010). If inserted within transcribed
genetic sequences, L1 elements may repress gene expression by
inhibiting transcriptional elongation (Han et al., 2004). A sur-
vey of cap-selected human transcripts revealed that 5–15% of
all transcripts from different tissues were initiated within TEs
(Faulkner et al., 2009) testifying the impact TE sequences have
on the total transcriptome. Ectopic recombination between non-
homologous TEs leading to chromosomal changes has been
inferred for all types of human TEs (Hughes and Coffin, 2001;
Han et al., 2005; Sen et al., 2006). The reverse transcriptase
machinery from L1 elements may occasionally insert exogenous
mRNAs, resulting in the formation of processed pseudogenes
(Esnault et al., 2000), of which there are around 8000 in the
human genome (Zhang et al., 2003). Similarly, if the tran-
scription of L1 elements continues into flanking sequence and
genes, these chimerical transcripts may be reverse transcribed
and inserted resulting in so-called sequence transduction which
is estimated to constitute around 1% of the human genome
(Pickeral et al., 2000). Alu elements residing in untranslated
regions and introns often provide splice signals leading to the
creation of novel exons (Lin et al., 2008; Keren et al., 2010),
and are targets for RNA editing (Paz-Yaacov et al., 2010; Bazak
et al., 2014), the level of which have implications for gene reg-
ulations (Chen et al., 2008). Furthermore, the transcriptional
activity of the murine SINE B2 was shown to act as an insu-
lator for chromatin modification between genomic domains
(Lunyak et al., 2007). Notable examples of TE being recruited
for genomic functions through evolution include the syncytin
genes in placentas, where the envelope proteins from endoge-
nous retroviruses promote the cell fusions between mother and
fetus (Haig, 2012; Chuong, 2013), and the enhancer activity
of an ancient SINE regulating neural development in mammals

(Bejerano et al., 2006). Accordingly, TEs have contributed sig-
nificantly to mammalian genome evolution by either creating
or deleting elements, changing activity of existing elements,
or shuffling genomic regions (Deininger et al., 2003; Kazazian,
2004; Mourier, 2005; Cordaux and Batzer, 2009; Chuong et al.,
2013).

CANCER AND EVOLVABILITY
TE activity is readily reported in cancer cells (Asch et al., 1996;
Faulkner et al., 2009; Lamprecht et al., 2010; Romanish et al., 2010;
Levin and Moran, 2011; Gualtieri et al., 2013) and is commonly
associated with an overall breakdown of cellular TE repression
mechanisms, such as methylation (Wilson et al., 2007; Daskalos
et al., 2009; Wolff et al., 2010; Xiang et al., 2010; Pavicic et al.,
2012). Implicitly, this suggests that increased TE activity is a
derived and in essence non-adaptive response in cancer cells. Yet,
TE activity during stress may – from an evolutionary perspec-
tive – be viewed as a means by which organisms can keep up
rates of genetic adaptations to changing conditions. Changing
environments stress an organism and cause fixation of favor-
able genetic changes by natural selection. This again results in
genetic adaptation of the species or cells. Here, we argue that
cancer related to human TE activity can be viewed as a by-
product of genome flexibility meant for effectively adapting the cell
(Figure 1). And, importantly, that TE activity induced by exter-
nal stresses should thus be regarded as an evolutionary adaptive
mechanism.

FIGURE 1 | Left: the trajectory of an organism through a fitness

landscape (blue line). As time passes (vertical movement), genomic
changes (horizontal movements) are accumulated. When encountering
regions of lower fitness (dark areas), e.g., caused by chancing
environments, TE may induce substantial genomic changes as indicated by
orange lines. Right: the evolution within an individual cell’s life span. When
encountering stress (dark areas), activation of TE induces genomic
changes, which in turn may lead to cancer progression.
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Given the functional diversity of human TEs, a global activa-
tion of the entire TE population would provide a crude measure
to affect the genotype. Rather, one would imagine that the proba-
bility of TEs creating adaptive genotypes increases with specificity
(different activity levels for different TEs) and/or targeting (TEs
are predominantly inserted in certain regions of the genome).
In the following, we briefly review examples of highly targeted
TE activity from non-mammalian model organisms, and end by
providing observations suggesting that stress-induced TE activ-
ity in mammalian cells can be both specific as well as targeted.
Hence, environmental stimuli may trigger the formation of genetic
changes through TE activity at all stages of cancers, including the
very onset.

