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Transfer RNAs (tRNA) are best known for their role as adaptors during translation of
the genetic code. Beyond their canonical role during protein biosynthesis, tRNAs also
perform additional functions in both prokaryotes and eukaryotes for example in regulating
gene expression. Aminoacylated tRNAs have also been implicated as substrates for non-
ribosomal peptide bond formation, post-translational protein labeling, modification of
phospholipids in the cell membrane, and antibiotic biosyntheses. Most recently tRNA
fragments, or tRFs, have also been recognized to play regulatory roles. Here, we examine in
more detail some of the new functions emerging for tRNA in a variety of cellular processes
outside of protein synthesis.
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INTRODUCTION
tRNAs are important players in the protein synthesis pathway,
linking the genetic code with the amino acid sequence of proteins.
tRNAs are composed of 73–90 nucleotides and have a characteris-
tic cloverleaf secondary structure made up of the D-loop, T loop,
variable loop, and the anticodon loop. The tRNA further folds into
an L-shaped tertiary structure through coaxial stacking of the T
and D loops. To function as a substrate in protein synthesis, tRNA
is charged with an amino acid by its cognate aminoacyl-tRNA syn-
thetase. The aminoacyl-tRNA (aa-tRNA) thus formed serves as a
substrate and participates in the chemistry of peptide bond for-
mation in the process of protein synthesis. Beside this well-known
canonical role during protein biosynthesis, tRNAs have been
shown to perform additional functions such as acting as signaling
molecules in the regulation of numerous metabolic and cellu-
lar processes in both prokaryotes and eukaryotes. Aminoacylated
tRNAs have also been implicated as substrates for non riboso-
mal peptide bond formation in the case of cell wall formation,
protein labeling for degradation, modification of phospholipids
in the cell membrane, and antibiotic biosynthesis. Due to their
universally conserved L-shaped three-dimensional conformation,
which is stabilized by extensive secondary and tertiary structural
contacts and modifications, tRNA molecules are among the most
stable RNAs in a cell and are considerably more robust than
mRNAs (Gebetsberger and Polacek, 2013). For a long time, tRNA
fragments were considered as non-functional degradation inter-
mediates, but have now been recognized to be major RNA species
in human cells for which regulatory roles are beginning to be
discovered. It was also recently shown that tRNAs can act as an
effective scavenger of cytochrome c, consistent with a role in reg-
ulating apoptosis. With new functions still emerging for tRNA, in
this review we examine some of the many “non-protein synthesis”
roles of tRNA in the cell.

ROLES OF tRNA IN GENE EXPRESSION
While aminoacyl-tRNAs have been implicated in many roles
outside translation, several important functions of tRNA have

been found not to require the aminoacyl form (aa-tRNA).
Uncharged tRNAs have been shown to regulate global gene expres-
sion in response to changes in amino acid pools in the cell.
Bacteria have adopted various strategies to adapt to external
stresses, of which the most-studied global regulatory system is
the stringent response. Stringent response is mediated through
the production of the alarmone 5′-diphosphate 3′-diphosphate
guanosine (ppGpp) and 5′-triphosphate 3′-diphosphate guano-
sine (pppGpp) which were first discovered by Cashel and Gallant
(1969) in Escherichia coli as a response to amino acid starvation.
E. coli uses two pathways for the synthesis of ppGpp dependent on
RelA and SpoT. RelA is a ribosome-associated (p)ppGpp synthase
which senses the presence of uncharged tRNAs that accumulate
at the ribosome A site as a result of amino acid limitation. The
presence of the uncharged tRNA acts as an effector molecule,
stalling protein synthesis and activating RelA which then synthe-
sizes pppGpp and ppGpp by phosphorylation of GTP or GDP
using ATP as the phosphate donor (Haseltine and Block, 1973;
Sy and Lipmann, 1973). ppGpp was recently shown to bind at
an interface of ω and β′ subunits of RNA polymerase, thereby
acting as an allosteric effector to inhibit global gene transcrip-
tion, while stimulating the expression of only a few genes related
to the synthesis of amino acids (Ross et al., 2013). rRNA and
tRNA synthesis are primarily inhibited, resulting in the global
downregulation of bacterial metabolism. SpoT is a bifunctional
(p)ppGpp synthase and hydrolase, which presumably regulates
the (p)ppGpp level in response to nutrient deficiency. The mech-
anism by which SpoT senses starvation and synthesizes ppGpp
is unclear (Magnusson et al., 2005). Many other bacterial species
including Bacillus subtilis contain only one RelA-SpoT homolog,
designated as Rel, which possesses both (p)ppGpp synthase and
hydrolase activities. RelA-SpoT homologs have also been detected
in plants (Givens et al., 2004). Two Bacillus subtilis genes, yjbM
and ywaC, were found to encode a novel (p)ppGpp synthase that
corresponds to the synthase domain of RelA-SpoT family mem-
bers while having a different mode of action (Nanamiya et al.,
2008).
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Another mechanism by which bacteria regulate gene expression
using uncharged tRNA as the effector molecule has been demon-
strated in B. subtilis and other Gram-positive bacteria. In these
organisms, the expression of aminoacyl-tRNA synthetase genes
and genes involved in amino acid biosynthesis and uptake is regu-
lated by the T box control system (reviewed in Green et al., 2010).
Regulation by the T box mechanism most commonly occurs at the
level of transcription attenuation (Henkin and Yanofsky, 2002).
The 5′ untranslated regions of regulated genes contain a 200–
300 nt conserved sequence and structural element (a G + C-rich
helix followed by a run of U residues) that serves as an intrinsic
transcriptional terminator and can also participate in formation
of an alternate, less stable antiterminator structure. During amino
acid starvation, binding of a specific uncharged tRNA stabilizes
the antiterminator and in doing so prevents formation of the
terminator helix. The T box binds specific uncharged tRNA at
two conserved sites: the anticodon of the tRNA interacts with the
codon sequence of the specifier loop (SL) in the 5′-UTR, while
the 3′ acceptor end interacts with the UGGN sequence found
in the antiterminator bulge, thus stabilizing the structure of the
antiterminator and preventing the formation of the competing
terminator. RNA polymerase then continues past the terminator
region and transcribes the full-length mRNA. The N residue in
the antiterminator bulge varies with the corresponding position
of the tRNA. Both charged and uncharged tRNAs can interact
with specifier sequence in the 5′-UTR; however the presence of
the amino acid at the 3′ end of a charged tRNA prevents the inter-
action of its 3′ end with the antiterminator bulge region; and allows
formation of the terminator hairpin that results in premature ter-
mination of transcription (Grundy et al., 2005). Recently a unique
mechanism of tRNA-dependent regulation at the transcriptional
level was discovered. Saad et al. (2013) found a two-codon T-
box riboswitch binding two tRNAs in Clostridium acetobutylicum.
This T-box regulates the operon for the essential tRNA-dependent
transamidation pathway and harbors an SL with two potential
overlapping codon positions for tRNAAsn and tRNAGlu. Both
tRNAs can efficiently bind the SL in vitro and in vivo. This fea-
ture allows the riboswitch to sense two tRNAs and balance the
biosynthesis of two amino acids (Saad et al., 2013). Regulation at
the level of translation initiation has also been demonstrated for
T box riboswitches in certain bacteria (Fuchs et al., 2006). Trans-
lationally regulated leader RNAs include an RNA element with
the ability to sequester the Shine-Dalgarno (SD) sequence by pair-
ing with a complementary anti-SD (ASD) sequence. Binding of
uncharged tRNA stabilizes a structure analogous to the antiter-
minator that includes the ASD sequence, and formation of this
alternate structure releases the SD sequence for binding of the 30S
ribosomal subunit, thereby enabling translation of mRNA cod-
ing for proteins involved in amino acid biosynthesis (Green et al.,
2010).

