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Targeting molecular networks for drug research
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The study of molecular networks has recently moved into the limelight of biomedical
research. While it has certainly provided us with plenty of new insights into cellular
mechanisms, the challenge now is how to modify or even restructure these networks.This
is especially true for human diseases, which can be regarded as manifestations of distorted
states of molecular networks. Of the possible interventions for altering networks, the use
of drugs is presently the most feasible. In this mini-review, we present and discuss some
exemplary approaches of how analysis of molecular interaction networks can contribute
to pharmacology (e.g., by identifying new drug targets or prediction of drug side effects),
as well as list pointers to relevant resources and software to guide future research. We
also outline recent progress in the use of drugs for in vitro reprogramming of cells, which
constitutes an example par excellence for altering molecular interaction networks with
drugs.
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INTRODUCTION
Over the last decade, we have witnessed impressive technological
advances in the field of molecular biology. Many of them have
brought us an incredible wealth of molecular data. Initially, it was
hoped that large data-driven projects such as the Human Genome
Project would readily pave the way for the development of new
effective therapies in biomedicine. Unfortunately, the translation
of these molecular data into biomedical breakthroughs has been
dauntingly slow. Why is this so?

One reason for this “bottleneck” is that biological processes
are highly interconnected, so their manipulation is a formidable
challenge. In addition, major human diseases, such as can-
cer, type II diabetes, and hypertension, are genetically complex.
Hence, a direct correspondence between causative genotype and
disease phenotype, as observed in Mendelian disorders, is fre-
quently obscure. Instead, these diseases are multi-factorial and
seem to result from interplay between multiple genes and envi-
ronmental factors, each having a relatively small effect, with few
(if any) being prerequisites for the disease to occur (Manolio,
2010). This view is supported by several other lines of investiga-
tions that underline how important it is to regard causative genes
not as isolated entities, but as integral parts of molecular net-
works or pathways (Badano and Katsanis, 2002; Oti and Brunner,
2007).

MOLECULAR NETWORKS: DATA AND ANALYSIS
In recognition of the importance of molecular networks,
researchers from different fields have begun to study them
intensely through computational and experimental means. Their
underlying premise has been that changes to cellular networks
determine many phenotypic variations, and that such changes can
be provoked, not only by alterations to a gene product’s abundance,
but also through perturbations of its interactions.

The intensified interest in molecular networks has resulted
in systematic gathering of interaction data for biomolecules, as
well as the development of computational approaches for the
analysis of biological networks. Nowadays, a large number of
publicly accessible databases contain various types of molecular
interaction data1. Networks derived from these resources fre-
quently contain only a specific type of molecular interaction
such a protein–protein or protein–DNA interactions. Based on
the type of included interaction, we distinguish between differ-
ent types of interaction networks. Currently, the major types are
protein–protein interaction (PPI), gene regulatory and metabolic
networks. These networks are often visually represented as sim-
ple graphs, with nodes or vertices denoting molecules, and links
or edges denoting interactions between them. While such drastic
simplification neglects many characteristics of individual com-
ponents, it facilitates the analysis and modeling of large cellular
networks. Furthermore, we can profit from the rich repertoire
of mathematical tools and concepts already developed in graph
theory.

The most basic characteristic of a node in a graph is its degree,
i.e., the number of edges attached to it. In many biological net-
works, the majority of nodes have a low degree, and only a few
nodes have a high degree. These highly connected nodes are known
as hubs, and are important for the integrity of the network (Albert,
2005). Another important concept in graph theory is modularity.
A module is commonly regarded as a set of nodes that are more
densely connected with each other than with other nodes in the
network (Pinto, 2012). These two concepts are illustrated for bio-
logical networks in Figure 1A. Modularity has also been suggested
to contribute to robustness of molecular systems (Hartwell et al.,
1999). In fact, robustness of molecular processes seems to result