TEs AND EVOLVABILITY
All living organisms face an apparent paradox. On the one hand,
their replication over time should be as exact as possible to main-
tain proper function, but on the other hand, organisms must
evolve for their lineage to survive changing environments. When
cells encounter changing environments (whether permanently
or temporarily, the latter interchangeably referred to as stress)
they may induce genomic changes potentially generating adaptive
mutations.

When multiple genes carry out overlapping functions, indi-
vidual genes are allowed to diverge from their optimum without
affecting the phenotypic outcome (Hermisson and Wagner, 2004),
allowing an exploration of genotype space with little non-adaptive
cost (Masel and Trotter, 2010). Hence, genomes will carry in
them a range of mutations (termed cryptic variation) that can
be released by the activity of so-called genetic capacitors (Ruther-
ford and Lindquist, 1998; Bergman and Siegal, 2003; Masel and
Trotter, 2010). In this context, it is noteworthy that inhibition
of the capacitor hsp90 deregulates the activity of TEs (Spec-
chia et al., 2010), suggesting a role for TEs in regulators of
evolvability.

Importantly, the ability to generate genetic variability, termed
evolvability, does not imply foresight or teleology (Poole et al.,
2003). Errors introduced by the replication machinery thus
represent one factor contributing to evolvability. Compared to
single base pair substitutions, inducing TE activity provides a
highly efficient way of generating genetic variability. Although
the vast majority of TE insertions are deleterious (Boissinot
et al., 2001, 2006), they may occasionally modify existing gene
structures or merely alter the expression profiles of genes (both
temporally and spatially) in a way that proves adaptive to the
host.

Introducing genomic changes when facing environmental
stress – as suggested by the TE pioneer Barbara McClintock
(McClintock, 1984) – makes intuitive sense for organisms with
limited mobility, such as plants and unicellular organisms that
are unable to evade suboptimal environments and are forced to
adapt to the external changes. Among such organisms it is well
established that cellular stresses can lead to highly specific TE
activity, often minimizing deleterious insertions and maximizing
the potential for adaptive regulatory changes. Below we review a
few selected examples of specific TE activity in non-mammalian
model organisms.

EXAMPLES OF STRESS-INDUCED TE ACTIVITY IN MODEL
ORGANISMS
Stress-induced TE activity is found across a multitude of organ-
isms (Arnault and Dufournel, 1994; Capy et al., 2000; Morales
et al., 2003; Garcia Guerreiro, 2012), and although this may
reflect a genome-wide collapse of cellular TE suppression, numer-
ous examples of specifically induced TE activity in response to
stress are known. In compact genomes, TE insertions are usu-
ally highly targeted toward genomic regions where interference
with endogenous functions is minimized. This is seen in fission
yeast where LTR elements are preferentially inserted upstream of
polymerase II transcribed genes (Bowen et al., 2003; Leem et al.,
2008). Upon low oxygen levels, a specific transcription factor
induces LTR transposition in fission yeast and in turn, tran-
scription of downstream genes (Sehgal et al., 2007). A similar
specific activation is found in budding yeast, where depletion
of adenylic nucleotides induces a transcription factor, activat-
ing the LTR transcription (Servant et al., 2012). In the tobacco
plant, Nicotiana tabacum, the Tnt1 retrotransposon is induced
by abiotic stresses (Mhiri et al., 1997) and share transcriptional
activation regions with stress-inducible genes (Grandbastien et al.,
1997).

The insertion of Ty5 LTR elements in budding yeast is targeted
toward heterochromatic regions through the binding between the
Ty5 integrase and a heterochromatin component (Gai and Voytas,
1998). Upon exposure to cellular stress factors, integrase phos-
phorylation decreases which abolishes the targeting and results
in insertions near genes, potentially altering their function and
activity (Ebina and Levin, 2007). Hence, the result of stress is
in this case not restricted to the sheer magnitude of TE activity,
but rather on the potential effect TE activity may impose on the
genotype. In the above cases, TE activity is a direct, inducible
result of stress, and not the indirect by-product of cellular
turmoil.

That the genotypic effect of TE activity that penetrates to the
phenotype is illustrated in fission yeast, where heat-induced TE
activity changes the expression of stress genes downstream to
newly inserted TE sequences (Feng et al., 2012), leaving an imme-
diate effect on gene functionality. Some fixed TE insertions fit well
with being triggered by stress, and eventually conferring the host
with a modified – and adaptive – response toward the stressor.
Such examples include the soybean, Glycine max in which the dis-
ruption of the gmphyA2 gene by a TE insertion is associated with
high latitudes (Kanazawa et al., 2009), the mosquito, Culex pipiens
where the disruption of the cpm1 receptor gene by a TE inser-
tion confers resistance to a specific toxin (Darboux et al., 2007),
and Drosophila where a TE-mediated gene truncation increases
pesticide resistance (Aminetzach et al., 2005).