Uncharged tRNAs also function as regulators in eukaryotes.
In amino-acid-starved yeast and mammalian cells, uncharged
tRNA activates a protein kinase named Gcn2p whose regulatory
sequences include the amino terminal region, a pseudo kinase
domain, protein kinase region, histidyl-tRNA synthetase (HisRS)-
related region and the c-terminal dimerization and ribosome
binding sequences. The tRNA has been shown to bind to the

HisRS like regulatory domain, thereby activating Gcn2p which
in turn phosphorylates eIF2, a protein involved in binding GTP
and Met-tRNAi

Met and forming the ternary complex required for
translation initiation (Wek et al., 1995). The activated Gcn2p phos-
phorylates the α subunit of eIF2 at serine 51, lowering its activity
and thereby reduces global protein synthesis. Gcn2p was shown to
bind several types of uncharged tRNA with similar affinities but
showed a reduced affinity for the charged form of a tRNA, imply-
ing that Gcn2 can discriminate between charged and uncharged
forms of tRNA. (Dong et al., 2000). It was recently proposed that
in the inactive form of Gcn2 present in non−starvation condi-
tions, association with the substrate eIF2 is prevented by binding
of the HisRS-like domain and C−term to the PK domain of
Gcn2 thereby sequestering the substrate binding cleft. However,
under starvation conditions, uncharged tRNA binds to Gcn2, at
both the HisRS and C−term domains thereby producing con-
formational changes which open up the substrate binding cleft
in the PK domain by releasing the HisRS-like domain and the
C-terminal portion of Gcn2p, from inhibitory interactions with
the PK domain, which allows eIF2 binding and phosphorylation
(Qiu et al., 2001).

It has been proposed that discrimination between the charged
and uncharged tRNA by Gcn2p occurs via an analogous mech-
anism of RelA protein activation as observed in E. coli by the
presence of uncharged tRNA at the decoding (A) site on trans-
lating ribosomes. The activation of Gcn2p by uncharged tRNA
requires its association with the ribosome via its C-terminal region
and also, interactions between the N terminus of Gcn2p and the
Gcn1p–Gcn20p protein complex which is also associated with
the ribosome. Gcn1p, has been proposed to facilitate the evic-
tion of uncharged tRNA from the A site and its transfer from
the A site to the HisRS-like domain in Gcn2p for kinase activa-
tion and the Gcn1p-Gcn20p complex has also been implicated
to increase the binding of uncharged tRNA to ribosomes. The
importance of the Gcn1p–Gcn20p complex in Gcn2p activation
was shown by the Hinnebusch group, who demonstrated that dele-
tion of GCN1 blocks eIF2 phosphorylation by Gcn2p (Marton
et al., 1993). The activation of eIF2 by an uncharged tRNA at the
A site of the ribosome could explain how starvation of a single
amino acid can activate Gcn2p, even though it cannot discrim-
inate between uncharged tRNA species in cells starved for only
one amino acid (Marton et al., 1997; Garcia-Barrio et al., 2000;
Sattlegger and Hinnebusch, 2000). In yeast, phosphorylation of
eIF2, allows for selected mRNAs such as GCN4 to be translated.
Elevated levels of Gcn4, which acts as a transcription factor, stim-
ulate the expression of genes involved in amino acid biosynthesis
(reviewed in Hinnebusch, 2005). In comparison to S. cerevisiae,
which has a single eIF2α kinase, Gcn2p, mammalian cells have
expanded this stress response pathway to include additional eIF2α

kinases, which each respond to different environmental stresses.
Analogous to yeast, phosphorylation of mammalian eIF2α leads
to a block in global translation, accompanied by induced transla-
tional expression of ATF4 and ATF5, transcription factors related
to Gcn4p (Harding et al., 2000; Lu et al., 2004; Vattem and Wek,
2004; Zhou et al., 2008).

The above mechanisms demonstrate that under certain nutri-
tional stresses, the aminoacylation levels of tRNAs change and the
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FIGURE 1 | Various roles of charged and uncharged tRNA in the cell.

accumulated uncharged tRNAs participate in numerous biological
pathways that regulate global gene expression levels, helping the
organism to survive under adverse conditions.

AMINOACYL-tRNAs AS NON-RIBOSOMAL SUBSTRATES
In recent years, the diverse roles of aa-tRNAs have received a great
deal of attention. While much of the research has focused on the
use of aa-tRNA by the ribosome for protein synthesis, a number
of studies have uncovered roles for aa-tRNAs as substrates in other
biochemical processes, such as cell wall formation, protein label-
ing for degradation, aminoacylation of phospholipids in the cell
membrane, and antibiotic biosynthesis (Figure 1). In this section,
we will briefly review some of these various processes that use
aa-tRNAs as substrates.

AMINOACYL-tRNAs IN CELL WALL BIOGENESIS
Aminoacyl-tRNA-dependent building of peptidoglycan bridges
Peptidoglycans (PG) are structural components of bacterial cell
walls that can both serve as a barrier to environmental chal-
lenges and provide a scaffold for the attachment of various
proteins including virulence factors (Vollmer et al., 2008). Pep-
tidoglycan is a polymer of β (1-4)-linked N-acetylglucosamine
(GlcNAc) and N-acetylmuramic acid (MurNAc), with all lactyl
groups of MurNAc substituted with stem peptides, typically
comprised of alternating D and L-amino acids with an overall com-
mon structure of L-Ala-γ-D-Glu-X-D-Ala-D-Ala. The composition
of the peptide varies among different bacteria: Gram-negative

bacteria and Gram-positive bacilli have meso-diaminopimelic
acid (DAP) as the third amino acid (DAP-type peptidoglycan),
whereas most other Gram-positive bacteria (including Gram-
positive cocci) have L-lysine as the third amino acid (Royet and
Dziarski, 2007). The stem peptides from adjacent strands are often
crosslinked, either directly or through short peptides between
the X position of the first pentapeptide side chain with the L-
Ala at the fourth position of another. The amino acids required
for bridge formation are typically derived from aminoacylated-
tRNA donor molecules and are transferred onto the pentapeptide
by tRNA-dependent aminoacyl-ligases which catalyze peptide-
bond formation by using aminoacyl-tRNAs and peptidoglycan
precursors as donor and acceptor, respectively.