1http://www.pathguide.org
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FIGURE 1 | (A) Illustration of basic concepts in the analysis of
molecular networks. Hubs are defined by their large number of
interactions, whereas “bottleneck” proteins link densely connected
sub-networks or modules. Both types of nodes provide prominent
targets for interventions, aimed at changing the network structure and
integrity. (B) Approaches for network-based drug targeting and
repositioning. Different types of heterogeneous bipartite or tripartite
networks have been used in the literature to identify new targets for
drugs. (C) Network-oriented pharmacology in the UniHI environment.
After querying for molecular interactions for central proteins, UniHI

derives tissue and phenotype-specific networks, which can be
scrutinized for known drug targets. In the example shown, an
interaction network with GADD45A, SNCA, PARK2 as central proteins
was retrieved and filtered using gene expression data from the brain.
Additional filtering steps, using drug–target data and phenotypic
information (“nervous system phenotype”) from knock-out mice,
generated a compact network of drug targets with potential relevance
for neurological disorders. Information regarding the drugs and their
mode of action can be interactively accessed within the displayed
network.
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directly from the structure of the underlying networks. Besides
redundant genetic components, compensatory network structures
such as alternative metabolic or signaling pathways can buffer the
failure of single parts (Wagner, 2005). This feature of networks is
a crucial aspect to be considered, when we want to design effective
interventions in their functioning.

Prime examples of popular and freely available software for
network analysis are R/Bioconductor2 or Cytoscape3. While these
are powerful and versatile tools, their use requires expertise in
both data handling and processing. Alternatives are given by sev-
eral on-line resources, which provide integrated and annotated
data together with applications for analysis and visualization.
For instance, our Unified Human Interactome (UniHI)4 database
stores a large number of molecular interactions for the human
genome, together with other types of information, and includes
tools for the interactive analysis of retrieved interaction net-
works (Chaurasia et al., 2007; Kalathur et al., 2014). Especially for
researchers less acquainted with network analysis, such integra-
tive platforms offer convenient gateways to a wealth of interaction
data.

DRUGS AND THEIR TARGETS
Pharmaceutical drugs are a common means to modify the activ-
ity of biomolecules, making them prime candidates for altering
activity and structure of molecular networks as well. The targets
of drugs can be proteins, peptides or nucleic acids, whose activ-
ities can be modulated. Drugs can be sub-divided into at least
three different classes: (i) chemical compounds with low molec-
ular weight (typically referred to as small molecules) that target
enzymes, receptors, transcription factors or ion channels; (ii)
biologics (such as antibodies or recombinant proteins) that tar-
get extracellular proteins and transmembrane receptor; and (iii)
nucleic acids that target messenger RNA by interference (Gashaw
et al., 2011). Notably, small molecules are still by far the most com-
mon type of drugs, and are frequently associated with low costs
and easy (i.e., oral) delivery. However, the number of proteins,
which can be targeted by small molecules, appears to be fairly
limited (Overington et al., 2006).

Ideally, drug targets should have: (i) a proven role in the patho-
physiology of a disease; (ii) little impact on physiological (health)
conditions when modulated; and (iii) a favorable prediction for
potential side effects (Gashaw et al., 2011). To fulfill the later cri-
terion, highly selective targeting is generally considered to be a
desirable trait. To target multiple proteins, as is frequently required
for treatment of complex diseases, it is therefore necessary to com-
bine multiple drugs. Especially for cancer, combinatorial drug
therapy has become a standard practice, minimizing the risk of
drug resistance. However, kinase inhibitors, which target multiple
pathways simultaneously, have shown efficacy in the treatment of
different cancers (Al-Lazikani et al., 2012). Thus, it has been argued
that multiple-target drugs might be a more favorable option, since
detrimental drug–drug interactions can be avoided, and optimal
dosage can be more easily determined (Hopkins, 2008).

2http://www.bioconductor.org
3http://www.cytoscape.org
4http://www.unihi.org

NETWORK-BASED APPROACHES FOR DRUG RESEARCH
IDENTIFICATION OF DRUG TARGETS
The identification of drug targets is a crucial, but laborious task
in biomedical research. Nowadays, in silico methods can assist
greatly. Conventional in silico methods for drug target prediction
are typically receptor- or ligand-based models. Whereas receptor-
based methods start with a known structure of the target, and
employ docking to assess drug binding (Luo et al., 2011); ligand-
based methods involve the comparison of drugs with known
ligands of the target protein. A successful example of the latter
method on a genomic scale is the study by Keiser et al. (2009),
in which a large number of new potential targets for exist-
ing drugs were found based on chemical similarity with known
ligands.