SPECIFICITY AND TARGETING OF MAMMALIAN TE ACTIVITY
If mammalian stress-induced TE activity reflects the evolvability
observed in other model organisms, TE activity is expected to be
non-random. First, insertions should be targeted so that certain
genomic regions are preferential targets for TE insertions. Second,
given the functional diversity of mammalian TEs, the response
should be specific, so that different TEs are activated by different
environmental stress factors. In the following, we review findings
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suggesting that mammalian TE-activity can be both specific and
targeted.

During heat shock, mammalian cells up-regulate a specific set
of genes encoding heat shock proteins while repressing a large
repertoire of otherwise constitutively expressed genes (Richter
et al., 2010). In mammals, the polymerase III (pol III) tran-
scribed SINEs are up-regulated during heat shock and enter the
complexes that target promoters of repressed genes (Ponicsan
et al., 2010). Intriguingly, in humans and mouse two different
and unrelated SINEs [the human Alu is derived from a 7SL
RNA (Batzer and Deininger, 2002), the mouse B2 from a tRNA
(Daniels and Deininger, 1985)] are part of this heat shock response
(Allen et al., 2004; Mariner et al., 2008). Hence, different SINEs
have been recruited for this task during mammalian evolution,
suggesting that increased transcription during heat shock is a
common feature of these SINEs. Importantly, heat shock acti-
vation is specific to SINEs as other pol III transcribed genes
are unaffected (Liu et al., 1995), suggesting that increased SINE
expression is not simply a result of a general increase in pol III
activity.

Hunter and colleagues recently reported the silencing of TE
sequences through histone methylation in the brains of stressed
rats (Hunter et al., 2012). Interestingly, this revealed a surpris-
ing differentiation between TE types and brain regions, and most
strikingly that histone methylation did not target L1 sequences.
As transgenic L1s are in fact actively transposing in rodent hip-
pocampus (Muotri et al., 2005; Kuwabara et al., 2009), there is no
reason to suspect that L1 should be less active than other rodent
TEs in this part of the brain. This differential silencing is consis-
tent with methylation not acting as a global response to an overall
increase in TE activity. Although the observed differences between
TE activity levels may reflect the diversity by which different TEs
are normally repressed – so that specific activation is a result of
specific de-repression – it shows that an external stimulus may
elicit a specific TE response rather than being restricted to a global
elevation of TE activity. A recent example comes from the dis-
covery of hypomethylation of specific human TE subfamilies in
a tissue-specific manner, resulting in the gain of enhancer marks,
which strongly correlated with the regulation of nearby genes (Xie
et al., 2013).

One element of TE targeting comes directly from the fact that
integrations are restricted to open chromatin regions. This is
apparent in mammalian brains where somatic LINE insertions
are enriched in the vicinity of neuronal genes (Muotri et al., 2005;
Baillie et al., 2011). The finding that different environmental fac-
tors induce L1 transposition through different bHLH/PAS proteins
opens the possibility of differentiated targeting of L1 insertions
during different types of stresses (Ishizaka et al., 2012), and exper-
imental findings hint that TE insertions are targeted beyond the
apparent mechanistic necessity of open chromatin. Howard and
colleagues created transgenic mice with a functional loss of DNA
methyltransferase activity, which results in genomic hypomethyla-
tion and development of thymic lymphomas (Howard et al., 2008).
In a sample of 16 transgenic mice, 7 were found to have indepen-
dent IAP insertions into the introns of the Notch gene (Howard
et al., 2008). Similarly, Wimmer et al. reported a genomic hotspot
for TE insertions in the neurofibromin 1, NF1 gene (Wimmer

et al., 2011), and more than a handful of human genomic loci
are known for which multiple, independent TE insertions are
reported (Chen et al., 2005; Hancks and Kazazian, 2012). Finally,
it should be noted that wide variations in the rates between mobi-
lized TEs are observed among different human cancers (Lee et al.,
2012).

Interestingly, apparent TE targeting can be observed over evo-
lutionary times, as a study on the contribution of TE sequences
to human mRNA untranslated regions found genes responding to
stress and external stimuli to harbor more TE sequence than other
gene classes (van de Lagemaat et al., 2003). There is obviously a
strong ascertainment bias in the above observations as only certain
phenotypic outcomes are considered and that highly deleterious
insertions are immediately pruned by natural selection. Yet, this
nevertheless suggests that the genomic distribution of human TE
insertions is far from random.