The peptidoglycan in Streptococcus pneumoniae contains a
“stem peptide” composed of up to five amino acids, Ala-γ-D-Glu-
Lys-D-Ala-D-Ala, with an L-Ala-L-Ala or an L-Ser-L-Ala dipeptide
branch that is attached to the third L-Lys of the pentapeptide side
chain. MurM is responsible for the addition of either L-Ala or L-Ser
as the first amino acid of the cross-link and then MurN invari-
ably adds L-Ala as the second amino acid (Filipe et al., 2000). In
both cases, appropriately aminoacylated-tRNA species serve as the
amino acid donors for the reaction (Lloyd et al., 2008), although
MurM also efficiently accepts mischarged tRNA substrates
(Shepherd, 2011; Shepherd and Ibba, 2013b). In Enterococcus
faecalis, BppA1 and BppA2 add L-Ala-L-Ala dipeptide to the
pentapeptide chain (Bouhss et al., 2002), while FemXAB from
Staphylococcus aureus sequentially adds one (FemX) or two (FemA
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and FemB) glycines (Schneider et al., 2004). Lif and Epr in Staphy-
lococcus simulans and Staphylococcus capitis, FemX in Weissella
virides and FemX and VanK in Streptomyces coelicolor all cat-
alyze similar reactions using aa-tRNAs as substrates (reviewed in
Shepherd and Ibba, 2013a). How aa-tRNAs are diverted from pro-
tein synthesis and used as substrates by these enzymes remains
somewhat unclear in most instances. In S. aureus, the mecha-
nism of escape from the protein synthesis machinery could be
explained by the observation that three out of the five tRNAGly

isoacceptors encoded in the S. aureus genome have sequence
identity elements consistent with weak binding to EF–Tu (Gian-
nouli et al., 2009). These specific tRNA sequence elements include
replacement of the strong EF–Tu binding pairs G49–U65 and
G51–C63 [23–25] with A49–U65 and A51–U63, respectively,
in the T loop (Roy et al., 2007; Sanderson and Uhlenbeck,
2007). The three non-proteinogenic tRNAGly isoacceptors also
show replacement of GG at positions 18 and 19 with either
UU or CU. Hence the isoacceptors with weak binding to EF–
Tu could escape protein synthesis and thus allow S. aureus to
maintain an adequate supply of Gly-tRNAGly for two essential
processes: translation and cell wall modification (Shepherd and
Ibba, 2013a).

The specificity of peptidoglycan-modifying enzymes with
respect to amino acid and tRNA substrates was demonstrated in
the Fem X enzyme from Weissella viridescens. In W. viridescens
the peptide bridge is made up of L-Ala-L-Ser or L-Ala-L-Ser-
L-Ala. FemX initiates peptide bridge formation by transfer of
the first L-Ala residue to the amino group of L-Lys found at
the third position of the pentapeptide side chain. The enzymes
involved in the subsequent transfer of the second position Ser
and third position Ala residues have not yet been identified.
FemX has a preference for L-Ala addition to UDP-MurNAc pen-
tapeptide because it reacts much more unfavorably with both
L-Ser and the acceptor arm of tRNAGly . In vitro assays show
that FemX turns over Ser-tRNASer and Gly-tRNAGly 17- and 38-
fold less efficiently than Ala-tRNAAla, respectively. In the latter
case, the penultimate base pair of tRNAAla, G2-C71, was iden-
tified as an essential identity element for FemX. This is typically
replaced by C2-G71 in tRNAGly species (Fonvielle et al., 2009).
L-Ala is preferred 110-fold over D-Ala, suggesting relatively weak
specificity toward different stereoisomers. The exclusion of ser-
ine is due to steric hindrance at the FemXWv active site rather
than poor recognition of the nucleotide sequence of tRNASer.
Hence, Fem enzymes discriminate non-cognate aa-tRNAs on the
basis of both the aminoacyl moiety and the sequence of the
tRNA.

Aminoacyl-tRNA-dependent aminoacylation of membrane lipids
Bacteria are frequently exposed to cationic antimicrobial pep-
tides (CAMPs), for example eukaryotic host defense peptides
or prokaryotic bacteriocins, whose cationic properties impart
strong affinities to the negatively charged bacterial lipids phos-
phatidylglycerol (PG) and cardiolipin (CL). Many bacteria, among
them several important human pathogens, achieve CAMP resis-
tance using MprF proteins, a unique group of enzymes that
aminoacylate anionic phospholipids with L-lysine or L-alanine,
thereby introducing positive charges into the membrane surface

and reducing the affinity for CAMPs (Ernst and Peschel, 2011).
MprF was first identified when its inactivation rendered a S.
aureus transposon mutant susceptible to a wide range of cationic
antimicrobial peptides (CAMPs) leading to the name “multiple
peptide resistance factor” (MprF; Peschel et al., 2001). MprFs
can use lysyl or alanyl groups derived from aminoacyl tRNAs
for modification of PG (Roy and Ibba, 2008). MprF proteins
are integral membrane proteins made up of a C terminal,
hydrophilic, cytoplasmic domain responsible for the transfer
of amino acid onto PG, and an N terminal transmembrane
hydrophobic domain that flips newly synthesized LysPG to the
membrane outer leaflet (Ernst et al., 2009). MprF homologs
can be found in most bacterial phylas and are abundant in
firmicutes, actinobacteria, and proteobacteria with the excep-
tion of enterobacteria. Some archaea also harbor genes for
MprF, probably resulting from lateral gene transfer events (Roy
and Ibba, 2009). MprF homologs exhibit differential specificity
for the aa-tRNA substrate they use to modify PG, resulting
in a broader classification of these enzymes as aminoacyl-
phosphatidylglycerol synthases (aaPGS; Klein et al., 2009; Dare
and Ibba, 2012). For example, the MprFs in S. aureus and
P. aeruginosa only synthesize Lys-PG or Ala-PG, respectively
(Staubitz et al., 2004; Klein et al., 2009). In contrast, Ente-
rococcus faecium MprF2 exhibits rather relaxed specificity for
the donor substrate and produces both, Ala-PG and Lys-PG
along with small amounts of Arg-PG (Roy et al., 2009). Lis-
teria monocytogenes MprF is less strict in its specificity for
the acceptor substrate and generates both, Lys-PG and Lys-
CL (Thedieck et al., 2006; Dare et al., 2014). Based on the
ability of MprF1 to efficiently recognize tRNAAla, tRNAPro,
and a minihelixAla and recognition of the tRNALys species
from both Borrelia burgdoferi and humans, which share less
than 50% sequence identity, it was proposed that the speci-
ficity of MprF arises from direct recognition of the aminoacyl
moiety of aa-tRNA (Roy and Ibba, 2008). The mechanism uti-
lized by MprF and other similar enzymes raises the question
of how aa-tRNA donor substrates are directed into membrane
lipid modification and away from protein synthesis. Deter-
mination of the KDs of Lys-tRNA for EF-Tu and for MprF
suggested that the two proteins have similar affinities for tRNA
under physiological conditions (Roy and Ibba, 2008). Com-
parison of the sites in tRNA recognized by MprF and EF–Tu
would give a better understanding of how aa-tRNAs are par-
titioned between translation and membrane lipid modification
pathways.