More recently, network-based methods have complemented the
computational toolbox for drug target identification. They are
especially helpful, if the three-dimensional structure of the tar-
get is unknown. Network-based methods are motivated by the
observation that the general biological importance of a protein is
at least partially linked to its location in relevant PPI networks.
For instance, essential genes tend to correspond to hubs or central
nodes in many PPI networks; although, in practice, such con-
clusions might be compromised by prevalent inspection biases
(Futschik et al., 2007; Barabási et al., 2011). Consequently, drugs
should target central nodes, when a lethal effect is intended, as it is
the case, for example, in the treatment of cancer cells or pathogens
(Figure 1A). In contrast, if a molecular process needs be adjusted,
it might be preferable to target neighbors of central nodes (Cser-
mely et al., 2013). This approach is consistent with observations
that targets of approved drugs tend to have more connections
on average than most proteins, but fewer connections than for
those proteins that correspond to essential genes (Yildirim et al.,
2007).

In addition to degree as a basic centrality measure, other
more sophisticated local metrics, including bridging centrality
and graphlet degree, have been proposed for the identification
of drug targets in PPI networks (Hwang et al., 2008; Milenkoviæ
et al., 2011). Alternatively, global network-based analyses can be
used to provide cues for follow-up investigations. For exam-
ple, a systematic review of major signaling pathways led to the
conclusion that proteins involved in cross-talk between path-
ways, represent promising targets for drug (Korcsmáros et al.,
2010).

While the study of the topology of PPI networks provides a
valuable, general indication about the likelihood of finding drug
targets; more specific predictions can be determined by eval-
uating local heterogeneous networks (Figure 1B). One of the
first steps in this direction was taken in the work of Yamanishi
et al. (2008), who transformed a bipartite network (in which two
types of nodes form a network) of drugs and their known tar-
gets into a high dimensional composite “pharmacological feature
space”, where interacting drugs and targets were close to each
other. New chemicals or targets could be mapped into this fea-
ture space, and drug–target interactions were predicted based on
their spatial proximity. A simpler approach, based on diffusion
of scores within the local bipartite network neighborhood, has
recently been proposed. This approach outperformed predictions
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based on interference using either chemical similarity of drugs,
or sequence similarity of targets (Cheng et al., 2012). Although
several of its predicted new targets of known drugs were suc-
cessfully validated, a drawback of this simpler method is that
it cannot be applied to novel drugs. This limitation can be
overcome through integration of the drug–target network with
drug–drug (based on chemical similarity) and target–target (based
on sequence similarity) networks. In the study by Cheng et al.
(2012), random walks on these integrated heterogeneous net-
works were simulated to connect drugs with potential targets.
Using drug–drug connections, new drugs, for which no target
is yet known, can be linked to proteins via drugs that have known
targets.

Furthermore, the use of expression responses appears to assist
in the process of drug target identification. Starting with a net-
work of functional associations between proteins, Laenen et al.
(2013) evaluated whether differential gene expression upon drug
treatment can pinpoint the protein targeted by a drug. Strik-
ingly, while the expression changes of the target itself was only
moderately informative, integration of differential expression
observed in the target’s network neighborhood resulted in a dras-
tic increase in prediction accuracy. However, it remains to be
assessed, whether it is generally the case that expression of genes
functionally related to a target is altered by its corresponding
drug.

REPOSITIONING OF DRUGS
Closely related to drug target identification is the task of drug
repositioning, i.e., finding new therapeutic uses for existing drugs
(Tobinick, 2009). Since drug repositioning is based on known
drugs, it provides an attractive shortcut to the lengthy develop-
ment of new drugs. While the above mentioned approaches for
drug target identification also can be applied to drug reposition-
ing, several methods and software have been exclusively developed
for this task. For instance, Mathur and Dinakarpandian (2011)
proposed new possible disease–drug relationships through the
analysis of affected biological processes. After identifying processes
defined in Gene Ontology that were enriched by genes associated
with a particular disease, drugs were linked to these processes,
if they targeted central proteins of the PPI network represent-
ing these processes. Through comparing predicted disease–drug
relationships with ones that had been reported in clinical tri-
als, they found a statistically significant overlap. A similar, but
more direct approach has been implemented in the PharmDB
database, which integrates binary linkages between drug, proteins,
and diseases (Lee et al., 2012). New targets of existing drugs are
inferred using a method called Shared Neighborhood Scoring,
which evaluates weighted connections between drug and disease
nodes via their associated proteins in a tripartite network com-
posite. An alternative software tool, which combines structural
models with analysis of interaction profiles, is DRAR-CPI (Luo
et al., 2011). This web-server compares the binding behavior of a
candidate drug with a set of pre-determined drug–target interac-
tions using a docking approach. Similar interaction profiles can
indicate shared targets and common clinical application. The
number of included reference targets for docking, however, is
limited.