CONCLUDING REMARKS
TEs typically contain several functional components that can be
moved around the genome and inserted into novel genetic con-
texts. As different environmental stimuli may elicit differential
activity of TE classes, and as insertions can be highly non-random,
it is apparent that TEs provide a highly efficient mechanism for
evolvability.

In line with previous speculations (Hauptmann and Schmitt,
2006), we have suggested that stress-induced TE activity driv-
ing human cancers is a reminiscent of TE-inducible evolvability
(Figure 1). However, we here address the different evolution and
ecology of eukaryotic cells in single and multicellular organisms,
which is essential for this discussion.

We have highlighted examples of mammalian stress-induced
TE activity being both targeted and specific. Importantly, TE
activity may not necessarily be limited to transposition but could
consist of transcriptional activity only. Whether the ability of
stress-inducible TE activity serves as an adaptive host response
within our cells or it reflects an inherent ability of TEs of being
activated upon changing environments is unknown. Perhaps, the
innate properties that have allowed the exaptation of TEs in cel-
lular stress responses (such as the heat shock response, above) are
the very same properties that underlie the ability to induce evolv-
ability. This way, these properties would be selected for because
of the former (heat shock) without the latter (evolvability) nec-
essarily being adaptive. In organisms with a sequestered germ
line, somatic TE insertions will not be passed on to future gen-
erations. Yet it is possible that somatic cells and tissues modify
their hard-coded genetic information during an individual’s life
span. The notion of the mammalian genome as a stable and
inert code may largely result from our experimental inability to
record changes between tissues and stages. Furthermore, somatic
TE transposition may be limited to a few insertions in each cell
making these hard to detect in healthy cells without the clonal
amplification seen in cancer (Goodier, 2014). Although it is cur-
rently unknown just how fluid our somatic genomes are, recent
technological advances have revealed mosaicisms of copy num-
ber variations within and between tissues (Abyzov et al., 2012;
O’Huallachain et al., 2012) as well as extensive genetic hetero-
geneity in tumor cells (Aktipis and Nesse, 2013). As such, the

Frontiers in Genetics | Evolutionary and Population Genetics May 2014 | Volume 5 | Article 156 | 4

http://www.frontiersin.org/Evolutionary_and_Population_Genetics/
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


Mourier et al. Transposable elements in human cancers

notion of the mammalian somatic genome as a stable and inert
code is questioned, and one cannot entirely rule out that certain
somatic mutational profiles are adaptive for the organism as a
whole.

It is evident that unleashed TE activity (e.g., caused by global
aberration of genomic methylation) in neoplasm may induce fur-
ther genetic changes accelerating cancer progression. However, the
existence of stress-inducible TEs suggests that environmental stim-
uli alone may trigger the formation of genetic changes through TE
activity at all stages of cancers, including the very onset. Simi-
larly, it has recently been suggested that stress-induced TE activity
may alter the neuronal genotypes in the human hippocampus,
and that this could potentially be linked to neuronal disorders
caused by severe stress (Hunter et al., 2013). Importantly, we do
not advocate the view that TE activity underlies all human cancers.
Lee and colleagues only found somatic TE activity in epithelial
cancers (Lee et al., 2012), and TE involvement in cancers may be
restricted to such plastic and reprogrammable tissues (Carreira
et al., 2014).

The presented notion has several implications as different cel-
lular stresses may elicit different TE responses in different cell
types. Subsequently, different TE responses may underlie differ-
ent cancers. This prompts for investigations not only into the
genetic variability between cells in terms of TEs but also into
the TE responses induced by cellular stress types. The advent of
single-cell sequencing strategies (Evrony et al., 2012; Macaulay and
Voet, 2014) combined with high-throughput sequencing technol-
ogy makes it possible to test the above view and elucidate the
involvement of TEs in cancer onset and progression. For example,
exposing cell cultures to different external stresses should result
in different TE responses, either in terms of TEs being activated
or in the genomic regions targeted by their insertions. Similarly,
careful examination of cancer types for which different stages of
cancer progression is available should reveal fixed TE insertions
present in the earliest stages. Hence, a combination of sequencing
of stressed cells in vitro and of cancer cells in vivo could provide
a rarely established link between the external environment and
cancer genotypes in non-heritable cancers.
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