ROLE OF AA-tRNA IN ANTIBIOTIC BIOGENESIS
In addition to having essential roles in protein synthesis and non-
ribosomal peptide bond formation, aminoacyl-tRNAs are also
used in pathways where the donated amino acid moiety undergoes
transformation into a significantly different compound. These
pathways involve different amino acid-tRNA pairs and a variety
of acceptor molecules (Banerjee et al., 2010). Examples of aa-
tRNA-dependent addition of amino acids in antibiotic biogenesis,
which have been reviewed in detail previously, include valan-
imycin, pacidamycin, and cyclodipeptide synthesis (Shepherd and
Ibba, 2013a).
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Valanimycin is a potent antitumor and antibacterial azoxy com-
pound first isolated from Streptomyces viridifaciens by Yamato
et al. (1986). A gene cluster has been identified that contains 14
genes involved in the biosynthesis of valanimycin (Garg et al.,
2002). The functions of the products of eight of these genes
have now been established. Valanimycin is derived from L-Val and
L-Ser via an isobutylhydroxylamine intermediate. VlmD, VlmH,
and VlmR catalyze the conversion of valine into isobutylhydroxy-
lamine, while VlmL catalyzes the formation of L-seryl-tRNA from
L-serine. VlmA, which is a homolog of the housekeeping SerRS,
catalyzes the transfer of L-serine from L-seryl-tRNA to isobutyl-
hydroxylamine, to produce O-(L-seryl)-isobutylhydroxylamine,
while VlmJ and VlmK catalyze the phosphorylation and subse-
quent dehydration of the biosynthetic intermediate valanimycin
hydrate to form valanimycin (Garg and Parry, 2010). The mech-
anism by which Ser-tRNASer is directed away from translation
into the valanimycin pathway, and the identity elements of
tRNASer that help in recognition by VlmA and VlmL, are still
unknown.

Other examples of antibiotics derived from aa-tRNAs are the
cyclodipeptides (CDP), a large group of secondary metabolites
with a notable range of clinical activities (Rodriguez and Car-
rasco, 1992; Prasad, 1995; Magyar et al., 1996; Waring and Beaver,
1996; Kanoh et al., 1999; Strom et al., 2002; Cain et al., 2003;
Kanzaki et al., 2004; Jia et al., 2005; Kohn and Widger, 2005;
Musetti et al., 2007; Minelli et al., 2012). It was originally
proposed that formation of the CDPs was catalyzed by non-
ribosomal peptide synthetases, which do not use aa-tRNAs as
substrates. However, subsequent characterization of synthesis
of the CDP albonoursin in Streptomyces noursei identified the
tRNA-dependent CDP synthase AlbC (Lautru et al., 2002). AlbC
synthesizes the albonoursin precursor cyclo (L-Phe-L-Leu) from
aminoacylated tRNAs in an ATP-independent reaction (Lautru
et al., 2002; Gondry et al., 2009). CDP synthase products iden-
tified to date include cyclo(L-Leu-L-Leu) (cLL), cyclo(L-Phe-L-
Leu) (cFL), cyclo(L-Tyr-L-Tyr) (cYY), and cyclo(L-Trp-L-Xaa)
(cWX), all of which are intermediates in antibiotic synthe-
sis (Belin et al., 2012). CDP synthases use their two aa-tRNA
substrates in a sequential ping-pong mechanism, with a sim-
ilar first catalytic step: the binding of the first aa-tRNA and
subsequent transfer of its aminoacyl moiety to the conserved
serine residue of the enzyme pocket (e.g., Ser37 in the AlbC
enzyme; Sauguet et al., 2011). The mechanism of addition of
the second amino acid remains unclear, as do the specificity
determinants for CDP synthases. Recently, similarities between
the predicted secondary structure for PacB, a protein involved
in the biosynthesis of the antibiotic pacidamycin, and struc-
tures of two Fem transferases led to the characterization of PacB
as an alanyl-tRNA-dependent transferase (Zhang et al., 2011).
Pacidamycins are a family of uridyl tetra/pentapeptide antibi-
otics produced by Streptomyces coeruleorubidus with antipseu-
domonal activities through inhibition of the translocase MraY
during bacterial cell wall assembly. Analogous to the activity
of CDP synthases, PacB hijacks aa-tRNAs and transfers L-Ala
from aminoacyl-tRNA donors to the N terminal m-Tyr2 residue
of the growing PacH-anchored antibiotic scaffold (Zhang et al.,
2010).

tRNA-DEPENDENT ADDITION OF AMINO ACIDS TO THE
AMINO-TERMINUS OF PROTEINS
Protein degradation plays an important role in maintaining cellu-
lar physiology and in regulation of various cellular processes such
as cell growth, differentiation and apoptosis by removing dam-
aged polypeptides and regulatory proteins in a timely manner.
As compared to cellular compartments like lysosomes and vac-
uoles where proteases are involved in non-specific degradation of
proteins, protein degradation in the cytosol of prokaryotes and
eukaryotes is often strictly targeted to protect cellular proteins
from unwanted degradation. One means to achieve specificity
involves the aa-tRNA transferases, which recognize a secondary
destabilizing residue (pro-N degrons) at the N-terminus of a tar-
get peptide and utilize an aminoacyl-tRNA to transfer a primary
destabilizing amino acid (N-degron) to the N-terminal residue,
making the protein a target for the cellular degradation machin-
ery (N-recognins; Mogk et al., 2007). This specificity in protein
degradation was discovered by Bachmair et al. (1986) when they
found that different genetic constructs of β-galactosidase proteins
from E. coli exhibited very different half-lives when produced in
Saccharomyces cerevisiae, ranging from more than 20 h to less
than 3 min, depending on the identity of their N-terminal amino
acid [the N-end rule (Bachmair et al., 1986)]. The N-end rule
relates the identity of the N-terminal residue of a protein to
its in vivo half-life (Mogk et al., 2007) and has been shown to
function in bacteria (Tobias et al., 1991), fungi (Bachmair et al.,
1986), plants (Potuschak et al., 1998) and mammals (Gonda et al.,
1989). In eukaryotes an N-terminal Arg residue is the preferred
N-degron and acts as a target for ubiquitin conjugation and sub-
sequent degradation by the eukaryotic proteasome (Tasaki et al.,
2012). The degron is generated by the ATE1 gene product arginyl
(R)-transferase, which transfers Arg from Arg-tRNA to the N-
terminal α-amino group of oxidized cysteine, Asp, or Glu which
constitute secondary destabilizing residues (Pro-N-degrons; Rai
and Kashina, 2005; Graciet et al., 2006). In prokaryotes, Leu
and Phe act as the primary destabilizing N-terminal residues (N-
degrons) and can be generated by two classes of aa-transferases,
leucyl/phenylalanyl(L/F)-transferase encoded by the Aat gene and
leucyl- transferase encoded by Bpt. The L/F- transferase attaches
a primary destabilizing residue of either Leu or Phe to the sec-
ondary destabilizing residues Lys, Met, and Arg (Shrader et al.,
1993), whereas Bpt-encoded L-transferase attaches Leu to the sec-
ondary destabilizing residues Asp and Glu (Graciet et al., 2006).
The Leu/Phe N-degron acts as a target for ClpS, which trans-
fers the protein to ClpAP for subsequent degradation (Mogk
et al., 2007). The question that next arises is how the aa-tRNA
transferases achieve specificity in binding aa-tRNAs? The crys-
tal structure of leucyl/phenylalanyl-tRNA-protein transferase and
its complex with an aminoacyl-tRNA analog solved by Suto et al.
(2006) revealed that the side chain of Leu or Phe is accommodated
in a highly hydrophobic pocket, with a shape and size suitable for
hydrophobic amino-acid residues lacking a branched β-carbon,
such as leucine and phenylalanine. The adenosine group of the
3′ end of tRNA is recognized largely through π–π stacking with
conserved Trp residues. However, L/F transferases achieve speci-
ficity for aa-tRNAs through specific interaction with the aminoacyl
moiety and not the tRNA, and only the presentation of the specific
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aminoacyl moiety by a single-stranded RNA region is required for
recognition (Abramochkin and Shrader, 1996). The activity of
L/F-transferases is reduced in the presence of an excess of EF–Tu,
suggesting that L/F-transferase and EF–Tu compete for binding to
aa-tRNA.