It is important to note, that the use of networks as computa-
tional tools is not necessary constrained to the representation of
actual molecular interactions, but can be used to represent any
kind of defined similarities or association between distinct enti-
ties. For instance, Iorio et al. (2010) derived a drug–drug network,
where links between drugs indicated similar expression changes
upon treatment; they exploited it both for drug target prediction,
as well as repositioning.

ANALYSIS OF SIDE EFFECTS
Physiological side effects can be caused by binding of drugs to
proteins (“off-targets”), in addition to their intended targets. As
side effects are crucial factors in therapeutic applications, their
accurate prediction is of eminent importance to avoid failure in
drug trials. Notably, systematic recording of side effects repre-
sents a broad phenotying on the level of the human organism,
providing valuable holistic information on the action of drugs.
A unique resource, with this objective, is the SIDER database,
which accumulates reported side effects for almost 1000 marketed
drugs (Kuhn et al., 2010). Using this database, Mizutani et al.
(2012) correlated a drug’s side effects with the proteins it binds
to. For this, side effects and bound proteins were represented as
binary profiles and statistically associated using a modified ver-
sion of canonical correlation analysis. The obtained correlation
was used subsequently for the prediction of side effects, by evalu-
ating the proteins that the drug binds to. Remarkably, it is equally
possible to predict a drug’s target based on its side effects. This
relationship was originally explored by Campillos et al. (2008);
they identified new targets of known drugs based on the sim-
ilarity of their side effects with those of other drugs. There is
now a database, which has implemented this approach, called
PROMISCUOUS (von Eichborn et al., 2011). It enables the inter-
active exploration of an integrated network of drug, protein, and
side effect nodes, and can be used to gain new insight into the
drug’s mode of action. Finally, side effects can also be indica-
tive for drug–drug interactions, which are frequently of clinical
relevance. It was recently shown that two drugs tend to inter-
act, if their targets are in close proximity in a PPI network, or
if they have similar side effects (Huang et al., 2013). Moreover,
combining information on physical interaction of drug targets
and recorded side effects improves the prediction accuracy for
drug–drug interactions.

In Table 1, we provide a selection of publicly available databases
and computational resources, which may be useful for the reader
to initiate their own investigations in the field of network-based
pharmacology.

NEW HORIZONS: IN VITRO REPROGRAMMING OF CELLS
USING SMALL MOLECULES
In the network-based approaches described above, drugs mainly
act within small sub-networks in order to “fix” or interfere
with particular processes. This contrasts with their recent use
in stem cell biology, where small molecules have been used
to re-wire entire cellular networks. Their main object in this
context is to convert (or reprogram) somatic cells, specific to
an individual, into stem cells. These cells may eventually pro-
vide a personalized supply of tissue to replenish cells lost in
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Table 1 | Publically available resource for network-based drug targeting and repositioning.

Resource URL Description Reference

DRAR-CPI http://cpi.bio-x.cn/drar/ Web server that derives and compares the interaction

profile of a inputted drug with those of a library of drugs

Luo et al. (2011)

DrugBank http://www.drugbank.ca/ Database containing detailed information for approved or

experimental drugs and their targets

Knox et al. (2011)

DvD http://www.ebi.ac.uk/saezrodriguez/DVD/ Add-on software packages for R and Cytoscape for drug

repurposing using gene expression data

Pacini et al. (2013)

Mantra http://mantra.tigem.it/ Computational on-line tool for analyzing the mode of

action of a drug using its induced gene expression

Iorio et al. (2010)