tRNA-DERIVED FRAGMENTS
Small non-coding RNA (sncRNA) molecules are major contrib-
utors to regulatory networks that control gene expression, and
significant attention has been directed toward their identification
and studying their biological functions. sncRNA was first discov-
ered in 1993 in Caenorhabditis elegans, and since then a large
number of sncRNAs have been identified. sncRNAs are 16–35
nucleotides (nts) long and are classified into different groups such
as microRNA (miRNA), small-interfering RNA (siRNA), piwi-
interacting RNA, and small nucleolar RNA (snoRNA). Among
them, miRNA and siRNA are the most extensively studied, and
both suppress gene expression by binding to target mRNAs. The
recent development of high-throughput sequencing technology
has improved the identification of other types of small, RNAs-like,
tRNA-derived RNA fragments (tRFs) which have been identified
by several research groups (Lee et al., 2009). There is increasing

evidence that these are not by-products from random degrada-
tion, but rather functional molecules that can regulate translation
and gene expression. The production of tRNA fragments and their
emerging roles in the cell are discussed below (Figure 2).

PRODUCTION OF tRNA FRAGMENTS
tRNA halves
tRNA halves are composed of 30–35 nucleotides derived from
either the 5′ or 3′ part of full-length, mature tRNA. These tRNA
halves are produced by cleavage in the anticodon loop under nutri-
tional, biological, physicochemical, or oxidative stress (Thompson
et al., 2008; Dhahbi et al., 2013; Nowacka et al., 2013). In mam-
malian cells, tRNA halves are generated during stress conditions
by the action of the nuclease angiogenin, a member of the RNase
A family (Fu et al., 2009) whereas in yeast Rny1p, a member of
the RNase T2 is responsible for tRNA half production. Apart from
their roles as nucleases, both angiogenin and Rny1 act as sen-
sors of cellular damage and can promote cell death and inhibit
tumor formation (Thompson and Parker, 2009; Gebetsberger and
Polacek, 2013). Under normal conditions, yeast Rny1 is usually
localized in the vacuole (Thompson and Parker, 2009), while
angiogenin is secreted to the plasma, sequestered in the nucleolus

FIGURE 2 | Formation of small RNAs from tRNA. Precursor tRNAs are
processed by RNase P, RNase Z, the splicing endonuclease and CCA-adding
enzyme to form mature tRNA in the nucleus. Processing of both the
pre-tRNA and mature tRNA can give rise to small RNA. The figure shows

possible routes for small RNA (tRNA halves, 5′ tRF, 3′ CCA tRF, 3′ U tRF
and 5′ leader exon tRF) production from tRNA. The dashed lines and
question marks indicate mechanisms of formation or transport of these
tRFs that are not clear.
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or bound to its inhibitor RNH1 (Yamasaki et al., 2009; Saikia et al.,
2012), and released into the cytoplasm under certain stress condi-
tions. tRNA halves have also been identified in bacteria, archaea,
and plants. In bacteria, tRNA anticodon nucleases such as PrrC,
colicin D, and colicin E5 have been shown to cleave specific sub-
sets of tRNAs (reviewed in Kaufmann, 2000; Masaki and Ogawa,
2002).

tRNA-derived fragments
tRNA-derived fragments (tRFs) are shorter than tRNA halves
ranging between 13 and 20 nt in size. They have been identified in
all domains of life. There are four types of tRFs known and they
are classified based on the part of the mature tRNA or pre-tRNA
from which they are derived. tRFs were classified as 5′ tRFs, 3′
CCA tRFs, 3′ U tRFs, or 5′ leader-exon tRFs. 5′ tRFs are derived
from the 5′ end of the tRNA generated at any point of tRNA pro-
cessing, provided the 5′ leader sequence is removed by RNaseP,
and are formed by a cleavage in the D loop. In the case of 5′ tRFs
their biogenesis is carried out by Dicer in mammalian cells (Cole
et al., 2009). However, it is known that the Dicer-independent
generation of 5′ tRFs takes place in Schizosaccharomyces pombe
due to the differences in length of the 5′ tRFs generated in these
two organisms (19 nt long in mammals and 23 nt long in yeast),
suggesting that a protein other than Dicer is responsible for their
production in yeast (Buhler et al., 2008). 3′ CCA tRFs are pro-
duced from the 3′ ends of mature tRNA by cleavage at the T loop
and carry the trinucleotide CCA at the acceptor stem. Dicer has
been implicated in the generation of the 3′ end fragment (Maute
et al., 2013), although angiogenin and other RNase A members
have also been proposed to function in Dicer-independent pro-
cessing (Li et al., 2012; Gebetsberger and Polacek, 2013). 3′ U
tRFs are cleaved from the 3′ end of tRNA precursors by RNase
Z, and their biogenesis is normally Dicer independent. They com-
monly start directly after the 3′ end of mature tRNAs and end in
a stretch of U residues produced by RNA polymerase III run-off
(Lee et al., 2009; Haussecker et al., 2010). One 3′ U tRF is pro-
duced in an RNaseZ-independent manner by the action of Dicer
on the predicted bulged hairpin structure of the pre-tRNA (Babi-
arz et al., 2008). The mechanism of formation of 5′ leader-exon
tRFs is not known; however they have been identified in CLP1
mutant cells possibly arising due to aberrant splicing. CLP1 is
an RNA kinase and is a component of the mRNA 3′ end cleav-
age and polyadenylation machinery in mammals (Hanada et al.,
2013).

While it was previously thought that production of tRNA
halves and tRFs were solely mechanisms to remove damaged
tRNAs, increasing evidence suggests their formation to be reg-
ulated. Angiogenin and Rny1 involved in the production of tRNA
halves are usually sequestered in compartments before they are
released in the cytoplasm where they cleave tRNAs (Spriggs et al.,
2010). However, the regulation of their release from these cellular
compartments is not known. Also a number of tRNAs [including
tRNAAsp(GTC), tRNAVal(AAC) and tRNAGly(GCC)] can be methy-
lated by Dnmt2, which has been shown to protect these tRNAs
from cleavage during stress (Schaefer et al., 2010). This specificity
in cleavage of tRNAs might be responsible for the different types
of tRFs observed under various conditions.

FUNCTIONS OF tRFS
Are tRFs merely the products of tRNA degradation or do they have
bona fide biological functions? If so, how diverse are these func-
tions given the various forms of tRFs identified? Several lines of
evidence point toward regulated production, suggesting that they
may be functional RNA species. First, the abundance of different
types of tRF does not correlate with the number of parent tRNA
gene copies (Kawaji et al., 2008; Cole et al., 2009; Hsieh et al., 2009;
Sobala and Hutvagner, 2011) with the exception of those found
in Tetrahymena (Couvillion et al., 2010). Second, the fragments
of tRNA formed are produced by cleavage at specific points in
the tRNA. Third, whilst tRFs corresponding to the 5′ and 3′ ends
of tRNA have been reported, those corresponding to the middle
(incorporating the anticodon loop) have not. Although, the exact
roles of tRNA halves and tRFs are yet to be elucidated, accumulat-
ing evidence suggests that tRNA-derived small RNAs participate in
two main types of biological processes as discussed in more detail
below.

Translation regulation of gene expression under stress conditions
tRNAs are indispensible components of the translational machin-
ery, hence tRNA cleavage under stress conditions can affect protein
synthesis. However, the mode of translational regulation by tRNA
cleavage is not simple. It has been shown previously that dur-
ing stress conditions, formation of tRNA cleavage products does
not change the pool of full-length tRNA significantly, rather these
fragments represent only a small portion of the tRNA pool (Saikia
et al., 2012). Ivanov et al. (2011) showed a more intricate role for
tRNA halves in translational control. They observed that tRNA
halves formed by angiogenin during stress were able to inhibit
protein synthesis and trigger the phospho-eIF2α-independent
assembly of stress granules (SGs). These granules are mainly
composed of stalled pre-initiation complexes, suggesting that the
translation initiation machinery can be targeted by 5′ tRNA halves.
They demonstrated that selected tRNA halves inhibit protein syn-
thesis by displacing eIF4G/eIF4A from capped and uncapped
mRNA and eIF4E/G/A (eIF4F) from the m7G cap. Using pull
down of 5′-tiRNAAla– protein complexes the authors implicated
YB-1, a translational repressor known to displace eIF4G from
RNA and eIF4E/G/A from the m7G cap (Evdokimova et al., 2001;
Nekrasov et al., 2003). Analysis of the 5′ tRNA halves in com-
plex with YB-1 revealed that a terminal oligo-G motif containing
four to five consecutive guanosines present in certain 5′ tRNA
halves (Ala/Cys) was absolutely required for translational repres-
sion of a reporter mRNA, suggesting the inhibition is caused by
specific tRNA and is not a consequence of global upregulation
of tRFs (Ivanov et al., 2011). This result came as a surprise as
regulation of translation during stress is carried out via phospho-
rylation of eIF2 (See Roles of tRNA in Gene Expression), which
induces translational repression facilitated by active sequestra-
tion of untranslated mRNAs into SGs (Holcik and Sonenberg,
2005).

In addition to tRNA halves, tRFs have also been implicated
in regulation of translation. In the archaeon Haloferax volcanii a
26 nt-long 5′tRF originating from tRNAVal in a stress-dependent
manner was shown to directly bind to the small ribosomal sub-
unit and inhibit translation by interfering with peptidyl transferase
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activity (Gebetsberger et al., 2012). A similar mechanism of trans-
lation inhibition by a 5′ tRF was recently observed in human
cells (Sobala and Hutvagner, 2013). A 26 nt 5′ tRF derived from
tRNAValwas able to inhibit translation by affecting peptide bond
formation. An interesting observation from this study was that the
tRFs required a conserved “GG” dinucleotide for their activity in
inhibiting translation. A similar motif dependence is observed as
discussed above in translation inhibition by a 5′ tRNA half. 5′ tRNA
halves containing the 5′ tRF sequence were shown to require a run
of at least four guanosine residues at the 5′ end of the molecule,
which is present only in tRNAAla and tRNACys, as compared to
5′ tRFs that require only two guanosine residues at the 3′ end of
the molecule, residues conserved between tRNAs. Mutating the
di-guanosine motif required by 5′ tRF in the 5′ tRNA half did
not affect its inhibitory activity, and the precise mechanism of
translation inhibition by these tRFs warrants further investigation
(Sobala and Hutvagner, 2013).

tRNA-derived fragments as regulators of gene silencing
One of the first studies showing the involvement of tRNA-derived
fragments in gene regulation and silencing was carried out by
Yeung et al. who addressed the role of small RNAs in human
immunodeficiency virus (HIV) infected cells. A highly abundant,
18 nt-long, tRF originating from the 3′ end of human cytoplas-
mic tRNALys3 was shown to target the the HIV-1 primer-binding
site (PBS) similarly to siRNAs that target complementary RNA
(Yeung et al., 2009). tRNAlys is used by viral reverse transcrip-
tases as primer for the initiation of reverse transcription and
DNA synthesis (Marquet et al., 1995). The 3′ tRF was shown to
be associated with Dicer and AGO2, and to cause RNA cleav-
age of the complementary PBS sequence thereby showing the
role of a tRF in viral gene silencing. Other tRFs like 3′CCA,
5′ and 5′ U tRF have also been shown to be associated with
agronautes and hence have a potential to function as an siRNA
or miRNA. Haussecker et al. (2010) investigated the ability of
3′ CCA and 3′U tRFs to associate with Argonaute proteins and
cause silencing of a reporter luciferase transgene. They found
that both types of 3′ tRF associated with Argonaute proteins,
but often more effectively with the non-silencing Ago3 and Ago4
than Ago1 or Ago2. They observed that 3′ CCA tRFs had a mod-
erate effect on reporter transgene silencing, but 3′ U tRFs did
not. However, upon co-transfection of a small RNA comple-
mentary to the 3′ U tRF, the tRF preferentially associated with
Ago2 and caused 80% silencing of the reporter transgene. This
correlated with redirection of the reconstituted fully duplexed
double-stranded RNA into Ago 2, whereas Ago 3 and 4 were
skewed toward less structured small RNAs, particularly single-
stranded RNAs. This is in stark contrast with results normally
obtained in the miRNA field where sequences complementary
to miRNAs relieve repression, a phenomenon known as sense-
induced transgene silencing (SITS). Modulation of tRF levels had
minor effects on the abundance of microRNAs, but more pro-
nounced changes in the silencing activities of both microRNAs
and siRNAs. This study provides compelling evidence that tRFs
play a role in the global control of small RNA silencing through
associating with different Argonaute proteins (Haussecker et al.,
2010).

A tRF that functions as an miRNA was recently described, a
22 nt 3′tRF generated in a Dicer-dependent manner from tRNAGly

in mature B cells and associated with Argonaute proteins (Maute
et al., 2013). The 3′tRF was shown to inhibit RPA1, an essential
gene involved in DNA repair by possibly binding to the 3′ UTR
region. Expression of this tRF was downregulated in a lymphoma
cell line indicating that loss of 3′ tRF expression might help the
cancer cells to tolerate the accumulation of mutations and genomic
aberrations during tumor progression.