PROMISCUOUS http://bioinformatics.charite.de/promiscuous Database for drug repositioning based on integrated PPI,

drug–protein interactions, and side effects

von Eichborn et al. (2011)

SIDER http://sideeffects.embl.de Database containing side effects of marketed drugs Kuhn et al. (2010)

Stitch http://stitch.embl.de/ Database accumulating a large number of interactions

between chemicals and proteins for various organisms

Kuhn et al. (2012)

UniHI http://www.unihi.org Web-based platform integrating human molecular

interactions, gene expression, phenotypes, and drug

target information (Figure 1C)

Kalathur et al. (2014)

degenerative diseases. Pioneering work led by Yamanaka showed
that such conversion is possible through forced expression of
merely four transcription factors using viral vectors (Takahashi
and Yamanaka, 2006). The original combination of transcription
factors used by Yamanaka comprises Octamer-binding transcrip-
tion factor 4 (Oct4), Sex-determining region Y-box 2 (Sox2),
Kruppel-like factor 4 (Klf4), and v-myc avian myelocytomato-
sis viral oncogene homolog (c-Myc). However, this approach
suffers from low efficiency. Furthermore, the viral integra-
tion of exogenous transcription factors, in particular of onco-
genes, such as Klf4 and c-Myc, is unlikely to offer a viable
therapeutic option. Thus, efforts have been made by various
groups to find small molecules that can boost reprogramming
efficiency, as well as replace virally transduced transcription
factors.

Two main classes of small molecules have been identified so
far: (i) molecules that facilitate chromatin remodeling by inhibi-
tion of, e.g., histone deacetylase, and thereby increase the plasticity
of cells (Huangfu et al., 2008); and (ii) molecules that block sig-
naling events that induce differentiation. Examples of the latter
class are inhibitors of extracellular signal-regulated kinases (ERKs)
and glycogen synthase kinase 3 (GSK3; Silva et al., 2008). By
combining these two classes of small molecules, it is even pos-
sible to replace all four transcription factors (Hou et al., 2013).
A remaining challenge, however, is to determine the underlying
molecular processes of chemically induced pluripotency. So far,
only rudimentary models, which lack mechanistic details, have
been proposed for the activation of key transcription factors by
the applied molecules (Hou et al., 2013). Here computational
methods for “reverse engineering” of gene regulatory networks
can be very helpful. These methods aim to infer regulatory inter-
actions from observed gene expression patterns and comprise a
diverse set of statistical approaches such as regression, analysis

of correlation or mutational information or Bayesian networks
(Marbach et al., 2012). Usually, their application requires a large
set of genome-wide expression measurements and might not
scale up very well to the complexity of regulatory networks in
higher eukaryotes. Nevertheless, a recent study identified suc-
cessfully a novel regulator of stem cell differentiation through
reverse engineering of gene regulatory networks from microar-
ray expression data (De Cegli et al., 2013). We anticipate that
such approaches as well as systems biology in general will help
to establish a rational basis for creating chemically induced
pluripotency.

PERSPECTIVES
Our review highlights several applications of molecular networks,
in which they act as versatile interfaces between phenotypes
and drugs. While these applications demonstrate the utility
of network-based analyses, several major challenges still exist.
Firstly, the quality and coverage of interaction data need to be
improved and consolidated. Many interaction data sets suffer
from both detection and selection biases, which limit their use
(Futschik et al., 2007). Published drug target data also appear
to be compromised by their low reproducibility (Prinz et al.,
2011). Secondly, condition-specific networks need to be con-
structed, reflecting the dynamics of molecular processes, in
contrast to the static nature of current models. In this way,
it will be possible to study the effects of external and inter-
nal stimuli on network structure and function. Finally, the
vast majority of available drugs target network nodes, dis-
rupting the general activity of a specific biomolecule. Only a
small number of drugs are directed towards specific interac-
tions (Wells and McClendon, 2007). Such “link-directed” drugs,
however, can provide a more precise means to modulate molecular
networks.
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In summary, network-based analyses offer new ways of study-
ing targets and effects of drugs. Although challenges lie ahead,
network models promise to be powerful and versatile tools in our
quest to better understand and control molecular systems in health
and disease.
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