Other biological functions of tRFs
Apart from the two known biological functions of tRFs in reg-
ulation, other potential biological functions are beginning to be
identified. Recently a study by Ruggero et al. (2014) showed their
role in viral infectivity. Large scale sequencing of small RNA
libraries was used to identify small non-coding RNAs expressed in
normal CD4+ T cells compared to cells transformed with human
T-cell leukemia virus type 1 (HTLV-1), the causative agent of adult
T-cell leukemia/lymphoma (ATLL). Among the miRNAs and tRFs
expressed, one of the most abundant tRFs found was derived from
the 3′ end of tRNAPro, and exhibited perfect sequence comple-
mentarity to the primer binding site of HTLV-1. In vitro reverse
transcriptase assays verified that this tRF was capable of prim-
ing HTLV-1 reverse transcriptase thereby suggesting an important
role in viral infection. One possible role suggested for the tRF frag-
ment is to support the initiation of reverse transcription, but not
progressivity, with failure to proceed to the strand transfer step
(Ruggero et al., 2014). Further studies are now needed to com-
pare the abilities of the tRF and of full-length tRNAPro to prime
and support strand transfer. Variation of tRNA halves accumula-
tion was also shown in the parasites Toxoplasma gondii, the agent
of toxoplasmosis, and the rodent malaria parasite Plasmodium
berghei. These organisms exhibited increased tRNA accumulation
upon egress from host cells and in response to stage differenti-
ation, amino acid starvation, and heat-shock. It was observed
that avirulent isolates of T. gondii and attenuated P. berghei para-
sites displayed higher rates of tRNA cleavage compared to virulent
strains. Also tRNA half production was significantly higher in
the metabolically quiescent bradyzoite and sporozoite stages of T.
gondii, compared to the fast-growing tachyzoite indicating a rela-
tionship between half-tRNA production and growth rate in this
important group of organisms (Galizi et al., 2013). A role for tRF
halves in Respiratory Syncytial Virus (RSV) infectivity was recently
shown by Wang et al. who observed an induction of tRNA cleavage
upon RSV infection with a specific subset of tRNAs being cleaved.
The 31 nt 5′ tRF(Glu) formed exhibited trans-silencing capabil-
ity against target genes; however the mechanism of gene silencing
was found to be different than the gene-silencing mechanism of
miRNA/siRNA, previously also shown for other tRFs. Interestingly
the tRF was also shown to promote RSV replication (Wang et al.,
2013)

tRNA fragments have also been implicated in progressive motor
neuron loss. Hanada et al. recently demonstrated that tRNA frag-
ments generated in CLP1 mutant cells sensitize cells to oxidative
stress-induced activation of the p53 tumor suppressor pathway
and in turn lead to progressive loss of spinal motor neurons leading
to muscle denervation and paralysis thereby providing a possible
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link between tRNA cleavage and p53 dependent cell death. How-
ever, the exact mechanism by which these tRNA fragments affect
the p53 pathway needs to be determined (Hanada et al., 2013).

REGULATION OF CELL DEATH BY tRNA
Apoptosis is a cellular process by which damaged, harmful, and
unwanted cells are eliminated. Apoptotic regulation is critical
to cell homeostasis, immunity, multi-cellular development, and
protection against infections and diseases like cancer (Thomp-
son, 1995). Apoptotic cells have been shown to undergo various
morphological and biochemical changes caused by a group of
cysteine-dependent aspartate specific proteases, or caspases. In
healthy cells, caspases are inactive, however during apopto-
sis caspases are activated and signal the onset of apoptosis via
cleavage of various intracellular proteins including apoptotic
proteins, cellular structural and survival proteins, transcrip-
tional factors, signaling molecules, and proteins involved in
DNA and RNA metabolism (Li and Yuan, 2008; Hou and
Yang, 2013). Cleavage of these intracellular proteins ultimately
leads to phagocytic recognition and engulfment of the dying
cell. While many factors have been discovered that regulate
the apoptotic pathway, in this section the recently discov-
ered role of tRNA as a regulator of cell death is discussed
(Figure 3).

CASPASE ACTIVATION BY EXTRINSIC AND INTRINSIC PATHWAYS
Apoptosis can be triggered via two major routes: an extrin-
sic, or extracellularly activated pathway and/or an intrinsic, or
mitochondrial-mediated pathway. Both pathways activate cas-
pases, a class of endoproteases that hydrolyze peptide bonds
(Thornberry and Lazebnik, 1998). Although there are various
types of caspases, those involved in apoptosis can be classified
into two groups, the initiator (or apical) caspases and the effec-
tor (or executioner) caspases. Initiator caspases (e.g., Caspases-8
and 9) are capable of autocatalytic activation, whereas effector
caspases (e.g., Caspases-3, 6 and 7) are activated by initiator
caspase cleavage (Chang and Yang, 2000; Riedl and Shi, 2004).
The extrinsic pathway begins outside the cell through activa-
tion of a group of pro-apoptotic cell surface receptors, such
as Fas/CD95 and tumor necrosis factor receptor. Upon bind-
ing to their cognate ligand, these receptors recruit an adaptor
protein Fas-associated death domain (FADD) that binds and
dimerizes the initiator procaspase-8, to form an oligomeric
death-inducing signaling complex (DISC), in which procaspase-
8 becomes activated through an autoproteolytic cleavage event.
The active caspase-8 then cleaves and activates the effector cas-
pases 3 and 7 (Ashkenazi and Dixit, 1998; Krammer et al., 2007;
Hou and Yang, 2013). The intrinsic pathway causes mitochon-
drial outer membrane permeabilization (MOMP), which leads to
release of cytochrome c, a mitochondrial protein which trans-
fers electrons from complex III to complex IV in the electron
transport chain (Wang, 2001). The discovery of the role of
cytochrome c in apoptosis by Liu et al. (1996) came as a sur-
prise due to its essential role in the survival of the cell. In
the cytosol, cytochrome c interacts with the apoptotic protease
activating factor-1 (APAF-1) to form the apoptosome complex
(Zou et al., 1997). The complex recruits procaspase-9, which

converts to active caspase-9 by autocatalysis. Active caspase-
9 activates effector caspases like caspase-7 and caspase-3 and
causes apoptosis (Figure 3). Apoptosis is regulated by sev-
eral pro-apoptotic proteins (Bax, Bak, and Bid), anti-apoptotic
proteins (Bcl-2, Bcl-XL, and Mcl-1) and a range of cellular
factors (HSP90, HSP70 and HSP27; Sreedhar and Csermely,
2004; Gorla and Sepuri, 2014) that is now known to include
tRNA.

INTERACTION BETWEEN tRNA AND CYTOCHROME c: POTENTIAL ROLE
IN REGULATING APOPTOSIS
To answer the long-standing conundrum of why 1 mM dATP
is required to induce caspase-9 activation in cell lysates, when
the intracellular concentration of dATP is only 10 μM, Mei
et al. investigated the role of RNA, which is essentially a poly-
mer of nucleoside monophosphates, in cytochrome c-mediated
caspase activation. They observed that treatment of mam-
malian S100 extracts with RNase strongly increased cytochrome
c-induced caspase-9 activation, while the addition of RNA to
the extracts impaired caspase-9 activation. These results impli-
cated an inhibitory role of RNA in the activation of caspase-9.
Systematic evaluation of the steps leading to caspase-9 activa-
tion identified cytochrome c as the target of the RNA inhibitor.
Analysis of cytochrome c-associated species revealed that tRNA
binds specifically to cytochrome c. Microinjection of tRNA into
living cells inhibited the ability of cytochrome c to induce apopto-
sis, while degradation of tRNA by an RNase that preferentially
degrades tRNA, onconase, enhanced apoptosis via the intrin-
sic pathway. Taken together, these findings showed that tRNA
binds to cytochrome c and inhibits formation of the apoptosome
(Mei et al., 2010). This suggested a direct role for tRNA in reg-
ulating apoptosis and revealed an intimate connection between
translation and cell death. This finding also raised an inter-
esting question as to how the interaction between tRNA and
cytochrome c modulates apoptosis. This question was addressed
recently by Gorla et al. who proposed that tRNA interacts with
the heme moiety of cytochrome c and thereby protects the pos-
itively charged surface of cytochrome c from being exposed to
the APAF-1 complex. This model was further confirmed by the
observation that cytochrome c lost its ability to interact with
tRNA after treatment with oxidizing agents or cysteine modify-
ing agents. In such a state, hemin is unable to bind to tRNA
and the exposed positively charged residues of cytochrome c
then bind to APAF-1 (Gorla and Sepuri, 2014). Hence tRNA can
regulate apoptosis by binding to cytochrome c. Further inves-
tigation of the nucleotide residues of tRNA involved in these
interactions is required to answer questions about how tRNA
binding to cytochrome c is regulated in the cell, whether spe-
cific tRNA isoacceptors are involved, and if this interaction is
non-specific. Increased expression of tRNA has been detected in
a wide variety of transformed cells (Marshall and White, 2008),
such as ovarian and cervical cancer (Winter et al., 2000; Daly
et al., 2005), carcinomas, and multiple myeloma cell lines (Zhou
et al., 2009). Expression levels of tRNA molecules in breast can-
cer cells were 10-fold higher as compared to in normal cells and
overexpression of tRNAi

Met induces proliferation and immor-
talization of fibroblasts and also significantly alters the global

www.frontiersin.org June 2014 | Volume 5 | Article 171 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Non-Coding_RNA/archive


Raina and Ibba tRNAs as regulators of biological processes

FIGURE 3 | Intrinsic pathway for apoptosis. The intrinsic pathway,
typically initiated by DNA damage activates p53. p53 then activates the
pro-apoptotic proteins, which cause mitochondrial outer membrane
permeabilization (MOMP) leading to release of cytochrome c into the
cytoplasm. In the cytoplasm cytochrome c associates with Apaf-1 to

form the apoptosome complex. However, tRNA may interact with
cytochrome c and prevent its binding to Apaf-1. The apoptosome causes
the conversion of inactive pro-caspase-9 into active caspase-9.
Caspase-9 then activates caspase-3 that then leads to the caspase
cascade, resulting in apoptosis.

tRNA expression profile (Pavon-Eternod et al., 2013). It was
also observed that certain individual tRNAs were overexpressed
more as compared to others. tRNAArg(UCU), tRNAArg(CCU),
tRNAThr(CGU), tRNASer(CGA), and tRNATyr(GTA) were among the
most over-expressed tRNAs, while tRNAHis(GTG), tRNAPhe(GAA),
and tRNAMet(CAT) were the least over-expressed tRNAs
(Pavon-Eternod et al., 2009) indicating overexpression is not
random and may be related to regulation of cytochrome c. Iden-
tification of the tRNA sites involved in binding to cytochrome
c might help elucidate the connection between tRNA overex-
pression and cancer. tRNA cleavage has also been suggested
as a mode of regulation of this interaction (Hou and Yang,
2013).

CONCLUSION
While aa-tRNAs have been implicated in variety of roles in biosyn-
thetic pathways, much less is known about the various functions
of uncharged tRNAs in cells apart from their role in acting as
sensors for cellular stress like nutritional deprivation. The recent
discovery of the role of tRNA in regulating apoptosis has opened a

whole new field which requires investigation into tRNA-protein
interactions and has created a link between regulation of cell
death and cellular metabolism. With the advent of high through-
put sequencing techniques, studying the whole transcriptome of
various organisms has become feasible. These techniques refuted
the age-old assumption that rRNA, mRNA and tRNA constitute
the main RNA species in the cell. It is now clear that almost
all of the DNA in the cell is transcribed; however, only a small
portion of these transcripts are translated into proteins or used
as substrates for biological processes. The emergence of these
sequencing techniques has resulted in discoveries of novel ncR-
NAs, and several studies have highlighted their role as important
regulators of gene expression. Among the ncRNAs discovered, a
number of cleavage products of tRNAs formed in response to
stress have been also been discovered. These cleavage products
were initially thought to be a result of random degradation; how-
ever, a number of studies have revealed their production to be
a result of specific cleavage, and possibly regulated. Although a
number of cleavage products have been observed, all the pos-
sible mechanisms of their production are not fully understood.
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Also in the case of 3′U tRF and 5′ leader exon tRF that are most
likely produced inside the nucleus, their mechanism of export
from the nucleus is not understood. Also regulation of tRNA frag-
ment production, i.e., its initiation, efficiency, and termination
are not fully understood. A recent study by Hanada et al. (2013)
demonstrated that tRNA fragments sensitize cells to oxidative
stress-induced activation of the p53 tumor suppressor pathway.
This suggests that tRNA cleavage activates apoptosis via activation
of p53 and hence protects against cancer, while full-length tRNA
binds cytochrome c and prevents apoptosis thereby aiding cancer
development. This hypothesis is strengthened by the overexpres-
sion of tRNAs observed in cancer cell lines. Further investigation
into the link between tRNA cleavage and p53 activation is required
to help understand how tRNAs help regulate the progression of
cancer.

tRNA is post-transcriptionally modified at various nucleotides.
While their role in tRNA structure stability and translation is well
studied, these modifications might aid in the regulation of tRNA
fragmentation. Further studies are needed to answer why some
tRNAs are cleaved and others not – for example could modifica-
tions make certain positions in tRNA more sensitive to RNases
or could they be responsible for blocking RNases? Also, modi-
fications might also help regulate tRNA binding to cytochrome
c during apoptosis. Regulation of this interaction and its role in
metabolism and tumorigenesis will help our understanding of reg-
ulation of death in both normal and cancer cells. Cells have various
mechanisms to sense the absence of a modification and remove
non-functional tRNAs (Phizicky and Alfonzo, 2010). Variations in
the modification status of tRNAs during stress have been impli-
cated directly in decoding (Dedon and Begley, 2014), and such
effects may be accentuated by indirect effects on the generation of
regulatory tRFs. Clearly, much still remains to be discovered about
the various regulatory roles of both charged and uncharged tRNA.
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